197
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenomic effects of vitamin D in colorectal cancer

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1213-1228 | Received 17 Aug 2022, Accepted 13 Sep 2022, Published online: 03 Nov 2022

References

  • Bikle DD . Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol.21(3), 319–329 (2014).
  • Goltzman D . Functions of vitamin D in bone. Histochem. Cell Biol.149(4), 305–312 (2018).
  • Keum N , LeeDH , GreenwoodDC , MansonJE , GiovannucciE. Vitamin D supplementation and total cancer incidence and mortality: a meta-analysis of randomized controlled trials. Ann. Oncol.30(5), 733–743 (2019).
  • Zhang Y , FangF , TangJet al. Association between vitamin D supplementation and mortality: systematic review and meta-analysis. BMJ366, l4673 (2019).
  • Chandler PD , ChenWY , AjalaONet al. Effect of vitamin D3 supplements on development of advanced cancer: a secondary analysis of the VITAL randomized clinical trial. JAMA Netw. Open3(11), e2025850 (2020).
  • Feldman D , KrishnanAV , SwamiS , GiovannucciE , FeldmanBJ. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer14(5), 342–357 (2014).
  • Dou R , NgK , GiovannucciEL , MansonJE , QianZR , OginoS. Vitamin D and colorectal cancer: molecular, epidemiological and clinical evidence. Br. J. Nutr.115(9), 1643–1660 (2016).
  • Janakiram NB , MohammedA , MadkaV , KumarG , RaoCV. Prevention and treatment of cancers by immune modulating nutrients. Mol. Nutr. Food Res.60(6), 1275–1294 (2016).
  • Van Harten-Gerritsen AS , BalversMG , WitkampRF , KampmanE , Van DuijnhovenFJ. Vitamin D, inflammation, and colorectal cancer progression: a review of mechanistic studies and future directions for epidemiological studies. Cancer Epidemiol. Biomarkers Prev.24(12), 1820–1828 (2015).
  • Veldhoen M , Brucklacher-WaldertV. Dietary influences on intestinal immunity. Nat. Rev. Immunol.12(10), 696–708 (2012).
  • Von Essen MR , KongsbakM , SchjerlingP , OlgaardK , OdumN , GeislerC. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat. Immunol.11(4), 344–349 (2010).
  • Song M , NishiharaR , WangMet al. Plasma 25-hydroxyvitamin D and colorectal cancer risk according to tumour immunity status. Gut65(2), 296–304 (2016).
  • Meeker S , SeamonsA , PaikJet al. Increased dietary vitamin D suppresses MAPK signaling, colitis, and colon cancer. Cancer Res.74(16), 4398–4408 (2014).
  • Almouazen E , BourgeoisS , JordheimLP , FessiH , BriançonS. Nano-encapsulation of vitamin D3 active metabolites for application in chemotherapy: formulation study and in vitro evaluation. Pharm. Res.30(4), 1137–1146 (2013).
  • Glowka E , StasiakJ , LulekJ. Drug delivery systems for vitamin D supplementation and therapy. Pharmaceutics11(7), 347 (2019).
  • Jain KK . Current status and future prospects of drug delivery systems. Methods Mol. Biol.1141, 1–56 (2014).
  • Banik BL , FattahiP , BrownJL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.8(2), 271–299 (2016).
  • Duffy MJ , MurrayA , SynnottNC , O’donovanN , CrownJ. Vitamin D analogues: potential use in cancer treatment. Crit. Rev. Oncol. Hematol.112, 190–197 (2017).
  • Siegel RL , MillerKD , GodingSauer Aet al. Colorectal cancer statistics, 2020. CA Cancer J. Clin.70(3), 145–164 (2020).
  • Dekker E , TanisPJ , VleugelsJLA , KasiPM , WallaceMB. Colorectal cancer. Lancet394(10207), 1467–1480 (2019).
  • Wassenaar TM . E. coli and colorectal cancer: a complex relationship that deserves a critical mindset. Crit. Rev. Microbiol.44(5), 619–632 (2018).
  • Wong SH , YuJ. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol.16(11), 690–704 (2019).
  • Hessami Arani S , KerachianMA. Rising rates of colorectal cancer among younger Iranians: is diet to blame?Curr. Oncol.24(2), e131–e137 (2017).
