133
Views
0
CrossRef citations to date
0
Altmetric
Review

Apoptosis And Myocardial Infarction: Role Of Ncrnas And Exosomal Ncrnas

, ORCID Icon, ORCID Icon, , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 307-334 | Received 15 Dec 2022, Accepted 13 Apr 2023, Published online: 17 May 2023

References

  • Musher DM , AbersMS , Corrales-MedinaVF. Acute infection and myocardial infarction. N. Engl. J. Med.380(2), 171–176 (2019).
  • Reed GW , RossiJE , CannonCP. Acute myocardial infarction. Lancet389(10065), 197–210 (2017).
  • Teringova E , TousekP. Apoptosis in ischemic heart disease. J. Transl. Med.15(1), 87 (2017).
  • Jose Corbalan J , VatnerDE , VatnerSF. Myocardial apoptosis in heart disease: does the emperor have clothes?Basic Res. Cardiol.111(3), 31 (2016).
  • Han F , ChenQ , SuJ , ZhengA , ChenK , SunSet al. MicroRNA-124 regulates cardiomyocyte apoptosis and myocardial infarction through targeting Dhcr24. J. Mol. Cell. Cardiol.132, 178–188 (2019).
  • Kimura T . Non-coding natural antisense RNA: mechanisms of action in the regulation of target gene expression and its clinical implications. Yakugaku Zasshi140(5), 687–700 (2020).
  • Vos PD , LeedmanPJ , FilipovskaA , RackhamO. Modulation of miRNA function by natural and synthetic RNA-binding proteins in cancer. Cell. Mol. Life Sci.76(19), 3745–3752 (2019).
  • Wang N , YuY , XuB , ZhangM , LiQ , MiaoL. Pivotal prognostic and diagnostic role of the long non-coding RNA colon cancer-associated transcript 1 expression in human cancer (Review). Mol. Med. Rep.19(2), 771–782 (2019).
  • Zhao W , AnY , LiangY , XieXW. Role of HOTAIR long noncoding RNA in metastatic progression of lung cancer. Eur. Rev. Med. Pharmacol. Sci.18(13), 1930–1936 (2014).
  • Dharap A , PokrzywaC , VemugantiR. Increased binding of stroke-induced long non-coding RNAs to the transcriptional corepressors Sin3A and coREST. ASN Neuro.5(4), AN20130029 (2013).
  • Mehta SL , PandiG , VemugantiR. Circular RNA expression profiles alter significantly in mouse brain after transient focal ischemia. Stroke48(9), 2541–2548 (2017).
  • Dharap A , BowenK , PlaceR , LiL-C , VemugantiR. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J. Cereb. Blood Flow Metab.29(4), 675–687 (2009).
  • Thompson CB . Apoptosis in the pathogenesis and treatment of disease. Science267(5203), 1456–1462 (1995).
  • Elmore S . Apoptosis: a review of programmed cell death. Toxicol. Pathol.35(4), 495–516 (2007).
  • Liu Y , LiF , LaiD , XieQ , YinY , YangMet al. MicroRNA-140 inhibits proliferation and promotes apoptosis and cell cycle arrest of prostate cancer via degrading SOX4. J. BUON24(1), 249–255 (2019).
  • Anversa P , ChengW , LiuY , LeriA , RedaelliG , KajsturaJ. Apoptosis and myocardial infarction. Basic Res. Cardiol.93(Suppl. 3), 8–12 (1998).
  • Li H , ZhangS , LiF , QinL. NLRX1 attenuates apoptosis and inflammatory responses in myocardial ischemia by inhibiting MAVS-dependent NLRP3 inflammasome activation. Mol. Immunol.76, 90–97 (2016).
  • Desta L , JernbergT , SpaakJ , Hofman-BangC , PerssonH. Risk and predictors of readmission for heart failure following a myocardial infarction between 2004 and 2013: a Swedish nationwide observational study. Int. J. Cardiol.248, 221–226 (2017).
  • Hu C , DandapatA , ChenJ , FujitaY , InoueN , KawaseYet al. LOX-1 deletion alters signals of myocardial remodeling immediately after ischemia-reperfusion. Cardiovasc. Res.76(2), 292–302 (2007).
  • Kajstura J , ChengW , ReissK , ClarkWA , SonnenblickEH , KrajewskiSet al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab. Invest.74(1), 86–107 (1996).
  • Cheng W , KajsturaJ , NitaharaJA , LiB , ReissK , LiuYet al. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp. Cell Res.226(2), 316–327 (1996).
  • Xue M , JooYA , LiS , NiuC , ChenG , YiXet al. Metallothionein protects the heart against myocardial infarction via the mTORC2/FoxO3a/Bim pathway. Antioxid. Redox Signal.31(5), 403–419 (2019).
  • Meloni M , CaporaliA , GraianiG , LagrastaC , KatareR , Van LinthoutSet al. Nerve growth factor promotes cardiac repair following myocardial infarction. Circ. Res.106(7), 1275–1284 (2010).
  • Wang X , ChenS , NiJ , ChengJ , JiaJ , ZhenX. miRNA-3473b contributes to neuroinflammation following cerebral ischemia. Cell Death Dis.9(1), 11 (2018).
  • Zhou B , LiuHY , ZhuBL. Protective role of SOCS3 modified bone marrow mesenchymal stem cells in hypoxia-induced injury of PC12 cells. J. Mol. Neurosci.67(3), 400–410 (2019).
  • Chen H , LiX. LncRNA ROR is involved in cerebral hypoxia/reoxygenation-induced injury in PC12 cells via regulating miR-135a-5p/ROCK1/2. Am. J. Transl. Res.11(9), 6145–6158 (2019).
  • Ma Z , LanYH , LiuZW , YangMX , ZhangH , RenJY. MiR-19a suppress apoptosis of myocardial cells in rats with myocardial ischemia/reperfusion through PTEN/Akt/P-Akt signaling pathway. Eur. Rev. Med. Pharmacol. Sci.24(6), 3322–3330 (2020).
  • Cheng X , ZhangL , ZhangK , ZhangG , HuY , SunXet al. Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X-linked inhibitor-of-apoptosis protein. Ann. Rheum. Dis.77(5), 770–779 (2018).
  • Suzuki HI , MiyazonoK. Emerging complexity of microRNA generation cascades. J. Biochem.149(1), 15–25 (2011).
  • Song Y , ZhangC , ZhangJ , JiaoZ , DongN , WangGet al. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics9(8), 2346–2360 (2019).
  • Xiao J , PanY , LiXH , YangXY , FengYL , TanHHet al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis.7(6), e2277 (2016).
  • Liang YP , LiuQ , XuGH , ZhangJ , ChenY , HuaFZet al. The lncRNA ROR/miR-124-3p/TRAF6 axis regulated the ischaemia reperfusion injury-induced inflammatory response in human cardiac myocytes. J. Bioenerg. Biomembr.51(6), 381–392 (2019).
  • Ma W , ZhangX , LiuY. miR-124 promotes apoptosis and inhibits the proliferation of vessel endothelial cells through P38/MAPK and PI3K/AKT pathways, making it a potential mechanism of vessel endothelial injury in acute myocardial infarction. Exp. Ther. Med.22(6), 1383 (2021).
  • Tian F , WangP , LinD , DaiJ , LiuQ , GuanYet al. Exosome-delivered miR-221/222 exacerbates tumor liver metastasis by targeting SPINT1 in colorectal cancer. Cancer Sci.112(9), 3744–3755 (2021).
  • Li M , JiaoL , ShaoY , LiH , SunL , YuQet al. LncRNA-ZFAS1 promotes myocardial ischemia-reperfusion injury through DNA methylation-mediated Notch1 down-regulation in mice. Basic Transl. Sci.7(9), 880–895 (2022).
  • Zhou L-Y , ZhaiM , HuangY , XuS , AnT , WangY-Het al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Diff.26(7), 1299–1315 (2019).
  • Chamorro-Jorganes A , SweaadWK , KatareR , BesnierM , AnwarM , Beazley-LongNet al. METTL3 regulates angiogenesis by modulating let-7e-5p and miRNA-18a-5p expression in endothelial cells. Arterioscler. Thromb. Vasc. Biol.41(6), e325–e337 (2021).
