96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comprehensive analysis of ESR1-related ceRNA axis as a novel prognostic biomarker in hepatocellular carcinoma

ORCID Icon, , , , , & ORCID Icon show all
Pages 1393-1409 | Received 19 Aug 2022, Accepted 06 Jan 2023, Published online: 25 Jan 2023

References

  • Sung H , FerlayJ , SiegelRLet al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.71(3), 209–249 (2021).
  • Petrick JL , BraunlinM , LaversanneM , ValeryPC , BrayF , McGlynnKA. International trends in liver cancer incidence, overall and by histologic subtype, 1978–2007. Int. J. Cancer139(7), 1534–1545 (2016).
  • Li Y , LiH , SpitsbergenJM , GongZ. Males develop faster and more severe hepatocellular carcinoma than females in kras(V12) transgenic zebrafish. Sci. Rep.7, 41280 (2017).
  • Kur P , Kolasa-WołosiukA , Misiakiewicz-HasK , WiszniewskaB. Sex hormone-dependent physiology and diseases of liver. Int. J. Environ. Res. Public Health17(8), 2620 (2020).
  • Rich NE , MurphyCC , YoppAC , TiroJ , MarreroJA , SingalAG. Sex disparities in presentation and prognosis of 1110 patients with hepatocellular carcinoma. Aliment. Pharmacol. Ther.52(4), 701–709 (2020).
  • Vibert E , SchwartzM , OlthoffKM. Advances in resection and transplantation for hepatocellular carcinoma. J. Hepatol.72(2), 262–276 (2020).
  • Cervello M , EmmaMR , AugelloGet al. New landscapes and horizons in hepatocellular carcinoma therapy. Aging (Albany NY)12(3), 3053–3094 (2020).
  • Gordan JD , KennedyEB , Abou-AlfaGKet al. Systemic therapy for advanced hepatocellular carcinoma: ASCO guideline. J. Clin. Oncol.38(36), 4317–4345 (2020).
  • Njei B , RotmanY , DitahI , LimJK. Emerging trends in hepatocellular carcinoma incidence and mortality. Hepatology61(1), 191–199 (2015).
  • Llovet JM , BruixJ. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology37(2), 429–442 (2003).
  • Castells A , BruixJ , BrúCet al. Treatment of hepatocellular carcinoma with tamoxifen: a double-blind placebo-controlled trial in 120 patients. Gastroenterology109(3), 917–922 (1995).
  • Grimaldi C , BleibergH , GayFet al. Evaluation of antiandrogen therapy in unresectable hepatocellular carcinoma: results of a European Organization for Research and Treatment of Cancer multicentric double-blind trial. J. Clin. Oncol.16(2), 411–417 (1998).
  • O’Brien MH , PitotHC , ChungSH , LambertPF , DrinkwaterNR , BilgerA. Estrogen receptor-α suppresses liver carcinogenesis and establishes sex-specific gene expression. Cancers (Basel)13(10), 2355 (2021).
  • Wang L , CuiM , ChengDet al. miR-9-5p facilitates hepatocellular carcinoma cell proliferation, migration and invasion by targeting ESR1. Mol. Cell. Biochem.476(2), 575–583 (2021).
  • Yun J , KimYS , HeoMJ , KimMJ , MoonA , KimSG. ERα inhibits mesenchymal and amoeboidal movement of liver cancer cell via Gα12. Int. J. Cancer150(10), 1690–1705 (2022).
  • Yu J , MaS , TianSet al. Systematic construction and validation of a prognostic model for hepatocellular carcinoma based on immune-related genes. Front. Cell Dev. Biol.9, 700553 (2021).
  • Lim LJ , WongSYS , HuangFet al. Roles and regulation of long noncoding RNAs in hepatocellular carcinoma. Cancer Res.79(20), 5131–5139 (2019).
  • Huang Z , ZhouJK , PengY , HeW , HuangC. The role of long noncoding RNAs in hepatocellular carcinoma. Mol. Cancer19(1), 77 (2020).
  • Wang Y , YangL , ChenTet al. A novel lncRNA MCM3AP-AS1 promotes the growth of hepatocellular carcinoma by targeting miR-194-5p/FOXA1 axis. Mol. Cancer18(1), 28 (2019).
  • Teng F , ZhangJX , ChangQMet al. lncRNA MYLK-AS1 facilitates tumor progression and angiogenesis by targeting miR-424-5p/E2F7 axis and activating VEGFR-2 signaling pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res.39(1), 235 (2020).
  • Weinstein JN , CollissonEA , MillsGBet al. The Cancer Genome Atlas pan-cancer analysis project. Nat. Genet.45(10), 1113–1120 (2013).
  • Karlsson M , ZhangC , MéarLet al. A single-cell type transcriptomics map of human tissues. Sci. Adv.7(31), eabh2169 (2021).
  • Robinson MD , McCarthyDJ , SmythGK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics26(1), 139–140 (2010).
  • Li JH , LiuS , ZhouH , QuLH , YangJH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res.42(Database issue), D92–D97 (2014).