  • Gandini S , BoniolM , HaukkaJet al. Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma. Int. J. Cancer128(6), 1414–1424 (2011).
  • Lee JE , LiH , ChanATet al. Circulating levels of vitamin D and colon and rectal cancer: the Physicians’ Health Study and a meta-analysis of prospective studies. Cancer Prev. Res. (Phila.)4(5), 735–743 (2011).
  • Ma Y , ZhangP , WangF , YangJ , LiuZ , QinH. Association between vitamin D and risk of colorectal cancer: a systematic review of prospective studies. J. Clin. Oncol.29(28), 3775–3782 (2011).
  • Touvier M , ChanDS , LauRet al. Meta-analyses of vitamin D intake, 25-hydroxyvitamin D status, vitamin D receptor polymorphisms, and colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev.20(5), 1003–1016 (2011).
  • Garland CF , GarlandFC. Do sunlight and vitamin D reduce the likelihood of colon cancer?Int. J. Epidemiol.9(3), 227–231 (1980).
  • Garland CF , ComstockGW , GarlandFC , HelsingKJ , ShawEK , GorhamED. Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study. Lancet2(8673), 1176–1178 (1989).
  • Song M , GarrettWS , ChanAT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology148(6), 1244–1260.e1216 (2015).
  • Ng K , SargentDJ , GoldbergRMet al. Vitamin D status in patients with stage IV colorectal cancer: findings from Intergroup trial N9741. J. Clin. Oncol.29(12), 1599–1606 (2011).
  • McCullough ML , ZoltickES , WeinsteinSJet al. Circulating vitamin D and colorectal cancer risk: an international pooling project of 17 cohorts. J. Natl Cancer Inst.111(2), 158–169 (2019).
  • Urashima M , OhdairaH , AkutsuTet al. Effect of vitamin D supplementation on relapse-free survival among patients with digestive tract cancers: the AMATERASU randomized clinical trial. JAMA321(14), 1361–1369 (2019).
  • Ng K , NimeiriHS , McclearyNJet al. Effect of high-dose vs standard-dose vitamin D3 supplementation on progression-free survival among patients with advanced or metastatic colorectal cancer: the SUNSHINE randomized clinical trial. JAMA321(14), 1370–1379 (2019).
  • Lappe JM , Travers-GustafsonD , DaviesKM , ReckerRR , HeaneyRP. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am. J. Clin. Nutr.85(6), 1586–1591 (2007).
  • Klutstein M , NejmanD , GreenfieldR , CedarH. DNA methylation in cancer and aging. Cancer Res.76(12), 3446–3450 (2016).
  • Mahmood N , RabbaniSA. DNA methylation readers and cancer: mechanistic and therapeutic applications. Front. Oncol.9, 489 (2019).
  • Chatterjee A , RodgerEJ , EcclesMR. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin. Cancer Biol.51, 149–159 (2018).
  • Chik F , SzyfM , RabbaniSA. Role of epigenetics in cancer initiation and progression. Adv. Exp. Med. Biol.720, 91–104 (2011).
  • Jones PA , BaylinSB. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet.3(6), 415–428 (2002).
  • Patil V , WardRL , HessonLB. The evidence for functional non-CpG methylation in mammalian cells. Epigenetics9(6), 823–828 (2014).
  • Bhattacharya SK , RamchandaniS , CervoniN , SzyfM. A mammalian protein with specific demethylase activity for mCpG DNA. Nature397(6720), 579–583 (1999).
  • Cheishvili D , ChikF , LiCCet al. Synergistic effects of combined DNA methyltransferase inhibition and MBD2 depletion on breast cancer cells; MBD2 depletion blocks 5-aza-2′-deoxycytidine-triggered invasiveness. Carcinogenesis35(11), 2436–2446 (2014).
  • Hendrich B , BirdA. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol.18(11), 6538–6547 (1998).
  • Ehrlich M . DNA hypomethylation in cancer cells. Epigenomics1(2), 239–259 (2009).
  • Robertson KD . DNA methylation and human disease. Nat. Rev. Genet.6(8), 597–610 (2005).
  • Cavalli G , HeardE. Advances in epigenetics link genetics to the environment and disease. Nature571(7766), 489–499 (2019).
