65
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Modifications Of Mirnas In Intervertebral Disc Degeneration: A Key To The Future Development Of Genetic-Based Therapies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 271-281 | Received 11 Aug 2022, Accepted 18 Apr 2023, Published online: 17 May 2023

References

  • Calvo-Muñoz I , Gómez-ConesaA , Sánchez-MecaJ. Prevalence of low back pain in children and adolescents: a meta-analysis. BMC Pediatr.13, 14 (2013).
  • Turk DC , PatelKV. Epidemiology and economics of chronic and recurrent pain. Clinical pain management: A practical guide6–24 (2022).
  • Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet396(10258), 1204–1222 (2020).
  • Parenteau CS , LauEC , CampbellIC , CourtneyA. Prevalence of spine degeneration diagnosis by type, age, gender, and obesity using Medicare data. Sci. Rep.11(1), 5389 (2021).
  • Ou-Yang DC , KleckCJ , Ackert-BicknellCL. Genetics of intervertebral disc degeneration. Curr. Osteoporos. Rep.21(1), 56–64 (2023).
  • Sherafatian M , AbdollahpourHR , GhaffarpasandF , YaghmaeiS , AzadeganM , HeidariM. MicroRNA expression profiles, target genes, and pathways in intervertebral disk degeneration: a meta-analysis of 3 microarray studies. World Neurosurg.126, 389–397 (2019).
  • Sherafatian M , GhaffarpasandF , BeheshtianMS. In reply to “Noncoding ribonucleic acid studies of lumbar disk disease: decade retrospect.”World Neurosurg.127, 678–679 (2019).
  • Farrokhi MR , GhaffarpasandF , KhaniM , GholamiM. An evidence-based stepwise surgical approach to cervical spondylotic myelopathy: a narrative review of the current literature. World Neurosurg.94, 97–110 (2016).
  • Romaniyanto , MahyudinF , SigitPrakoeswa CRet al. An update of current therapeutic approach for Intervertebral disc degeneration: a review article. Ann. Med. Surg. (Lond.)77, 103619 (2022). www.sciencedirect.com/science/article/pii/S204908012200379X
  • Mohd Isa IL , TeohSL , MohdNor NH , MokhtarSA. Discogenic low back pain: anatomy, pathophysiology and treatments of intervertebral disc degeneration. Int.J. Mol. Sci.24(1), 208 (2022).
  • Kirnaz S , CapadonaC , WongTet al. Fundamentals of intervertebral disc degeneration. World Neurosurg.157, 264–273 (2022).
  • Vergroesen PP , KingmaI , EmanuelKSet al. Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthritis Cartilage23(7), 1057–1070 (2015).
  • Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell136(2), 215–233 (2009).
  • Moutinho C , EstellerM. MicroRNAs and epigenetics. Adv. Cancer Res.135, 189–220 (2017).
  • He L , HannonGJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet.5(7), 522–531 (2004).
  • Guil S , EstellerM. DNA methylomes, histone codes and miRNAs: tying it all together. Int. J. Biochem. Cell Biol.41(1), 87–95 (2009).
  • Ali SA , PeffersMJ , OrmsethMJ , JurisicaI , KapoorM. The non-coding RNA interactome in joint health and disease. Nat. Rev. Rheumatol.17(11), 692–705 (2021).
  • Jiang Y , ZhongS , HeSet al. Biomarkers (mRNAs and non-coding RNAs) for the diagnosis and prognosis of rheumatoid arthritis. Front. Immunol.14, 1087925 (2023).
  • Farrokhi MR , KarimiMH , GhaffarpasandF , SherafatianM. MicroRNA-199a upregulation mediates lumbar intervertebral disc degeneration and is associated with clinical grades of degeneration. Turk. Neurosurg.30(1), 104–111 (2020).
  • Jiang C , ChenZ , WangXet al. The potential mechanisms and application prospects of non-coding RNAs in intervertebral disc degeneration. Front. Endocrinol. (Lausanne)13, 1081185 (2022).
  • Wang C , CuiL , GuQet al. The mechanism and function of miRNA in intervertebral disc degeneration. Orthop. Surg.14(3), 463–471(2022).
  • Wang X , ChenN , DuZet al. Bioinformatics analysis integrating metabolomics of m(6)A RNA microarray in intervertebral disc degeneration. Epigenomics12(16), 1419–1441 (2020).