  • Su Q , LiuY , LvX-W , DaiR-X , YangX-H , KongB-H. LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am. J. Physiol. Heart Circ. Physiol.318(2), H332–H344 (2020).
  • Shi H , ChenL , WangH , ZhuS , DongC , WebsterKAet al. Synergistic induction of miR-126 by hypoxia and HDAC inhibitors in cardiac myocytes. Biochem. Biophys. Res. Commun.430(2), 827–832 (2013).
  • Izarra A , MoscosoI , CañÓnS , CarreiroC , FondevilaD , Martín-CaballeroJet al. miRNA-1 and miRNA-133a are involved in early commitment of pluripotent stem cells and demonstrate antagonistic roles in the regulation of cardiac differentiation. J. Tissue Eng. Regen. Med.11(3), 787–799 (2017).
  • Tang Y , ZhengJ , SunY , WuZ , LiuZ , HuangG. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int. Heart J.50(3), 377–387 (2009).
  • Chistiakov DA , OrekhovAN , BobryshevYV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J. Mol. Cell. Cardiol.94, 107–121 (2016).
  • Wang L , YuanY , LiJ , RenH , CaiQ , ChenXet al. MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network. Cell Stress Chaperones20(3), 411–420 (2015).
  • Qi D , YoungLH. AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol. Metab.26(8), 422–429 (2015).
  • Wu F , LiZ , CaiM , XiY , XuZ , ZhangZet al. Aerobic exercise alleviates oxidative stress-induced apoptosis in kidneys of myocardial infarction mice by inhibiting ALCAT1 and activating FNDC5/Irisin signaling pathway. Free Radic. Biol. Med.158, 171–180 (2020).
  • Gao J , QianT , WangW. CTRP3 activates the AMPK/SIRT1-PGC-1α pathway to protect mitochondrial biogenesis and functions in cerebral ischemic stroke. Neurochem. Res.45(12), 3045–3058 (2020).
  • Guo Y , GaoJ , LiuY , ZhangX , AnX , ZhouJet al. miR-451 on myocardial ischemia-reperfusion in rats by regulating AMPK signaling pathway. Biomed. Res. Int.2021, 9933998 (2021).
  • Bourron O , LeBouc Y , BerardL , KottiS , BrunelN , RitzBet al. Impact of age-adjusted insulin-like growth factor 1 on major cardiovascular events after acute myocardial infarction: results from the fast-MI registry. J. Clin. Endocrinol. Metab.100(5), 1879–1886 (2015).
  • Li Q , WuS , LiSY , LopezFL , DuM , KajsturaJet al. Cardiac-specific overexpression of insulin-like growth factor 1 attenuates aging-associated cardiac diastolic contractile dysfunction and protein damage. Am. J. Physiol. Heart Circ. Physiol.292(3), H1398–1403 (2007).
  • Savi M , BocchiL , FiumanaE , KaramJP , FratiC , BonaféFet al. Enhanced engraftment and repairing ability of human adipose-derived stem cells, conveyed by pharmacologically active microcarriers continuously releasing HGF and IGF-1, in healing myocardial infarction in rats. J. Biomed. Mater. Res. A103(9), 3012–3025 (2015).
  • Tang S , ZhongH , XiongT , YangX , MaoY , WangD. MiR-489 aggravates H2O2-induced apoptosis of cardiomyocytes via inhibiting IGF1. Biosci. Rep.40(9), (2020).
  • Cheng S , ZhangX , FengQ , ChenJ , ShenL , YuPet al. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway. Life Sci.227, 82–93 (2019).
  • Xia X , ZhangK , LuoG , CenG , CaoJ , HuangKet al. Downregulation of miR-301a-3p sensitizes pancreatic cancer cells to gemcitabine treatment via PTEN. Am. J. Transl. Res.9(4), 1886–1895 (2017).
  • Chalhoub N , BakerSJ. PTEN and the PI3-kinase pathway in cancer. Ann. Rev. Pathol.4, 127–150 (2009).
  • Cui Q , WangJ , LiuX , WangX , SuG. Knockout of PTEN improves cardiac function and inhibits NLRP3-mediated cardiomyocyte pyroptosis in rats with myocardial ischemia-reperfusion. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi36(3), 205–211 (2020).
  • Shabanzadeh AP , D’onofrioPM , MaghariousM , ChoiKaB , MonnierPP , KoeberlePD. Modifying PTEN recruitment promotes neuron survival, regeneration, and functional recovery after CNS injury. Cell Death Dis.10(8), 567 (2019).
  • Dai ZH , JiangZM , TuH , MaoL , SongGL , YangZBet al. miR-129 attenuates myocardial ischemia reperfusion injury by regulating the expression of PTEN in rats. Biomed. Res. Int.2021, 5535788 (2021).
  • Jie W , AndradeKC , LinX , YangX , YueX , ChangJ. Pathophysiological functions of Rnd3/RhoE. Compr. Physiol.6(1), 169–186 (2015).
  • Ridley AJ . Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol.16(10), 522–529 (2006).
  • Foster R , HuKQ , LuY , NolanKM , ThissenJ , SettlemanJ. Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol. Cell. Biol.16(6), 2689–2699 (1996).
  • Yue X , YangX , LinX , YangT , YiX , DaiYet al. Rnd3 haploinsufficient mice are predisposed to hemodynamic stress and develop apoptotic cardiomyopathy with heart failure. Cell Death Dis.5(6), e1284 (2014).
  • Dai Y , SongJ , LiW , YangT , YueX , LinXet al. RhoE fine-tunes inflammatory response in myocardial infarction. Circulation139(9), 1185–1198 (2019).
  • Xu Y , GuoW , ZengD , FangY , WangR , GuoDet al. Inhibiting miR-205 alleviates cardiac ischemia/reperfusion injury by regulating oxidative stress, mitochondrial function, and apoptosis. Oxid. Med. Cell Longev.2021, 9986506 (2021).
  • Wyss CA , NeidhartM , AltweggL , SpanausKS , YonekawaK , WischnewskyMBet al. Cellular actors, toll-like receptors, and local cytokine profile in acute coronary syndromes. Eur. Heart J.31(12), 1457–1469 (2010).
  • Oyama J , BlaisCJr , LiuX , PuM , KobzikL , KellyRAet al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation109(6), 784–789 (2004).
  • Guo LL , GuoML , YaoJ , WengYQ , ZhangXZ. MicroRNA-421 improves ischemia/reperfusion injury via regulation toll-like receptor 4 pathway. J. Int. Med. Res.48(3), 300060519871863 (2020).
  • Wang J , DongG , ChiW , NieY. MiR-96 promotes myocardial infarction-induced apoptosis by targeting XIAP. Biomed. Pharmacother.138, 111208 (2021).
  • Boon RA , IekushiK , LechnerS , SeegerT , FischerA , HeydtSet al. MicroRNA-34a regulates cardiac ageing and function. Nature495(7439), 107–110 (2013).
  • Cheng XJ , LiL , XinBQ. MiR-124 regulates the inflammation and apoptosis in myocardial infarction rats by targeting STAT3. Cardiovasc. Toxicol.21(9), 710–720 (2021).
  • Su Q , XuY , CaiR , DaiR , YangX , LiuYet al. miR-146a inhibits mitochondrial dysfunction and myocardial infarction by targeting cyclophilin D. Mol. Ther. Nucleic Acids23, 1258–1271 (2021).
  • Yan K , AnT , ZhaiM , HuangY , WangQ , WangYet al. Mitochondrial miR-762 regulates apoptosis and myocardial infarction by impairing ND2. Cell Death Dis.10(7), 500 (2019).
  • Ma ZF , WangN , ZhangJ , WanYF , XiaoN , ChenC. Overexpression of miR-431 inhibits cardiomyocyte apoptosis following myocardial infarction via targeting HIPK3. Eur. Rev. Med. Pharmacol. Sci.25(4), 2056–2064 (2021).
  • Chen Y , YinY , JiangH. miR-30e-5p alleviates inflammation and cardiac dysfunction after myocardial infarction through targeting PTEN. Inflammation44(2), 769–779 (2021).
  • Chiang MH , LiangCJ , LinLC , YangYF , HuangCC , ChenYHet al. miR-26a attenuates cardiac apoptosis and fibrosis by targeting ataxia-telangiectasia mutated in myocardial infarction. J. Cell. Physiol.235(9), 6085–6102 (2020).