  • McGeary SE , LinKS , ShiCYet al. The biochemical basis of microRNA targeting efficacy. Science366(6472), eaav1741 (2019).
  • Huang HY , LinYC , LiJet al. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res.48(D1), D148–D154 (2020).
  • Gene Ontology Consortium . Gene Ontology Consortium: going forward. Nucleic Acids Res.43(Database issue), D1049–D1056 (2015).
  • Yu G , WangLG , HanY , HeQY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS16(5), 284–287 (2012).
  • Volders PJ , AnckaertJ , VerheggenKet al. LNCipedia 5: towards a reference set of human long non-coding RNAs. Nucleic Acids Res.47(D1), D135–D139 (2019).
  • Cao Z , PanX , YangY , HuangY , ShenHB. The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier. Bioinformatics34(13), 2185–2194 (2018).
  • Xiong Y , WeiY , GuYet al. DiseaseMeth version 2.0: a major expansion and update of the human disease methylation database. Nucleic Acids Res.45(D1), D888–D895 (2017).
  • Koch A , JeschkeJ , Van CriekingeW , van EngelandM , DeMeyer T. MEXPRESS update 2019. Nucleic Acids Res.47(W1), W561–W565 (2019).
  • Newman AM , LiuCL , GreenMRet al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods12(5), 453–457 (2015).
  • Erstad DJ , TanabeKK. Prognostic and therapeutic implications of microvascular invasion in hepatocellular carcinoma. Ann. Surg. Oncol.26(5), 1474–1493 (2019).
  • Anastasiadou E , JacobLS , SlackFJ. Non-coding RNA networks in cancer. Nat. Rev. Cancer18(1), 5–18 (2018).
  • Qi X , LinY , ChenJ , ShenB. Decoding competing endogenous RNA networks for cancer biomarker discovery. Brief. Bioinform.21(2), 441–457 (2020).
  • Zheng ZQ , LiZX , ZhouGQet al. Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and upregulate ITGB3. Cancer Res.79(18), 4612–4626 (2019).
  • Liu XH , SunM , NieFQet al. lncRNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol. Cancer13, 92 (2014).
  • Guo K , QianK , ShiY , SunT , WangZ. lncRNA-MIAT promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell Death Dis.12(12), 1097 (2021).
  • Ruan X , LiP , ChenYet al. In vivo functional analysis of non-conserved human lncRNAs associated with cardiometabolic traits. Nat. Commun.11(1), 45 (2020).
  • Wang S , XuM , SunZ , YuX , DengY , ChangH. LINC01018 confers a novel tumor suppressor role in hepatocellular carcinoma through sponging microRNA-182-5p. Am. J. Physiol. Gastrointest. Liver Physiol.317(2), G116–G126 (2019).
  • Jiang Y , WeiT , LiW , ZhangR , ChenM. Circular RNA hsa_circ_0002024 suppresses cell proliferation, migration, and invasion in bladder cancer by sponging miR-197-3p. Am. J. Transl. Res.11(3), 1644–1652 (2019).
  • Xu F , LiH , HuC. LIFR-AS1 modulates Sufu to inhibit cell proliferation and migration by miR-197-3p in breast cancer. Biosci. Rep.39(7), BSR20180551 (2019).
  • Chen Y , YangC. miR-197-3p-induced downregulation of lysine 63 deubiquitinase promotes cell proliferation and inhibits cell apoptosis in lung adenocarcinoma cell lines. Mol. Med. Rep.17(3), 3921–3927 (2018).
  • Wang J , LvX , XuF , WeiM , LiuC , YangY. GNA14 silencing suppresses the proliferation of endometrial carcinoma cells through inducing apoptosis and G(2)/M cell cycle arrest. Biosci. Rep.38(5), BSR20180574 (2018).
  • Song G , ZhuX , XuanZet al. Hypermethylation of GNA14 and its tumor-suppressive role in hepatitis B virus-related hepatocellular carcinoma. Theranostics11(5), 2318–2333 (2021).
  • Xu C , LiYM , SunB , ZhongFJ , YangLY. GNA14’s interaction with RACK1 inhibits hepatocellular carcinoma progression through reducing MAPK/JNK and PI3K/AKT signaling pathway. Carcinogenesis42(11), 1357–1369 (2021).
  • Dai X , RenT , ZhangY , NanN. Methylation multiplicity and its clinical values in cancer. Expert Rev. Mol. Med.23, e2 (2021).
  • Richardson BC . Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. J. Nutr.132(Suppl. 8), 2401S–2405S (2002).
  • Costa AC , SantosJMO , Gilda Costa RM , MedeirosR. Impact of immune cells on the hallmarks of cancer: a literature review. Crit. Rev. Oncol. Hematol.168, 103541 (2021).
  • Curry WT , LimM. Immunomodulation: checkpoint blockade etc. Neuro Oncol.17(Suppl. 7), vii26–vii31 (2015).
  • Marin-Acevedo JA , KimbroughEO , LouY. Next generation of immune checkpoint inhibitors and beyond. J. Hematol. Oncol.14(1), 45 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.