  • Chen Q , ZhuC , JinY. The oncogenic and tumor suppressive functions of the long noncoding RNA MALAT1: an emerging controversy. Front. Genet.11, 93 (2020).
  • Poursheikhani A , AbbaszadeganMR , KerachianMA. Mechanisms of long non-coding RNA function in colorectal cancer tumorigenesis. Asia Pac. J. Clin. Oncol.17(1), 7–23 (2021).
  • Yang X , LiuM , LiMet al. Epigenetic modulations of noncoding RNA: a novel dimension of cancer biology. Mol. Cancer19(1), 64 (2020).
  • Yao Q , ChenY , ZhouX. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol.51, 11–17 (2019).
  • Gillette TG , HillJA. Readers, writers, and erasers. Circ. Res.116(7), 1245–1253 (2015).
  • Schuettengruber B , BourbonHM , DiCroce L , CavalliG. Genome regulation by polycomb and trithorax: 70 years and counting. Cell171(1), 34–57 (2017).
  • McDonald OG , LiX , SaundersTet al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat. Genet.49(3), 367–376 (2017).
  • Ropero S , EstellerM. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol.1(1), 19–25 (2007).
  • Morera L , LübbertM , JungM. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin. Epigenetics8(1), 57 (2016).
  • Fang Y , LiaoG , YuB. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J. Hematol. Oncol.12(1), 129 (2019).
  • Herman JG , UmarA , PolyakKet al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. U. S. A.95(12), 6870–6875 (1998).
  • Jung G , Hernández-IllánE , MoreiraL , BalaguerF , GoelA. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol.17(2), 111–130 (2020).
  • Hur K , CejasP , FeliuJet al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut63(4), 635–646 (2014).
  • Milicic A , HarrisonLA , GoodladRAet al. Ectopic expression of P-cadherin correlates with promoter hypomethylation early in colorectal carcinogenesis and enhanced intestinal crypt fission in vivo. Cancer Res.68(19), 7760–7768 (2008).
  • Nagai Y , SunamiE , YamamotoYet al. LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer. Oncotarget8(7), 11906–11916 (2017).
  • Pérez RF , TejedorJR , BayónGF , FernándezAF , FragaMF. Distinct chromatin signatures of DNA hypomethylation in aging and cancer. Aging Cell17(3), e12744 (2018).
  • Sunami E , DeMaat M , VuA , TurnerRR , HoonDS. LINE-1 hypomethylation during primary colon cancer progression. PLOS ONE6(4), e18884 (2011).
  • Luo J , LiYN , WangF , ZhangWM , GengX. S-adenosylmethionine inhibits the growth of cancer cells by reversing the hypomethylation status of c-myc and H-ras in human gastric cancer and colon cancer. Int. J. Biol. Sci.6(7), 784–795 (2010).
  • Antelo M , BalaguerF , ShiaJet al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLOS ONE7(9), e45357 (2012).
  • Baba Y , YagiT , SawayamaHet al. Long interspersed element-1 methylation level as a prognostic biomarker in gastrointestinal cancers. Digestion97(1), 26–30 (2018).
  • Castellano-Castillo D , MorcilloS , CrujeirasABet al. Association between serum 25-hydroxyvitamin D and global DNA methylation in visceral adipose tissue from colorectal cancer patients. BMC Cancer19(1), 93 (2019).
  • McVeigh G , GallowayD , JohnstonD. The case for low dose diuretics in hypertension: comparison of low and conventional doses of cyclopenthiazide. BMJ297(6641), 95–98 (1988).
  • Kerachian MA , KerachianM. Long interspersed nucleotide element-1 (LINE-1) methylation in colorectal cancer. Clin. Chim. Acta488, 209–214 (2019).
  • Ogino S , KawasakiT , NoshoKet al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int. J. Cancer122(12), 2767–2773 (2008).
  • Suter CM , MartinDI , WardRL. Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int. J. Colorectal Dis.19(2), 95–101 (2004).
  • Ma Y , ZhangP , YangJ , LiuZ , YangZ , QinH. Candidate microRNA biomarkers in human colorectal cancer: systematic review profiling studies and experimental validation. Int. J. Cancer130(9), 2077–2087 (2012).
  • Strubberg AM , MadisonBB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis. Model. Mech.10(3), 197–214 (2017).