  • Xiang Q , ZhaoY , LinJ , JiangS , LiW. Epigenetic modifications in spinal ligament aging. Ageing Res. Rev.77, 101598 (2022).
  • Henry N , ClouetJ , LeBideau J , LeVisage C , GuicheuxJ. Innovative strategies for intervertebral disc regenerative medicine: from cell therapies to multiscale delivery systems. Biotechnol. Adv.36(1), 281–294 (2018).
  • Guo C , ChenY , WangY , HaoY. Regulatory roles of noncoding RNAs in intervertebral disc degeneration as potential therapeutic targets (review). Exp. Ther. Med.25(1), 44 (2023).
  • Guo HY , GuoMK , WanZY , SongF , WangHQ. Emerging evidence on noncoding-RNA regulatory machinery in intervertebral disc degeneration: a narrative review. Arthritis Res. Ther.22(1), 270 (2020).
  • Shi ZW , ZhuL , SongZR , LiuTJ , HaoDJ. Roles of p38 MAPK signalling in intervertebral disc degeneration. Cell Prolif.e13438 (2023).
  • Zhang J , SunJ , ChenDet al. Suppression of matrix degradation and amelioration of disc degeneration by a 970-nm diode laser via inhibition of the p38 MAPK pathway in a rabbit model. Lasers Med. Sci.38(1), 58 (2023).
  • Kim JW , AnHJ , YeoHet al. Activation of hypoxia-inducible factor-1α signaling pathway has the protective effect of intervertebral disc degeneration. Int. J. Mol. Sci.22(21), 11355 (2021).
  • Li Z , SunC , ChenM , WangB. Lumican silencing alleviates tumor necrosis factor-α-induced nucleus pulposus cell inflammation and senescence by inhibiting apoptosis signal regulating kinase 1/p38 signaling pathway via inactivating Fas ligand expression. Bioengineered12(1), 6891–6901 (2021).
  • Shi X , TianS , TianY. Experimental study of miR-503 regulating the activity as well as the function of degenerated human nucleus pulposus cells of the intervertebral disc through inhibiting Wnt pathway. J. Musculoskelet. Neuronal Interact.23(1), 131–144 (2023).
  • Wang B , XuN , CaoLet al. miR-31 from mesenchymal stem cell-derived extracellular vesicles alleviates intervertebral disc degeneration by inhibiting NFAT5 and upregulating the Wnt/β-catenin pathway. Stem Cells Int.2022, 2164057 (2022).
  • He S , FuY , YanBet al. Curcumol alleviates the inflammation of nucleus pulposus cells via the PI3K/Akt/NF-κB Signaling pathway and delays intervertebral disk degeneration. World Neurosurg.155, e402–e411 (2021).
  • Zou YP , ZhangQC , ZhangQY , JiangLB , LiXL. Procyanidin B2 alleviates oxidative stress-induced nucleus pulposus cells apoptosis through upregulating Nrf2 via PI3K-Akt pathway. J. Orthop. Res.doi:10.1002/jor.25492.(2022).
  • Wu Y , LiS , ShenJ , WangZ , LiuH. Nucleus pulposus related lncRNA and mRNA expression profiles in intervertebral disc degeneration. Genomics115(2), 110570 (2023).
  • Ma X , LinY , YangK , YueB , XiangH , ChenB. Effect of lentivirus-mediated survivin transfection on the morphology and apoptosis of nucleus pulposus cells derived from degenerative human disc in vitro. Int. J. Mol. Med.36(1), 186–194 (2015).
  • Wang HQ , YuXD , LiuZHet al. Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J. Pathol.225(2), 232–242 (2011).
  • Zhou J , SunJ , MarkovaDZet al. MicroRNA-145 overexpression attenuates apoptosis and increases matrix synthesis in nucleus pulposus cells. Life Sci.221, 274–283 (2019).
  • Sun JC , ZhengB , SunRXet al. miR-499a-5p suppresses apoptosis of human nucleus pulposus cells and degradation of their extracellular matrix by targeting SOX4. Biomed. Pharmacother.113, 108652 (2019).
  • Wang R , WenB , SunD. miR-573 regulates cell proliferation and apoptosis by targeting Bax in nucleus pulposus cells. Cell. Mol. Biol. Lett.24, 2 (2019).