  • Qu Y , ZhangJ , ZhangJ , XiaoW. MiR-708-3p alleviates inflammation and myocardial injury after myocardial infarction by suppressing ADAM17 expression. Inflammation44(3), 1083–1095 (2021).
  • Lee TL , LaiTC , LinSR , LinSW , ChenYC , PuCMet al. Conditioned medium from adipose-derived stem cells attenuates ischemia/reperfusion-induced cardiac injury through the microRNA-221/222/PUMA/ETS-1 pathway. Theranostics11(7), 3131–3149 (2021).
  • Li X , WeiC , ZhangZ , JinQ , XiaoX. MiR-134-5p regulates myocardial apoptosis and angiogenesis by directly targeting KDM2A after myocardial infarction. Int. Heart J.61(4), 815–821 (2020).
  • Zhang L , ZhuH , TengX , ShengX , YuB. Modulation of miR-382-5p reduces apoptosis of myocardial cells after acute myocardial infarction. Autoimmunity54(4), 195–203 (2021).
  • Wu CG , HuangC. MicroRNA-147 inhibits myocardial inflammation and apoptosis following myocardial infarction via targeting HIPK2. Eur. Rev. Med. Pharmacol. Sci.24(11), 6279–6287 (2020).
  • Wang LZ , XiJN , LiuTJ , ZhangZY , ZhangP. MiR-204 reduces apoptosis in rats with myocardial infarction by targeting SIRT1/p53 signaling pathway. Eur. Rev. Med. Pharmacol. Sci.24(23), 12306–12314 (2020).
  • Zhao Z , DuS , ShenS , WangL. microRNA-132 inhibits cardiomyocyte apoptosis and myocardial remodeling in myocardial infarction by targeting IL-1β. J. Cell. Physiol.235(3), 2710–2721 (2020).
  • Lu S , LuY. MiR-26a inhibits myocardial cell apoptosis in rats with acute myocardial infarction through GSK-3β pathway. Eur. Rev. Med. Pharmacol. Sci.24(5), 2659–2666 (2020).
  • Guo XY , LiuQL , LiuW , ChengJX , LiZJ. Effect and mechanism of miR-135a-5p/CXCL12/JAK-STAT axis on inflammatory response after myocardial infarction. Eur. Rev. Med. Pharmacol. Sci.24(24), 12912–12928 (2020).
  • Huangfu FT , TangLQ , WangHQ , ZhaoX , YangM. MiR-145-5p promotes myocardial cell apoptosis in rats with myocardial infarction through PI3K/Akt signaling pathway. Eur. Rev. Med. Pharmacol. Sci.24(24), 12904–12911 (2020).
  • Li JH , DaiJ , HanB , WuGH , WangCH. MiR-34a regulates cell apoptosis after myocardial infarction in rats through the Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci.23(6), 2555–2562 (2019).
  • Chi F , FengL , LiY , ZhaoS , YuanW , JiangYet al. MiR-30b-5p promotes myocardial cell apoptosis in rats with myocardial infarction through regulating Wnt/β-catenin signaling pathway. Minerva Med.doi:10.23736/s0026-4806.20.06565-9 (2020).
  • Sun HY , WangXL , MaLC , YangM , YangHJ , HuangHWet al. Influence of MiR-154 on myocardial apoptosis in rats with acute myocardial infarction through Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci.23(2), 818–825 (2019).
  • Shi CC , PanLY , ZhaoYQ , LiQ , LiJG. MicroRNA-323-3p inhibits oxidative stress and apoptosis after myocardial infarction by targeting TGF-β2/JNK pathway. Eur. Rev. Med. Pharmacol. Sci.24(12), 6961–6970 (2020).
  • Sun C , LiuH , GuoJ , YuY , YangD , HeFet al. MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3. Sci. Rep.7(1), 7460 (2017).
  • Wei YJ , WangJF , ChengF , XuHJ , ChenJJ , XiongJet al. miR-124-3p targeted SIRT1 to regulate cell apoptosis, inflammatory response, and oxidative stress in acute myocardial infarction in rats via modulation of the FGF21/CREB/PGC1α pathway. J. Physiol. Biochem.77(4), 577–587 (2021).
  • Yang B , DongR , ZhaoH. Inhibition of microRNA-346 inhibits myocardial inflammation and apoptosis after myocardial infarction via targeting NFIB. Eur. Rev. Med. Pharmacol. Sci.24(22), 11752–11760 (2020).
  • Zhang JW , LongTY , PanW , ZhongQQ , QianZX , JingR. MiR-808 inhibits cardiomyocyte apoptosis and expressions of caspase-3 and caspase-9 in rats with myocardial infarction by regulating TGF-β1 signaling pathway. Eur. Rev. Med. Pharmacol. Sci.24(12), 6955–6960 (2020).
  • Hu F , ZhangS , ChenX , FuX , GuoS , JiangZet al. MiR-219a-2 relieves myocardial ischemia-reperfusion injury by reducing calcium overload and cell apoptosis through HIF1α/ NMDAR pathway. Exp. Cell Res.395(1), 112172 (2020).
  • Bian WS , TianFH , JiangLH , SunYF , WuSX , GaoBFet al. Influence of miR-34a on myocardial apoptosis in rats with acute myocardial infarction through the ERK1/2 pathway. Eur. Rev. Med. Pharmacol. Sci.23(7), 3034–3041 (2019).
  • Wen X , YinY , LiX , HeT , WangP , SongMet al. Effect of miR-26a-5p targeting ADAM17 gene on apoptosis, inflammatory factors and oxidative stress response of myocardial cells in hypoxic model. J. Bioenerg. Biomembr.52(2), 83–92 (2020).
  • Wang X , ShangY , DaiS , WuW , YiF , ChengL. MicroRNA-16-5p aggravates myocardial infarction injury by targeting the expression of insulin receptor substrates 1 and mediating myocardial apoptosis and angiogenesis. Curr. Neurovasc. Res.17(1), 11–17 (2020).
  • Long G , WangF , DuanQ , YangS , ChenF , GongWet al. Circulating miR-30a, miR-195 and let-7b associated with acute myocardial infarction. PLOS ONE7(12), e50926 (2012).
  • Wang AD , DaiLF , YangL , WangYS , HaoXH , LiuZCet al. Upregulation of miR-335 reduces myocardial injury following myocardial infarction via targeting MAP3K2. Eur. Rev. Med. Pharmacol. Sci.25(1), 344–352 (2021).
  • Geng H , ChenL , SuY , XuQ , FanM , HuangRet al. miR-431-5p regulates apoptosis of cardiomyocytes after acute myocardial infarction via targeting selenoprotein T. Physiol. Res.71(1), 55–62 (2022).
  • Wang Z , WangZ , WangT , YuanJ , WangX , ZhangZ. Inhibition of miR-34a-5p protected myocardial ischemia reperfusion injury-induced apoptosis and reactive oxygen species accumulation through regulation of Notch Receptor 1 signaling. Rev. Cardiovasc. Med.20(3), 187–197 (2019).
  • Wang J , FengQ , LiangD , ShiJ. MiRNA-26a inhibits myocardial infarction-induced apoptosis by targeting PTEN via JAK/STAT pathways. Cells Dev.165, 203661 (2021).
  • Li R , GengHH , XiaoJ , QinXT , WangF , XingJHet al. miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1. Sci. Rep.6, 29082 (2016).
  • Yin Y , LvL , WangW. Expression of miRNA-214 in the sera of elderly patients with acute myocardial infarction and its effect on cardiomyocyte apoptosis. Exp. Ther. Med.17(6), 4657–4662 (2019).
  • Li Q , GaoY , ZhuJ , JiaQ. MiR-101 attenuates myocardial infarction-induced injury by targeting DDIT4 to regulate autophagy. Curr. Neurovasc. Res.17(2), 123–130 (2020).
  • Ren Y , BaoR , GuoZ , KaiJ , CaiCG , LiZ. miR-126-5p regulates H9c2 cell proliferation and apoptosis under hypoxic conditions by targeting IL-17A. Exp. Ther. Med.21(1), 67 (2021).
  • Bayoumi AS , ParkKM , WangY , TeohJP , AonumaT , TangYet al. A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. J. Mol. Cell. Cardiol.114, 72–82 (2018).