  • Svoronos AA , EngelmanDM , SlackFJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res.76(13), 3666–3670 (2016).
  • Chen X , GuoX , ZhangHet al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene28(10), 1385–1392 (2009).
  • Horiuchi A , IinumaH , AkahaneT , ShimadaR , WatanabeT. Prognostic significance of PDCD4 expression and association with microRNA-21 in each Dukes’ stage of colorectal cancer patients. Oncol. Rep.27(5), 1384–1392 (2012).
  • Peacock O , LeeAC , CameronFet al. Inflammation and MiR-21 pathways functionally interact to downregulate PDCD4 in colorectal cancer. PLOS ONE9(10), e110267 (2014).
  • Wu Y , SongY , XiongYet al. MicroRNA-21 (Mir-21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell. Physiol. Biochem.43(3), 945–958 (2017).
  • Luo ZF , ZhaoD , LiXQet al. Clinical significance of HOTAIR expression in colon cancer. World J. Gastroenterol.22(22), 5254–5259 (2016).
  • Schwarzenbach H . Biological and clinical relevance of H19 in colorectal cancer patients. EBioMedicine13, 9–10 (2016).
  • Audia JE , CampbellRM. Histone modifications and cancer. Cold Spring Harb. Perspect. Biol.8(4), a019521 (2016).
  • Vaish V , KhareT , VermaM , KhareS. Epigenetic therapy for colorectal cancer. Methods Mol. Biol.1238, 771–782 (2015).
  • Huang T , LinC , ZhongLLet al. Targeting histone methylation for colorectal cancer. Therap. Adv. Gastroenterol.10(1), 114–131 (2017).
  • Salz T , LiG , KayeF , ZhouL , QiuY , HuangS. hSETD1A regulates Wnt target genes and controls tumor growth of colorectal cancer cells. Cancer Res.74(3), 775–786 (2014).
  • Mahmood N , RabbaniSA. DNA methylation readers and cancer: mechanistic and therapeutic applications. Front. Oncol.9, 489 (2019).
  • Quintero E , CastellsA , BujandaLet al. Colonoscopy versus fecal immunochemical testing in colorectal-cancer screening. N. Engl. J. Med.366(8), 697–706 (2012).
  • Kormi SMA , ArdehkhaniS , KerachianMA. New insights into colorectal cancer screening and early detection tests. Colorectal Cancer6(2), 63–68 (2017).
  • Devos T , TetznerR , ModelFet al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin. Chem.55(7), 1337–1346 (2009).
  • Jamialahmadi K , AzghandiM , JavadmaneshA , ZardadiM , ShamsDavodly E , KerachianMA. A DNA methylation panel for high performance detection of colorectal cancer. Cancer Genet.252–253, 64–72 (2021).
  • Yang Q , HuangT , YeG , WangB , ZhangX. Methylation of SFRP2 gene as a promising noninvasive biomarker using feces in colorectal cancer diagnosis: a systematic meta-analysis. Sci. Rep.6, 33339 (2016).
  • Boughanem H , Cabrera-MuleroA , Hernández-AlonsoPet al. Association between variation of circulating 25-OH vitamin D and methylation of secreted frizzled-related protein 2 in colorectal cancer. Clin. Epigenetics12(1), 83 (2020).
  • Tapp HS , CommaneDM , BradburnDMet al. Nutritional factors and gender influence age-related DNA methylation in the human rectal mucosa. Aging Cell12(1), 148–155 (2013).
  • Rawson JB , SunZ , DicksEet al. Vitamin D intake is negatively associated with promoter methylation of the Wnt antagonist gene DKK1 in a large group of colorectal cancer patients. Nutr. Cancer64(7), 919–928 (2012).
  • Yang R , ZhangJ , LiJet al. Inhibition of Nrf2 degradation alleviates age-related osteoporosis induced by 1,25-Dihydroxyvitamin D deficiency. Free Radic. Biol. Med.178, 246–261 (2022).
  • Gregoretti I , LeeY-M , GoodsonHV. Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol.338(1), 17–31 (2004).
  • Sun M , GuoB. Vitamin D and the epigenetic machinery in colon cancer. Curr. Med. Chem.24(9), 888–897 (2017).