  • Ma JF , ZangLN , XiYM , YangWJ , ZouD. miR-125a Rs12976445 polymorphism is associated with the apoptosis status of nucleus pulposus cells and the risk of intervertebral disc degeneration. Cell. Physiol. Biochem.38(1), 295–305 (2016).
  • Cheng X , ZhangG , ZhangLet al. Mesenchymal stem cells deliver exogenous miR-21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration. J. Cell. Mol. Med.22(1), 261–276 (2018).
  • Chai X , SiH , SongJ , ChongY , WangJ , ZhaoG. miR-486-5p inhibits inflammatory response, matrix degradation and apoptosis of nucleus pulposus cells through directly targeting FOXO1 in intervertebral disc degeneration. Cell. Physiol. Biochem.52(1), 109–118 (2019).
  • Sheng B , YuanY , LiuXet al. Protective effect of estrogen against intervertebral disc degeneration is attenuated by miR-221 through targeting estrogen receptor α . Acta Biochim. Biophys. Sin. (Shanghai)50(4), 345–354 (2018).
  • Chen H , WangJ , HuBet al. miR-34a promotes Fas-mediated cartilage endplate chondrocyte apoptosis by targeting Bcl-2. Mol. Cell. Biochem.406(1–2), 21–30 (2015).
  • Liu J , YuJ , JiangW , HeM , ZhaoJ. Targeting of CDKN1B by miR-222-3p may contribute to the development of intervertebral disc degeneration. FEBS Open Bio.9(4), 728–735 (2019).
  • Zhao K , ZhangY , KangLet al. Epigenetic silencing of miRNA-143 regulates apoptosis by targeting BCL2 in human intervertebral disc degeneration. Gene628, 259–266 (2017).
  • Kang L , YangC , SongYet al. MicroRNA-494 promotes apoptosis and extracellular matrix degradation in degenerative human nucleus pulposus cells. Oncotarget8(17), 27868–27881 (2017).
  • Liu G , CaoP , ChenH , YuanW , WangJ , TangX. miR-27a regulates apoptosis in nucleus pulposus cells by targeting PI3K. PLoS One8(9), e75251 (2013).
  • Hai B , MaY , PanXet al. Melatonin benefits to the growth of human annulus fibrosus cells through inhibiting miR-106a-5p/ATG7 signaling pathway. Clin. Interv. Aging14, 621–630 (2019).
  • Cai P , YangT , JiangX , ZhengM , XuG , XiaJ. Role of miR-15a in intervertebral disc degeneration through targeting MAP3K9. Biomed. Pharmacother.87, 568–574 (2017).
  • Wang B , WangD , YanT , YuanH. miR-138-5p promotes TNF-α-induced apoptosis in human intervertebral disc degeneration by targeting SIRT1 through PTEN/PI3K/Akt signaling. Exp. Cell Res.345(2), 199–205 (2016).
  • Lv J , LiS , WanT , YangY , ChengY , XueR. Inhibition of microRNA-30d attenuates the apoptosis and extracellular matrix degradation of degenerative human nucleus pulposus cells by up-regulating SOX9. Chem. Biol. Interact.296, 89–97 (2018).
  • Sun Z , JianY , FuH , LiB. miR-532 downregulation of the Wnt/β-catenin signaling via targeting Bcl-9 and induced human intervertebral disc nucleus pulposus cells apoptosis. J. Pharmacol. Sci.138(4), 263–270 (2018).
  • Mern DS , BeierfußA , ThoméC , HegewaldAA. Enhancing human nucleus pulposus cells for biological treatment approaches of degenerative intervertebral disc diseases: a systematic review. J. Tissue Eng. Regen. Med.8(12), 925–936 (2014).
  • Chen B , HuangSG , JuLet al. Effect of microRNA-21 on the proliferation of human degenerated nucleus pulposus by targeting programmed cell death 4. Braz. J. Med. Biol. Res.49(6), e5020 (2016).
  • Liu H , HuangX , LiuXet al. miR-21 promotes human nucleus pulposus cell proliferation through PTEN/AKT signaling. Int. J. Mol. Sci.15(3), 4007–4018 (2014).
  • Li W , WangP , ZhangZ , WangW , LiuY , QiQ. miR-184 regulates proliferation in nucleus pulposus cells by targeting GAS1. World Neurosurg.97, 710–715.e711 (2017).