  • Yu J , CaoX , ZhengY , YanL , WangJ. Abnormal expression of miR-133a in patients with acute myocardial infarction following radical surgery for gastric cancer and the underlying mechanism. Mol. Med. Rep.18(6), 5023–5029 (2018).
  • Garikipati VNS , VermaSK , JolardarashiD , ChengZ , IbettiJ , CiminiMet al. Therapeutic inhibition of miR-375 attenuates post-myocardial infarction inflammatory response and left ventricular dysfunction via PDK-1-AKT signalling axis. Cardiovasc. Res.113(8), 938–949 (2017).
  • Ma Y , PanC , TangX , ZhangM , ShiH , WangTet al. MicroRNA-200a represses myocardial infarction-related cell death and inflammation by targeting the Keap1/Nrf2 and β-catenin pathways. Hellenic J. Cardiol.62(2), 139–148 (2021).
  • Zhang J , PanJ , YangM , JinX , FengJ , WangAet al. Upregulating microRNA-203 alleviates myocardial remodeling and cell apoptosis through downregulating protein tyrosine phosphatase 1B in rats with myocardial infarction. J. Cardiovasc. Pharmacol.74(5), 474–481 (2019).
  • Sun N , MengF , XueN , PangG , WangQ , MaH. Inducible miR-145 expression by HIF-1a protects cardiomyocytes against apoptosis via regulating SGK1 in simulated myocardial infarction hypoxic microenvironment. Cardiol. J.25(2), 268–278 (2018).
  • Qiao GH , ZhuP , YueL , YueS. MiR-125b improves acute myocardial infarction in rats by regulating P38/Sirtl/P53 signaling pathway. J. Biol. Regul. Homeost. Agents34(4), 1297–1306 (2020).
  • Li SH , ZhangYY , SunYL , ZhaoHJ , WangY. Inhibition of microRNA-802-5p inhibits myocardial apoptosis after myocardial infarction via Sonic Hedgehog signaling pathway by targeting PTCH1. Eur. Rev. Med. Pharmacol. Sci.25(1), 326–334 (2021).
  • Zhao N , MiL , ZhangX , XuM , YuH , LiuZet al. Enhanced MiR-711 transcription by PPARγ induces endoplasmic reticulum stress-mediated apoptosis targeting calnexin in rat cardiomyocytes after myocardial infarction. J. Mol. Cell. Cardiol.118, 36–45 (2018).
  • Yang J , HuF , FuX , JiangZ , ZhangW , ChenK. MiR-128/SOX7 alleviates myocardial ischemia injury by regulating IL-33/sST2 in acute myocardial infarction. Biol. Chem.400(4), 533–544 (2019).
  • Guo Y , GaoJ , LiuY , ZhangX , AnX , ZhouJet al. miR-451 on myocardial ischemia-reperfusion in rats by regulating AMPK signaling pathway. BioMed. Res. Int.2021, 9933998 (2021).
  • Yang F , LiuW , YanX , ZhouH , ZhangH , LiuJet al. Effects of mir-21 on cardiac microvascular endothelial cells after acute myocardial infarction in rats: role of phosphatase and tensin homolog (PTEN)/vascular endothelial growth factor (VEGF) signal pathway. Med. Sci. Monit.22, 3562–3575 (2016).
  • Xue Q , YangD , ZhangJ , GanP , LinC , LuYet al. USP7, negatively regulated by miR-409-5p, aggravates hypoxia-induced cardiomyocyte injury. APMIS129(3), 152–162 (2021).
  • Li C , FangM , LinZ , WangW , LiX. MicroRNA-24 protects against myocardial ischemia-reperfusion injury via the NF-κB/TNF-α pathway. Exp. Ther. Med.22(5), 1288 (2021).
  • Dai ZH , JiangZM , TuH , MaoL , SongGL , YangZB. miR-129 attenuates myocardial ischemia reperfusion injury by regulating the expression of PTEN in rats. BioMed. Res. Int.2021, 5535788 (2021).
  • Wang Y , JiangY , SunX , ShenX , WangH , DongCet al. Downregulation of miR-200a protects cardiomyocyte against apoptosis. Biomed. Pharmacother.123, 109303 (2020).
  • Zhou Y , RichardsAM , WangP. MicroRNA-221 is cardioprotective and anti-fibrotic in a rat model of myocardial infarction. Mol. Ther. Nucleic Acids17, 185–197 (2019).
  • Ding H , ChenW , ChenX. Serum miR-96-5p is a novel and non-invasive marker of acute myocardial infarction associated with coronary artery disease. Bioengineered13(2), 3930–3943 (2022).
  • Tang H , ZhangS , HuangC , LiK , ZhaoQ , LiX. MiR-448-5p/VEGFA axis protects cardiomyocytes from hypoxia through regulating the FAS/FAS-L signaling pathway. Int. Heart J.62(3), 647–657 (2021).
  • Xu Y , GuoW , ZengD , FangY , WangR , GuoDet al. Inhibiting miR-205 alleviates cardiac ischemia/reperfusion injury by regulating oxidative stress, mitochondrial function, and apoptosis. Oxid. Med. Cell. Longev.2021, 9986506 (2021).
  • Feng H , XieB , ZhangZ , YanJ , ChengM , ZhouY. MiR-135a protects against myocardial injury by targeting TLR4. Chem. Pharm. Bull.69(6), 529–536 (2021).
  • Yuan M , ZhangL , YouF , ZhouJ , MaY , YangFet al. MiR-145-5p regulates hypoxia-induced inflammatory response and apoptosis in cardiomyocytes by targeting CD40. Mol. Cell. Biochem.431(1–2), 123–131 (2017).
  • Yang J , LiuS , WangH , LiuY , LiuY. miR-134-5p inhibition reduces infarct-induced cardiomyocyte apoptosis via Creb1 upregulation. J. Stroke Cerebrovasc. Dis.29(8), 104850 (2020).
  • Tony H , MengK , WuB , YuA , ZengQ , YuKet al. MicroRNA-208a dysregulates apoptosis genes expression and promotes cardiomyocyte apoptosis during ischemia and its silencing improves cardiac function after myocardial infarction. Mediators Inflamm.2015, 479123 (2015).
  • Shi K , SunH , ZhangH , XieD , YuB. miR-34a-5p aggravates hypoxia-induced apoptosis by targeting ZEB1 in cardiomyocytes. Biol. Chem.400(2), 227–236 (2019).
  • Han X , ChenX , HanJ , ZhongY , LiQ , AnY. MiR-324/SOCS3 axis protects against hypoxia/reoxygenation-induced cardiomyocyte injury and regulates myocardial ischemia via TNF/NF-κB signaling pathway. Int. Heart J.61(6), 1258–1269 (2020).
  • He F , LiuH , GuoJ , YangD , YuY , YuJet al. Inhibition of microRNA-124 reduces cardiomyocyte apoptosis following myocardial infarction via targeting STAT3. Cell. Physiol. Biochem.51(1), 186–200 (2018).
  • Huang C , DengH , ZhaoW , XianL. Knockdown of miR-384-3p protects against myocardial ischemia-reperfusion injury in rats through targeting HSP70. Heart Surg. Forum24(1), E143–E150 (2021).
  • Xing J , LiuJ , LiuJ , XuZ. miR-129-5p ameliorates ischemia-reperfusion injury by targeting HMGB1 in myocardium. Gen. Physiol. Biophys.39(5), 461–470 (2020).
  • Xiaoyu L , WeiZ , MingZ , GuoweiJ. Anti-apoptotic effect of MiR-223-3p suppressing PIK3C2A in cardiomyocytes from myocardial infarction rat through regulating PI3K/Akt signaling pathway. Cardiovasc. Toxicol.21(8), 669–682 (2021).
  • Li B , TaoY , HuangQ. Effect and mechanism of miR-126 in myocardial ischemia reperfusion. Genet. Mol. Res.14(4), 18990–18998 (2015).
  • Sun H , CaiJ , XuL , LiuJ , ChenM , ZhengMet al. miR-483-3p regulates acute myocardial infarction by transcriptionally repressing insulin growth factor 1 expression. Mol. Med. Rep.17(3), 4785–4790 (2018).