  • Godman CA , JoshiR , TierneyBRet al. HDAC3 impacts multiple oncogenic pathways in colon cancer cells with effects on Wnt and vitamin D signaling. Cancer Biol. Ther.7(10), 1570–1580 (2008).
  • Hossain S , LiuZ , WoodRJ. Association between histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human colorectal cancer cells. J. Sci. Food Agric.101(5), 1833–1843 (2021).
  • Pereira F , BarbáchanoA , SilvaJet al. KDM6B/JMJD3 histone demethylase is induced by vitamin D and modulates its effects in colon cancer cells. Hum. Mol. Genet.20(23), 4655–4665 (2011).
  • Lan F , BaylissPE , RinnJLet al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature449(7163), 689–694 (2007).
  • De Santa F , TotaroMG , ProsperiniE , NotarbartoloS , TestaG , NatoliG. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell130(6), 1083–1094 (2007).
  • Hong S , ChoYW , YuLR , YuH , VeenstraTD , GeK. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc. Natl Acad. Sci. USA104(47), 18439–18444 (2007).
  • Agger K , CloosPA , ChristensenJet al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature449(7163), 731–734 (2007).
  • Pereira F , BarbáchanoA , SinghPK , CampbellMJ , MuñozA , LarribaMJ. Vitamin D has wide regulatory effects on histone demethylase genes. Cell Cycle11(6), 1081–1089 (2012).
  • Padi SK , ZhangQ , RustumYM , MorrisonC , GuoB. MicroRNA-627 mediates the epigenetic mechanisms of vitamin D to suppress proliferation of human colorectal cancer cells and growth of xenograft tumors in mice. Gastroenterology145(2), 437–446 (2013).
  • Kasiappan R , ShenZ , TseAKet al. 1,25-Dihydroxyvitamin D3 suppresses telomerase expression and human cancer growth through microRNA-498. J. Biol. Chem.287(49), 41297–41309 (2012).
  • Komagata S , NakajimaM , TakagiS , MohriT , TaniyaT , YokoiT. Human CYP24 catalyzing the inactivation of calcitriol is post-transcriptionally regulated by miR-125b. Mol. Pharmacol.76(4), 702–709 (2009).
  • Ting HJ , MessingJ , Yasmin-KarimS , LeeYF. Identification of microRNA-98 as a therapeutic target inhibiting prostate cancer growth and a biomarker induced by vitamin D. J. Biol. Chem.288(1), 1–9 (2013).
  • Mohri T , NakajimaM , TakagiS , KomagataS , YokoiT. MicroRNA regulates human vitamin D receptor. Int. J. Cancer125(6), 1328–1333 (2009).
  • Gocek E , WangX , LiuX , LiuCG , StudzinskiGP. MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis. Cancer Res.71(19), 6230–6239 (2011).
  • Wang X , GocekE , LiuCG , StudzinskiGP. MicroRNAs181 regulate the expression of p27Kip1 in human myeloid leukemia cells induced to differentiate by 1,25-dihydroxyvitamin D3. Cell Cycle8(5), 736–741 (2009).
  • Giangreco AA , VaishnavA , WagnerDet al. Tumor suppressor microRNAs, miR-100 and -125b, are regulated by 1,25-dihydroxyvitamin D in primary prostate cells and in patient tissue. Cancer Prev. Res. (Phila.)6(5), 483–494 (2013).
  • Negri M , GentileA , DeAngelis Cet al. Vitamin D-induced molecular mechanisms to potentiate cancer therapy and to reverse drug-resistance in cancer cells. Nutrients12(6), 1798 (2020).
  • Wang J , LiY , DingM , ZhangH , XuX , TangJ. Molecular mechanisms and clinical applications of miR-22 in regulating malignant progression in human cancer (review). Int. J. Oncol.50(2), 345–355 (2017).
  • Alvarez-Díaz S , ValleN , Ferrer-MayorgaGet al. MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Hum. Mol. Genet.21(10), 2157–2165 (2012).
  • Sun M , ZhangQ , YangX , QianSY , GuoB. Vitamin D enhances the efficacy of irinotecan through miR-627-mediated inhibition of intratumoral drug metabolism. Mol. Cancer Ther.15(9), 2086–2095 (2016).