  • Tan H , ZhaoL , SongR , LiuY , WangL. MicroRNA-665 promotes the proliferation and matrix degradation of nucleus pulposus through targeting GDF5 in intervertebral disc degeneration. J. Cell. Biochem.119(9), 7218–7225 (2018).
  • Tao B , YiJ , HuangCet al. MicroRNA-96 regulates the proliferation of nucleus pulposus cells by targeting ARID2/AKT signaling. Mol. Med. Rep.16(5), 7553–7560 (2017).
  • Yu X , LiZ , ShenJet al. MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLOS ONE8(12), e83080 (2013).
  • Guo Y , TianL , LiuX , HeY , ChangS , ShenY. ERRFI1 inhibits proliferation and inflammation of nucleus pulposus and is negatively regulated by miR-2355-5p in intervertebral disc degeneration. Spine (Phila. Pa. 1976)44(15), e873–e881 (2019).
  • Meng X , ZhuY , TaoL , ZhaoS , QiuS. MicroRNA-125b-1-3p mediates intervertebral disc degeneration in rats by targeting teashirt zinc finger homeobox 3. Exp. Ther. Med.15(3), 2627–2633 (2018).
  • Kibble MJ , DomingosM , HoylandJA , RichardsonSM. Importance of matrix cues on intervertebral disc development, degeneration, and regeneration. Int. J. Mol. Sci.23(13), 6915 (2022).
  • Zhang S , LiuW , ChenSet al. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res.390(1), 1–22(2022).
  • Wang C , ZhangZZ , YangWet al. miR-210 facilitates ECM degradation by suppressing autophagy via silencing of ATG7 in human degenerated NP cells. Biomed. Pharmacother.93, 470–479 (2017).
  • Zhao B , YuQ , LiH , GuoX , HeX. Characterization of microRNA expression profiles in patients with intervertebral disc degeneration. Int. J. Mol. Med.33(1), 43–50 (2014).
  • Jing W , JiangW. MicroRNA-93 regulates collagen loss by targeting MMP3 in human nucleus pulposus cells. Cell Prolif.48(3), 284–292 (2015).
  • Li HR , CuiQ , DongZY , ZhangJH , LiHQ , ZhaoL. Downregulation of miR-27b is involved in loss of type ii collagen by directly targeting matrix metalloproteinase 13 (MMP13) in human intervertebral disc degeneration. Spine (Phila. Pa. 1976)41(3), e116–e123 (2016).
  • Zhang WL , ChenYF , MengHZet al. Role of miR-155 in the regulation of MMP-16 expression in intervertebral disc degeneration. J. Orthop. Res.35(6), 1323–1334 (2017).
  • Hua WB , WuXH , ZhangYKet al. Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration. Biochimie139, 74–80 (2017).
  • Xu YQ , ZhangZH , ZhengYF , FengSQ. Dysregulated miR-133a mediates loss of type ii collagen by directly targeting matrix metalloproteinase 9 (MMP9) in human intervertebral disc degeneration. Spine (Phila. Pa. 1976)41(12), e717–e724 (2016).
  • Ji ML , ZhangXJ , ShiPLet al. Downregulation of microRNA-193a-3p is involved in invertebral disc degeneration by targeting MMP14. J. Mol. Med. (Berl.)94(4), 457–468 (2016).
  • Song J , WangHL , SongKHet al. CircularRNA_104670 plays a critical role in intervertebral disc degeneration by functioning as a ceRNA. Exp. Mol. Med.50(8), 1–12 (2018).
  • Shi C , WuL , LinWet al. miR-202-3p regulates interleukin-1β-induced expression of matrix metalloproteinase 1 in human nucleus pulposus. Gene687, 156–165 (2019).
  • Ji ML , JiangH , ZhangXJet al. Preclinical development of a microRNA-based therapy for intervertebral disc degeneration. Nat. Commun.9(1), 5051 (2018).
  • Liu W , XiaP , FengJet al. MicroRNA-132 upregulation promotes matrix degradation in intervertebral disc degeneration. Exp. Cell Res.359(1), 39–49 (2017).
  • Liu W , ZhangY , FengXet al. Inhibition of microRNA-34a prevents IL-1β-induced extracellular matrix degradation in nucleus pulposus by increasing GDF5 expression. Exp. Biol. Med. (Maywood)241(17), 1924–1932 (2016).