  • Wang PP , ZhangYJ , XieT , SunJ , WangXD. MiR-223 promotes cardiomyocyte apoptosis by inhibiting Foxo3a expression. Eur. Rev. Med. Pharmacol. Sci.22(18), 6119–6126 (2018).
  • Zhang WQ , FengL , WangHJ , DuXF , HaoXL , LiYZet al. Inhibition of microRNA-495 inhibits hypoxia-induced apoptosis in H9c2 cells via targeting NFIB. Eur. Rev. Med. Pharmacol. Sci.25(1), 335–343 (2021).
  • Hui J , HuishanW , TaoL , ZhongluY , RentengZ , HongguangH. miR-539 as a key negative regulator of the MEK pathway in myocardial infarction. Herz42(8), 781–789 (2017).
  • Huang J , JiangR , ChuX , WangF , SunX , WangYet al. Overexpression of microRNA-23a-5p induces myocardial infarction by promoting cardiomyocyte apoptosis through inhibited of PI3K/AKT signalling pathway. Cell Biochem. Funct.38(8), 1047–1055 (2020).
  • Wang K , LiuCY , ZhangXJ , FengC , ZhouLY , ZhaoYet al. miR-361-regulated prohibitin inhibits mitochondrial fission and apoptosis and protects heart from ischemia injury. Cell Death Differ.22(6), 1058–1068 (2015).
  • Sánchez-Sánchez R , Gómez-FerrerM , ReinalI , BuiguesM , Villanueva-BádenasE , Ontoria-OviedoIet al. miR-4732-3p in extracellular vesicles from mesenchymal stromal cells is cardioprotective during myocardial ischemia. Front. Cell Dev. Biol.9, 734143 (2021).
  • Huang J , HuangY , FengZ , GuoW , WangX , LiaoZ. MiR-1247-3p protects rat cardiomyocytes against hypoxia/reoxygenation-induced injury via targeting BCL2L11 and caspase-2. J. Recept. Signal Transduct. Res.41(1), 6–14 (2021).
  • Zhu Q , HuF. Antagonism of miR-429 ameliorates anoxia/reoxygenation injury in cardiomyocytes by enhancing MO25/LKB1/AMPK mediated autophagy. Life Sci.235, 116842 (2019).
  • Zou JF , WuXN , ShiRH , SunYQ , QinFJ , YangYM. Inhibition of microRNA-184 reduces H2O2-mediated cardiomyocyte injury via targeting FBXO28. Eur. Rev. Med. Pharmacol. Sci.24(21), 11251–11258 (2020).
  • Ma W , DingF , WangX , HuangQ , ZhangL , BiCet al. By targeting Atg7 microRNA-143 mediates oxidative stress-induced autophagy of c-Kit(+) mouse cardiac progenitor cells. EBioMedicine32, 182–191 (2018).
  • He L , WangZ , ZhouR , XiongW , YangY , SongNet al. Dexmedetomidine exerts cardioprotective effect through miR-146a-3p targeting IRAK1 and TRAF6 via inhibition of the NF-κB pathway. Biomed. Pharmacother.133, 110993 (2021).
  • Peng CL , JiangN , ZhaoJF , LiuK , JiangW , CaoPG. Metformin relieves H/R-induced cardiomyocyte injury through miR-19a/ACSL axis–possible therapeutic target for myocardial I/R injury. Toxicol. Appl. Pharmacol.414, 115408 (2021).
  • Guo ZX , ZhouFZ , SongW , YuLL , YanWJ , YinLHet al. Suppression of microRNA-101 attenuates hypoxia-induced myocardial H9c2 cell injury by targeting DIMT1-Sp1/survivin pathway. Eur. Rev. Med. Pharmacol. Sci.22(20), 6965–6976 (2018).
  • Yang M , KongDY , ChenJC. Inhibition of miR-148b ameliorates myocardial ischemia/reperfusion injury via regulation of Wnt/β-catenin signaling pathway. J. Cell. Physiol.234(10), 17757–17766 (2019).
  • Ali Sheikh MS . Overexpression of miR-375 protects cardiomyocyte injury following hypoxic-reoxygenation injury. Oxid. Med. Cell. Longev.2020, 7164069 (2020).
  • Wang X , ZhangX , RenXP , ChenJ , LiuH , YangJet al. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation122(13), 1308–1318 (2010).
  • Cheng Y , LiuX , ZhangS , LinY , YangJ , ZhangC. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J. Mol. Cell. Cardiol.47(1), 5–14 (2009).
  • Liu DW , ZhangYN , HuHJ , ZhangPQ , CuiW. Downregulation of microRNA-199a-5p attenuates hypoxia/reoxygenation-induced cytotoxicity in cardiomyocytes by targeting the HIF-1α-GSK3β-mPTP axis. Mol. Med. Rep.19(6), 5335–5344 (2019).
  • Hinkel R , PenzkoferD , ZühlkeS , FischerA , HusadaW , XuQFet al. Inhibition of microRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation128(10), 1066–1075 (2013).
  • Gong DD , YuJ , YuJC , JiangXD. Effect of miR-26a targeting GSK-3β/β-catenin signaling pathway on myocardial apoptosis in rats with myocardial ischemia-reperfusion. Eur. Rev. Med. Pharmacol. Sci.23(16), 7073–7082 (2019).
  • Zhang D , WangQ , QiuX , ChenY , YangX , GuanY. Remifentanil protects heart from myocardial ischaemia/reperfusion (I/R) injury via miR-206-3p/TLR4/NF-κB signalling axis. J. Pharm. Pharmacol.74(2), 282–291 (2022).
  • Yang Y , ZhaoF , YuanZ , WangC , ChenK , XiaoW. Inhibition of miR-218-5p reduces myocardial ischemia-reperfusion injury in a Sprague-Dawley rat model by reducing oxidative stress and inflammation through MEF2C/NF-κB pathway. Int. Immunopharmacol.101(Pt B), 108299 (2021).
  • Guan Y , SongX , SunW , WangY , LiuB. Effect of hypoxia-induced microRNA-210 expression on cardiovascular disease and the underlying mechanism. Oxidative Med. Cell. Longev.2019, 4727283 (2019).
  • He Y , CaiY , SunT , ZhangL , IrwinMG , XuAet al. MicroRNA-503 exacerbates myocardial ischemia/reperfusion injury via inhibiting PI3K/Akt- and STAT3-dependent prosurvival signaling pathways. Oxid. Med. Cell. Longev.2022, 3449739 (2022).
  • Fang Y , ChenS , LiuZ , AiW , HeX , WangLet al. Endothelial stem cells attenuate cardiac apoptosis via downregulating cardiac microRNA-146a in a rat model of coronary heart disease. Exp. Ther. Med.16(5), 4246–4252 (2018).
  • Wang J , JiaZ , ZhangC , SunM , WangW , ChenPet al. miR-499 protects cardiomyocytes from H2O2-induced apoptosis via its effects on Pdcd4 and Pacs2. RNA Biol.11(4), 339–350 (2014).
  • Borden A , KurianJ , NickoloffE , YangY , TroupesCD , IbettiJet al. Transient introduction of miR-294 in the heart promotes cardiomyocyte cell cycle reentry after injury. Circ. Res.125(1), 14–25 (2019).
  • Li D , ZhouJ , YangB , YuY. microRNA-340-5p inhibits hypoxia/reoxygenation-induced apoptosis and oxidative stress in cardiomyocytes by regulating the Act1/NF-κB pathway. J. Cell. Biochem.120(9), 14618–14627 (2019).
  • Bie ZD , SunLY , GengCL , MengQG , LinXJ , WangYFet al. MiR-125b regulates SFRP5 expression to promote growth and activation of cardiac fibroblasts. Cell Biol. Int.40(11), 1224–1234 (2016).
  • Li Y , LuJ , BaoX , WangX , WuJ , LiXet al. MiR-499-5p protects cardiomyocytes against ischaemic injury via anti-apoptosis by targeting PDCD4. Oncotarget7(24), 35607–35617 (2016).
  • Shin S , ChoiJW , MoonH , LeeCY , ParkJH , LeeJet al. Simultaneous suppression of multiple programmed cell death pathways by miRNA-105 in cardiac ischemic injury. Mol. Ther. Nucleic Acids14, 438–449 (2019).