  • Lin W , ZouH , MoJet al. Micro1278 leads to tumor growth arrest, enhanced sensitivity to oxaliplatin and vitamin D and inhibits metastasis via KIF5B, CYP24A1, and BTG2, respectively. Front. Oncol.11, 637878 (2021).
  • Essa S , DenzerN , MahlknechtUet al. VDR microRNA expression and epigenetic silencing of vitamin D signaling in melanoma cells. J. Steroid Biochem. Mol. Biol.121(1–2), 110–113 (2010).
  • Pan YZ , GaoW , YuAM. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab. Dispos.37(10), 2112–2117 (2009).
  • Essa S , ReichrathS , MahlknechtUet al. Signature of VDR miRNAs and epigenetic modulation of vitamin D signaling in melanoma cell lines. Anticancer Res.32(1), 383–389 (2012).
  • Wang W , XieY , ChenFet al. LncRNA MEG3 acts a biomarker and regulates cell functions by targeting ADAR1 in colorectal cancer. World J. Gastroenterol.25(29), 3972–3984 (2019).
  • Zhu Y , ChenP , GaoYet al. MEG3 activated by vitamin D inhibits colorectal cancer cells proliferation and migration via regulating clusterin. EBioMedicine30, 148–157 (2018).
  • Zuo S , WuL , WangY , YuanX. Long non-coding RNA MEG3 activated by vitamin D suppresses glycolysis in colorectal cancer via promoting c-Myc degradation. Front. Oncol.10, 274 (2020).
  • Wu X , LiJ , RenY , ZuoZ , NiS , CaiJ. MEG3 can affect the proliferation and migration of colorectal cancer cells through regulating miR-376/PRKD1 axis. Am. J. Transl. Res.11(9), 5740–5751 (2019).
  • Chen S , BuD , MaYet al. H19 overexpression induces resistance to 1,25(OH)2D3 by rargeting VDR through miR-675-5p in colon cancer cells. Neoplasia19(3), 226–236 (2017).
  • Anderson MG , NakaneM , RuanX , KroegerPE , Wu-WongJR. Expression of VDR and CYP24A1 mRNA in human tumors. Cancer Chemother. Pharmacol.57(2), 234–240 (2006).
  • Bareis P , BisesG , BischofMG , CrossHS , PeterlikM. 25-hydroxy-vitamin d metabolism in human colon cancer cells during tumor progression. Biochem. Biophys. Res. Commun.285(4), 1012–1017 (2001).
  • Luo W , KarpfAR , DeebKKet al. Epigenetic regulation of vitamin D 24-hydroxylase/CYP24A1 in human prostate cancer. Cancer Res.70(14), 5953–5962 (2010).
  • Chung I , KarpfAR , MuindiJRet al. Epigenetic silencing of CYP24 in tumor-derived endothelial cells contributes to selective growth inhibition by calcitriol. J. Biol. Chem.282(12), 8704–8714 (2007).
  • Kósa JP , HorváthP , WölflingJet al. CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells. World J. Gastroenterol.19(17), 2621–2628 (2013).
  • Sun H , JiangC , CongLet al. CYP24A1 inhibition facilitates the antiproliferative effect of 1,25(OH)(2)D(3) through downregulation of the WNT/β-catenin pathway and methylation-mediated regulation of CYP24A1 in Colorectal cancer cells. DNA Cell Biol.37(9), 742–749 (2018).
  • Mahmood N , ArakelianA , MullerWJ , SzyfM , RabbaniSA. An enhanced chemopreventive effect of methyl donor S-adenosylmethionine in combination with 25-hydroxyvitamin D in blocking mammary tumor growth and metastasis. Bone Res.8, 28 (2020).
  • Hu PS , LiT , LinJFet al. VDR-SOX2 signaling promotes colorectal cancer stemness and malignancy in an acidic microenvironment. Signal Transduct. Target. Ther.5(1), 183 (2020).
  • Hu P , LiS , TianNet al. Acidosis enhances the self-renewal and mitochondrial respiration of stem cell-like glioma cells through CYP24A1-mediated reduction of vitamin D. Cell Death Dis.10(1), 25 (2019).
  • Detich N , HammS , JustG , KnoxJD , SzyfM. The methyl donor S-adenosylmethionine inhibits active demethylation of DNA: a candidate novel mechanism for the pharmacological effects of S-Adenosylmethionine. J. Biol. Chem.278(23), 20812–20820 (2003).