  • Liu W , ZhangY , XiaPet al. MicroRNA-7 regulates IL-1β-induced extracellular matrix degeneration by targeting GDF5 in human nucleus pulposus cells. Biomed. Pharmacother.83, 1414–1421 (2016).
  • Lv F , HuangY , LvWet al. MicroRNA-146a ameliorates inflammation via TRAF6/NF-κB pathway in intervertebral disc cells. Med. Sci. Monit.23, 659–664 (2017).
  • Dong W , LiuJ , LvYet al. miR-640 aggravates intervertebral disc degeneration via NF-κB and WNT signalling pathway. Cell Prolif.52(5), e12664 (2019).
  • Zhang Q , WengY , JiangY , ZhaoS , ZhouD , XuN. Overexpression of miR-140-5p inhibits lipopolysaccharide-induced human intervertebral disc inflammation and degeneration by downregulating toll-like receptor 4. Oncol. Rep.40(2), 793–802 (2018).
  • Meisel HJ , AgarwalN , HsiehPCet al. Cell therapy for treatment of intervertebral disc degeneration: a systematic review. Global Spine J.9(Suppl. 1), S39–S52 (2019).
  • Yolcu YU , MoinuddinFM , WahoodW , AlviMA , QuW , BydonM. Use of regenerative treatments in treatment of lumbar degenerative disc disease: a systematic review. Clin. Neurol. Neurosurg.195, 105916 (2020).
  • Roh EJ , DaraiA , KyungJWet al. Genetic therapy for intervertebral disc degeneration. Int. J. Mol. Sci.22(4), 1579 (2021).
  • Takeoka Y , YurubeT , NishidaK. Gene therapy approach for intervertebral disc degeneration: an update. Neurospine17(1), 3–14 (2020).
  • Stergar J , GradisnikL , VelnarT , MaverU. Intervertebral disc tissue engineering: a brief review. Bosn. J. Basic Med. Sci.19(2), 130–137 (2019).
  • Li Z , RanaTM. Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Discov.13(8), 622–638 (2014).
  • Jiang H , MoroA , WangJ , MengD , ZhanX , WeiQ. MicroRNA-338-3p as a novel therapeutic target for intervertebral disc degeneration. Exp. Mol. Med.53(9), 1356–1365 (2021).
  • Le Moal B , LepeltierÉ , RouleauDet al. Lipid nanocapsules for intracellular delivery of microRNA: a first step towards intervertebral disc degeneration therapy. Int. J. Pharm.624, 121941 (2022).
  • Lan T , ShiyuH , ShenZ , YanB , ChenJ. New insights into the interplay between miRNAs and autophagy in the aging of intervertebral discs. Ageing Res. Rev.65, 101227 (2021).
  • Clouet J , FusellierM , CamusA , LeVisage C , GuicheuxJ. Intervertebral disc regeneration: from cell therapy to the development of novel bioinspired endogenous repair strategies. Adv. Drug Deliv. Rev.146, 306–324 (2019).
  • Gao XD , ZhangXB , ZhangRHet al. Aggressive strategies for regenerating intervertebral discs: stimulus-responsive composite hydrogels from single to multiscale delivery systems. J. Mater. Chem. B10(30), 5696–5722 (2022).
  • Yamada K , IwasakiN , SudoH. Biomaterials and cell-based regenerative therapies for intervertebral disc degeneration with a focus on biological and biomechanical functional repair: targeting treatments for disc herniation. Cells11(4), 602 (2022).
  • Rupaimoole R , SlackFJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov.16(3), 203–222 (2017).
  • Lagarce F , PassiraniC. Nucleic-acid delivery using lipid nanocapsules. Curr. Pharm. Biotechnol.17(8), 723–727 (2016).
  • David S , ResnierP , GuillotA , PitardB , BenoitJP , PassiraniC. siRNA LNCs – a novel platform of lipid nanocapsules for systemic siRNA administration. Eur. J. Pharm. Biopharm.81(2), 448–452 (2012).
  • Sen CK , GhatakS. miRNA control of tissue repair and regeneration. Am. J. Pathol.185(10), 2629–2640 (2015).
  • Babae N , BourajjajM , LiuYet al. Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma. Oncotarget5(16), 6687–6700 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.