  • Yan Y , SongX , LiZ , ZhangJ , RenJ , WuJet al. Elevated levels of granzyme B correlated with miR-874-3p downregulation in patients with acute myocardial infarction. Biomarkers Med.11(9), 761–767 (2017).
  • Li X , JinY. Inhibition of miR-182-5p attenuates ROS and protects against myocardial ischemia-reperfusion injury by targeting STK17A. Cell Cycledoi:10.1080/15384101.2022.20606401-12 (2022).
  • Li Q , XieJ , LiR , ShiJ , SunJ , GuRet al. Overexpression of microRNA-99a attenuates heart remodelling and improves cardiac performance after myocardial infarction. J. Cell. Mol. Med.18(5), 919–928 (2014).
  • Wang X , LiuY , HouH , ShaoW , HuangD , HaoZet al. miRNA-29 aggravates myocardial infarction via inhibiting the PI3K/mTOR/HIF1α/VEGF pathway. Aging14(7), 3129–3142 (2022).
  • Shao H , YangL , WangL , TangB , WangJ , LiQ. MicroRNA-34a protects myocardial cells against ischemia-reperfusion injury through inhibiting autophagy via regulating TNFα expression. Biochem. Cell Biol.96(3), 349–354 (2018).
  • Fang YC , YehCH. Inhibition of miR-302 suppresses hypoxia-reoxygenation-induced H9c2 cardiomyocyte death by regulating Mcl-1 expression. Oxid. Med. Cell. Longev.2017, 7968905 (2017).
  • Xu H , CaoH , ZhuG , LiuS , LiH. Overexpression of microRNA-145 protects against rat myocardial infarction through targeting PDCD4. Am. J. Transl. Res.9(11), 5003–5011 (2017).
  • Meng X , JiY , WanZ , ZhaoB , FengC , ZhaoJet al. Inhibition of miR-363 protects cardiomyocytes against hypoxia-induced apoptosis through regulation of Notch signaling. Biomed. Pharmacother.90, 509–516 (2017).
  • Zhou Y , HuangH , HouX. MicroRNA-133b alleviates hypoxia injury by direct targeting on NOD-like receptor protein 3 in rat H9c2 cardiomyocyte. Cardiol. Res. Pract.2019, 8092461 (2019).
  • Qin B , ShuY , XiaoL , LuT , LinY , YangHet al. MicroRNA-150 targets ELK1 and modulates the apoptosis induced by ox-LDL in endothelial cells. Mol. Cell. Biochem.429(1–2), 45–58 (2017).
  • Li X , ZhangS , WaM , LiuZ , HuS. MicroRNA-101 protects against cardiac remodeling following myocardial infarction via downregulation of runt-related transcription factor 1. J. Am. Heart Assoc.8(23), e013112 (2019).
  • Sheng Z , LuW , ZuoZ , WangD , ZuoP , YaoYet al. MicroRNA-7b attenuates ischemia/reperfusion-induced H9C2 cardiomyocyte apoptosis via the hypoxia inducible factor-1/p-p38 pathway. J. Cell. Biochem.120(6), 9947–9955 (2019).
  • Liu X , DengY , XuY , JinW , LiH. MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1. J. Mol. Cell. Cardiol.118, 133–146 (2018).
  • Zhang J , LiY , ZhaoQ. Circulating miR-23b as a novel biomarker for early risk stratification after ST-elevation myocardial infarction. Med. Sci. Monit.24, 1517–1523 (2018).
  • Weng CF , WuCF , KaoSH , ChenJC , LinHH. Down-regulation of miR-34a-5p potentiates protective effect of adipose-derived mesenchymal stem cells against ischemic myocardial infarction by stimulating the expression of C1q/tumor necrosis factor-related protein-9. Front. Physiol.10, 1445 (2019).
  • Wang N , YuYB. MiR-486 alleviates hypoxia/reoxygenation-induced H9c2 cell injury by regulating forkhead box D3. Eur. Rev. Med. Pharmacol. Sci.26(2), 422–431 (2022).
  • Liu J , SunF , WangY , YangW , XiaoH , ZhangYet al. Suppression of microRNA-16 protects against acute myocardial infarction by reversing beta2-adrenergic receptor down-regulation in rats. Oncotarget8(12), 20122–20132 (2017).
  • Huang Y , YangY , HeY , HuangC , MengX , LiJ. MicroRNA-208a potentiates angiotensin II-triggered cardiac myoblasts apoptosis via inhibiting Nemo-like kinase (NLK). Curr. Pharm. Des.22(31), 4868–4875 (2016).
  • Xu H , JinL , ChenY , LiJ. Downregulation of microRNA-429 protects cardiomyocytes against hypoxia-induced apoptosis by increasing Notch1 expression. Int. J. Mol. Med.37(6), 1677–1685 (2016).
  • Li SP , LiuB , SongB , WangCX , ZhouYC. miR-28 promotes cardiac ischemia by targeting mitochondrial aldehyde dehydrogenase 2 (ALDH2) in Mus musculus cardiac myocytes. Eur. Rev. Med. Pharmacol. Sci.19(5), 752–758 (2015).
  • Zhang D , ZhangG , YuK , ZhangX , JiangA. MiRNA-615-3p alleviates oxidative stress injury of human cardiomyocytes via PI3K/Akt signaling by targeting MEF2A. Anatol. J. Cardiol.26(5), 373–381 (2022).
  • Zhu HH , WangXT , SunYH , HeWK , LiangJB , MoBHet al. MicroRNA-486-5p targeting PTEN protects against coronary microembolization-induced cardiomyocyte apoptosis in rats by activating the PI3K/AKT pathway. Eur. J. Pharmacol.855, 244–251 (2019).
  • Li W , ZhangY , WangJ , LiQ , ZhaoD , TangBet al. MicroRNA-489 promotes the apoptosis of cardiac muscle cells in myocardial ischemia-reperfusion based on smart healthcare. J. Healthc. Eng.2022, 2538769 (2022).
  • Li P , JiaXY. MicroRNA-18-5p inhibits the oxidative stress and apoptosis of myocardium induced by hypoxia by targeting RUNX1. Eur. Rev. Med. Pharmacol. Sci.26(2), 432–439 (2022).
  • Zhang S , ZhangR , WuF , LiX. MicroRNA-208a regulates H9c2 cells simulated ischemia-reperfusion myocardial injury via targeting CHD9 through Notch/NF-kappa B signal pathways. Int. Heart J.59(3), 580–588 (2018).
  • Fa H , XiaoD , ChangW , DingL , YangL , WangYet al. MicroRNA-194-5p attenuates doxorubicin-induced cardiomyocyte apoptosis and endoplasmic reticulum stress by targeting P21-activated kinase 2. Front. Cardiovasc. Med.9, 815916 (2022).
  • Aurora AB , MahmoudAI , LuoX , JohnsonBA , Van RooijE , MatsuzakiSet al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J. Clin. Invest.122(4), 1222–1232 (2012).
  • Wu Q , WangH , HeF , ZhengJ , ZhangH , ChengCet al. Depletion of microRNA-92a enhances the role of sevoflurane treatment in reducing myocardial ischemia-reperfusion injury by upregulating KLF4. Cardiovasc. Drugs Ther. doi:10.1007/s10557-021-07303-x (2022).
  • Zhang X , ZhangC , WangN , LiY , ZhangD , LiQ. MicroRNA-486 alleviates hypoxia-induced damage in H9c2 cells by targeting NDRG2 to inactivate JNK/C-Jun and NF-κB signaling pathways. Cell Physiol. Biochem.48(6), 2483–2492 (2018).
  • Tan L , LiuL , YaoJ , PiaoC. miR-145-5p attenuates inflammatory response and apoptosis in myocardial ischemia-reperfusion injury by inhibiting (NADPH) oxidase homolog 1. Exp. Anim.70(3), 311–321 (2021).
  • Zhang DY , WangBJ , MaM , YuK , ZhangQ , ZhangXW. MicroRNA-325-3p protects the heart after myocardial infarction by inhibiting RIPK3 and programmed necrosis in mice. BMC Mol. Biol.20(1), 17 (2019).
  • Hong H , TaoT , ChenS , LiangC , QiuY , ZhouYet al. MicroRNA-143 promotes cardiac ischemia-mediated mitochondrial impairment by the inhibition of protein kinase Cepsilon. Basic Res. Cardiol.112(6), 60 (2017).