  • Mukhopadhyay S . Familial manganese-induced neurotoxicity due to mutations in SLC30A10 or SLC39A14. Neurotoxicology64, 278–283 (2018).
  • Tuschl K , MillsPB , ParsonsHet al. Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia – a new metabolic disorder. J. Inherit. Metab. Dis.31(2), 151–163 (2008).
  • Claro Da Silva T , HillerC , GaiZ , Kullak-UblickGA. Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor. J. Steroid Biochem. Mol. Biol.163, 77–87 (2016).
  • Hutchens S , LiuC , JursaTet al. Deficiency in the manganese efflux transporter SLC30A10 induces severe hypothyroidism in mice. J. Biol. Chem.292(23), 9760–9773 (2017).
  • Li S , DeLa Cruz J , ChristakosSet al. Nutrigenomics of 1, 25 (OH) 2D3 action in the intestine: evidence for a role of 1, 25 (OH) 2D3 in manganese transport. J. Bone Miner. Res.34, 212 (2019).
  • Li S , DeLa Cruz J , HutchensSet al. Analysis of 1,25-dihydroxyvitamin D(3) genomic action reveals calcium-regulating and calcium-independent effects in mouse intestine and human enteroids. Mol. Cell. Biol.41(1), e00372–20 (2020).
  • Christakos S , LiS , DeLa Cruz Jet al. Vitamin D and the intestine: review and update. J. Steroid Biochem. Mol. Biol.196, 105501 (2020).
  • Ahmad TR , HiguchiS , BertaggiaEet al. Bile acid composition regulates the manganese transporter Slc30a10 in intestine. J. Biol. Chem.295(35), 12545–12558 (2020).
  • Kawamata Y , FujiiR , HosoyaMet al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem.278(11), 9435–9440 (2003).
  • Maruyama T , MiyamotoY , NakamuraTet al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun.298(5), 714–719 (2002).
  • Kerachian MA , JavadmaneshA , AzghandiMet al. Crosstalk between DNA methylation and gene expression in colorectal cancer, a potential plasma biomarker for tracing this tumor. Sci. Rep.10(1), 2813 (2020).
  • Yagi K , AkagiK , HayashiHet al. Three DNA methylation epigenotypes in human colorectal cancer. Clin. Cancer Res.16(1), 21–33 (2010).
  • Shangkuan WC , LinHC , ChangYTet al. Risk analysis of colorectal cancer incidence by gene expression analysis. PeerJ5, e3003 (2017).
  • Shukeir N , StefanskaB , ParasharSet al. Pharmacological methyl group donors block skeletal metastasis in vitro and in vivo. Br. J. Pharmacol.172(11), 2769–2781 (2015).
  • Parashar S , CheishviliD , ArakelianAet al. S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: therapeutic and diagnostic clinical applications. Cancer Med.4(5), 732–744 (2015).
  • Mehdi A , AttiasM , MahmoodNet al. Enhanced anticancer effect of a combination of S-adenosylmethionine (SAM) and immune checkpoint inhibitor (ICPi) in a syngeneic mouse model of advanced melanoma. Front. Oncol.10, 1361 (2020).
  • Mahmood N , CheishviliD , ArakelianAet al. Methyl donor S-adenosylmethionine (SAM) supplementation attenuates breast cancer growth, invasion, and metastasis in vivo; therapeutic and chemopreventive applications. Oncotarget9(4), 5169–5183 (2018).
  • Mahmood N , ArakelianA , CheishviliD , SzyfM , RabbaniSA. S-adenosylmethionine in combination with decitabine shows enhanced anti-cancer effects in repressing breast cancer growth and metastasis. J. Cell. Mol. Med.24(18), 10322–10337 (2020).
  • Larriba MJ , MuñozA. SNAIL vs vitamin D receptor expression in colon cancer: therapeutics implications. Br. J. Cancer92(6), 985–989 (2005).
  • Bhatia V , FalzonM. Restoration of the anti-proliferative and anti-migratory effects of 1,25-dihydroxyvitamin D by silibinin in vitamin D-resistant colon cancer cells. Cancer Lett.362(2), 199–207 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.