  • Wang K , LongB , JiaoJQ , WangJX , LiuJP , LiQet al. miR-484 regulates mitochondrial network through targeting Fis1. Nat. Commun.3, 781 (2012).
  • Wang L , QianL. miR-24 regulates intrinsic apoptosis pathway in mouse cardiomyocytes. PLOS ONE9(1), e85389 (2014).
  • Song Z , ZhongX , NingZ , SongX. The protective effect of miR-27-3p on ischemia-reperfusion-induced myocardial injury depends on HIF-1α and galectin-3. J. Cardiovasc. Transl. Res.doi:10.1007/s12265-021-10203-y (2022).
  • Wang K , ZhangDL , LongB , AnT , ZhangJ , ZhouLYet al. NFAT4-dependent miR-324-5p regulates mitochondrial morphology and cardiomyocyte cell death by targeting Mtfr1. Cell Death Dis.6(12), e2007 (2015).
  • Zhang X , QinQ , DaiH , CaiS , ZhouC , GuanJ. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression. Braz. J. Med. Biol. Res.52(3), e7994 (2019).
  • Liu C , LiuH , SunQ , ZhangP. MicroRNA 1283 alleviates cardiomyocyte damage caused by hypoxia /reoxygenation via targeting GADD45A and inactivating the JNK and p38 MAPK signaling pathways. Kardiol. Pol.79(2), 147–155 (2021).
  • Gu GL , XuXL , SunXT , ZhangJ , GuoCF , WangCSet al. Cardioprotective effect of microRNA-21 in murine myocardial infarction. Cardiovasc. Ther.33(3), 109–117 (2015).
  • Yang W , HanY , YangC , ChenY , ZhaoW , SuXet al. MicroRNA-19b-1 reverses ischaemia-induced heart failure by inhibiting cardiomyocyte apoptosis and targeting Bcl2 l11/BIM. Heart Vessels34(7), 1221–1229 (2019).
  • Xu Y , ZhuW , WangZ , YuanW , SunY , LiuHet al. Combinatorial microRNAs suppress hypoxia-induced cardiomyocytes apoptosis. Cell Physiol. Biochem.37(3), 921–932 (2015).
  • Zhang J , ZhouX , SunJ , LiM , MaJ , GeL. miR-361-3p mitigates hypoxia-induced cardiomyocyte injury via targeting apoptosis initiators caspase-2/-8/-9. In Vitro Cell Dev. Biol. Anim.58(2), 116–123 (2022).
  • Zhang L , ZhangJ , TongQ , WangG , DongH , WangZet al. Reduction of miR-29a-3p induced cardiac ischemia reperfusion injury in mice via targeting Bax. Exp. Ther. Med.18(3), 1729–1737 (2019).
  • Li X , KongM , JiangD , QianJ , DuanQ , DongA. MicroRNA-150 aggravates H2O2-induced cardiac myocyte injury by down-regulating c-myb gene. Acta Biochim. Biophys. Sin.45(9), 734–741 (2013).
  • Dong S , ChengY , YangJ , LiJ , LiuX , WangXet al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J. Biol. Chem.284(43), 29514–29525 (2009).
  • Long B , WangK , LiN , MurtazaI , XiaoJY , FanYYet al. miR-761 regulates the mitochondrial network by targeting mitochondrial fission factor. Free Radic. Biol. Med.65, 371–379 (2013).
  • Zhang Z , LuoW , HanY , MisraniA , ChenH , LongC. Effect of microRNA-455-5p (miR-455-5p) on the expression of the cytokine signaling-3 (SOCS3) gene during myocardial infarction. J. Biomed. Nanotechnol.18(1), 202–210 (2022).
  • Yang Q , YangK , LiA. microRNA-21 protects against ischemia-reperfusion and hypoxia-reperfusion-induced cardiocyte apoptosis via the phosphatase and tensin homolog/Akt-dependent mechanism. Mol. Med. Rep.9(6), 2213–2220 (2014).
  • Pan J , ZhouL , LinC , XueW , ChenP , LinJ. MicroRNA-34a promotes ischemia-induced cardiomyocytes apoptosis through targeting Notch1. Evid. Based Complement Alternat. Med.2022, 1388415 (2022).
  • Zhao YB , ZhaoJ , ZhangLJ , ShanRG , SunZZ , WangKet al. MicroRNA-370 protects against myocardial ischemia/reperfusion injury in mice following sevoflurane anesthetic preconditioning through PLIN5-dependent PPAR signaling pathway. Biomed. Pharmacother.113, 108697 (2019).
  • Gao H , XianG , ZhongG , HuangB , LiangS , ZengQet al. Alleviation of doxorubicin-induced cardiomyocyte death through miR-147-y-mediated mitophagy. Biochem. Biophys. Res. Commun.609, 176–182 (2022).
  • Hang P , SunC , GuoJ , ZhaoJ , DuZ. BDNF-mediates down-regulation of microRNA-195 inhibits ischemic cardiac apoptosis in rats. Int. J. Biol. Sci.12(8), 979–989 (2016).
  • Zhao Z , ZhaoY , Ying-ChunL , ZhaoL , ZhangW , YangJG. Protective role of microRNA-374 against myocardial ischemia-reperfusion injury in mice following thoracic epidural anesthesia by downregulating dystrobrevin alpha-mediated Notch1 axis. J. Cell. Physiol.234(7), 10726–10740 (2019).
  • Li Q , ZhangZ , LiH , PanX , ChenS , CuiZet al. Lycium barbarum polysaccharides protects H9c2 cells from hypoxia-induced injury by down-regulation of miR-122. Biomed. Pharmacother.110, 20–28 (2019).
  • Li X , ZengZ , LiQ , XuQ , XieJ , HaoHet al. Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy. Oncotarget6(22), 18829–18844 (2015).
  • Liu H , LiuP , ShiX , YinD , ZhaoJ. NR4A2 protects cardiomyocytes against myocardial infarction injury by promoting autophagy. Cell Death Discov.4, 27 (2018).
  • Xie M , HuC , LiD , LiS. MicroRNA-377 alleviates myocardial injury induced by hypoxia/reoxygenation via downregulating LILRB2 expression. Dose Response18(2), 1559325820936124 (2020).
  • Cheng H , YanW. MiR-433 regulates myocardial ischemia reperfusion injury by targeting NDRG4 via the PI3K/Akt pathway. Shock54(6), 802–809 (2020).
  • Ge ZW , ZhuXL , WangBC , HuJL , SunJJ , WangSet al. MicroRNA-26b relieves inflammatory response and myocardial remodeling of mice with myocardial infarction by suppression of MAPK pathway through binding to PTGS2. Int. J. Cardiol.280, 152–159 (2019).
  • Zhen L , ZhaoQ , LüJ , DengS , XuZ , ZhangLet al. miR-301a-PTEN-AKT signaling induces cardiomyocyte proliferation and promotes cardiac repair post-MI. Mol. Ther. Nucleic Acids22, 251–262 (2020).
  • Li W , JinS , HaoJ , ShiY , LiW , JiangL. Metformin attenuates ischemia/reperfusion-induced apoptosis of cardiac cells by downregulation of p53/microRNA-34a via activation of SIRT1. Can. J. Physiol. Pharmacol.99(9), 875–884 (2021).
  • Hu G , MaL , DongF , HuX , LiuS , SunH. Inhibition of microRNA-124-3p protects against acute myocardial infarction by suppressing the apoptosis of cardiomyocytes. Mol. Med. Rep.20(4), 3379–3387 (2019).
  • Shi Y , HanY , NiuL , LiJ , ChenY. MiR-499 inhibited hypoxia/reoxygenation induced cardiomyocytes injury by targeting SOX6. Biotechnol. Lett.41(6–7), 837–847 (2019).
  • Ma R , ChenX , MaY , BaiG , LiDS. MiR-129-5p alleviates myocardial injury by targeting suppressor of cytokine signaling 2 after ischemia/reperfusion. Kaohsiung J. Med. Sci.36(8), 599–606 (2020).
  • Zhao T , QiuZ , GaoY. MiR-137-3p exacerbates the ischemia-reperfusion injured cardiomyocyte apoptosis by targeting KLF15. Naunyn Schmiedebergs Arch. Pharmacol.393(6), 1013–1024 (2020).
  • Fang JF , DaiJH , NiM , CaiZY , LiaoYF. Catechin protects rat cardiomyocytes from hypoxia-induced injury by regulating microRNA-92a. Int. J. Clin. Exp. Pathol.11(7), 3257–3266 (2018).
  • Wei DZ , LinC , HuangYQ , WuLP , HuangMY. Ellagic acid promotes ventricular remodeling after acute myocardial infarction by up-regulating miR-140-3p. Biomed. Pharmacother.95, 983–989 (2017).
  • Zhang J , QiuW , MaJ , WangY , HuZ , LongKet al. miR-27a-5p attenuates hypoxia-induced rat cardiomyocyte injury by inhibiting Atg7. Int. J. Mol. Sci.20(10), 2418 (2019).
  • Yan G , WangJ , FangZ , YanS , ZhangY. MiR-26a-5p targets WNT5A to protect cardiomyocytes from injury due to hypoxia/reoxygenation through the Wnt/β-catenin signaling pathway. Int. Heart J.62(5), 1145–1152 (2021).
  • Zhu X , LuX. MiR-423-5p inhibition alleviates cardiomyocyte apoptosis and mitochondrial dysfunction caused by hypoxia/reoxygenation through activation of the wnt/β-catenin signaling pathway via targeting MYBL2. J. Cell. Physiol.234(12), 22034–22043 (2019).
  • Yu F , ZhangX , SunC , XuW , XiaJ. Downregulation of miRNA-663b protects against hypoxia-induced injury in cardiomyocytes by targeting BCL2L1. Exp. Ther. Med.19(6), 3581–3588 (2020).
  • Jin Y , NiS. miR-496 remedies hypoxia reoxygenation-induced H9c2 cardiomyocyte apoptosis via Hook3-targeted PI3k/Akt/mTOR signaling pathway activation. J. Cell. Biochem.121(1), 698–712 (2020).
  • Li K , LinT , ChenL , WangN. MicroRNA-93 elevation after myocardial infarction is cardiac protective. Med. Hypotheses106, 23–25 (2017).
  • Liu D , QiaoC , LuoH. MicroRNA-1278 ameliorates the inflammation of cardiomyocytes during myocardial ischemia by targeting both IL-22 and CXCL14. Life Sci.269, 118817 (2021).
  • Fan F , SunA , ZhaoH , LiuX , ZhangW , JinXet al. MicroRNA-34a promotes cardiomyocyte apoptosis post myocardial infarction through down-regulating aldehyde dehydrogenase 2. Curr. Pharm. Des.19(27), 4865–4873 (2013).
  • Ma J , ZhangJ , WangY , LongK , WangX , JinLet al. MiR-532-5p alleviates hypoxia-induced cardiomyocyte apoptosis by targeting PDCD4. Gene675, 36–43 (2018).
  • Liu BF , ChenQ , ZhangM , ZhuYK. MiR-124 promotes ischemia-reperfusion induced cardiomyocyte apoptosis by targeting sphingosine kinase 1. Eur. Rev. Med. Pharmacol. Sci.23(16), 7049–7058 (2019).
  • Tang Q , LiMY , SuYF , FuJ , ZouZY , WangYet al. Absence of miR-223-3p ameliorates hypoxia-induced injury through repressing cardiomyocyte apoptosis and oxidative stress by targeting KLF15. Eur. J. Pharmacol.841, 67–74 (2018).
  • Hu J , HuangCX , RaoPP , CaoGQ , ZhangY , ZhouJPet al. MicroRNA-155 inhibition attenuates endoplasmic reticulum stress-induced cardiomyocyte apoptosis following myocardial infarction via reducing macrophage inflammation. Eur. J. Pharmacol.857, 172449 (2019).
  • Dai H , JiX , HuangX , LiW , ShiZ. MiR-379 relieves myocardial injury after acute myocardial infarction by regulating tumor necrosis factor-α-induced protein 8. Panminerva Med.64(1), 31–37 (2022).
  • Liu Z , LiuJ , WeiY , XuJ , WangZ , WangPet al. LncRNA MALAT1 prevents the protective effects of miR-125b-5p against acute myocardial infarction through positive regulation of NLRC5. Exp. Ther. Med.19(2), 990–998 (2020).
  • Feng M , LiZ , WangD , WangF , WangC , WangCet al. MicroRNA-210 aggravates hypoxia-induced injury in cardiomyocyte H9c2 cells by targeting CXCR4. Biomed. Pharmacother.102, 981–987 (2018).
  • Ren N , WangM. microRNA-212-induced protection of the heart against myocardial infarction occurs via the interplay between AQP9 and PI3K/Akt signaling pathway. Exp. Cell Res.370(2), 531–541 (2018).
  • Chen B , YangY , WuJ , SongJ , LuJ. microRNA-17-5p downregulation inhibits autophagy and myocardial remodelling after myocardial infarction by targeting STAT3. Autoimmunity55(1), 43–51 (2022).
  • Zhang ZW , LiH , ChenSS , LiY , CuiZY , MaJ. MicroRNA-122 regulates caspase-8 and promotes the apoptosis of mouse cardiomyocytes. Braz. J. Med. Biol. Res.50(2), e5760 (2017).
  • Xing B , LiQJ , LiH , ChenSS , CuiZY , MaJet al. miR-140-5p aggravates hypoxia-induced cell injury via regulating MLK3 in H9c2 cells. Biomed. Pharmacother.103, 1652–1657 (2018).
  • Li Y , DuY , CaoJ , GaoQ , LiH , ChenYet al. MiR-130a inhibition protects rat cardiac myocytes from hypoxia-triggered apoptosis by targeting Smad4. Kardiol. Pol.76(6), 993–1001 (2018).
  • Qian L , Van LaakeLW , HuangY , LiuS , WendlandMF , SrivastavaD. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J. Exp. Med.208(3), 549–560 (2011).
  • Xing Y , LiL. Gastrodin protects rat cardiomyocytes H9c2 from hypoxia-induced injury by up-regulation of microRNA-21. Int. J. Biochem. Cell Biol.109, 8–16 (2019).
  • Qiu R , LiW , LiuY. MicroRNA-204 protects H9C2 cells against hypoxia/reoxygenation-induced injury through regulating SIRT1-mediated autophagy. Biomed. Pharmacother.100, 15–19 (2018).
  • Yan Y , DangH , ZhangX , WangX , LiuX. The protective role of MiR-206 in regulating cardiomyocytes apoptosis induced by ischemic injury by targeting PTP1B. Biosci. Rep.40(1), BSR20191000 (2020).
  • Zhang S , WangY , WangP , XuanJ. miR-708 affords protective efficacy in anoxia/reoxygenation-stimulated cardiomyocytes by blocking the TLR4 signaling via targeting HMGB1. Mol. Cell Probes54, 101653 (2020).
  • Zhang L , JiaX. Down-regulation of miR-30b-5p protects cardiomyocytes against hypoxia-induced injury by targeting Aven. Cell Mol. Biol. Lett.24, 61 (2019).
  • Long B , GanTY , ZhangRC , ZhangYH. miR-23a regulates cardiomyocyte apoptosis by targeting manganese superoxide dismutase. Mol. Cells40(8), 542–549 (2017).
  • Ning S , LiZ , JiZ , FanD , WangK , WangQet al. MicroRNA-494 suppresses hypoxia/reoxygenation-induced cardiomyocyte apoptosis and autophagy via the PI3K/AKT/mTOR signaling pathway by targeting SIRT1. Mol. Med. Rep.22(6), 5231–5242 (2020).
  • Gao L , RuanZ , ChenG. MicroRNA-383-5p regulates oxidative stress in mice with acute myocardial infarction through the AMPK signaling pathway via PFKM. Dis. Markers2021, 8587535 (2021).
  • Wu G , TanJ , LiJ , SunX , DuL , TaoS. miRNA-145-5p induces apoptosis after ischemia-reperfusion by targeting dual specificity phosphatase 6. J. Cell. Physiol.doi:10.1002/jcp.28291 (2019).
  • Santangelo A , ImbruceP , GardenghiB , BelliL , AgushiR , TamaniniAet al. A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker. 136(1), 51–62 (2018).
  • Tan DX , ChenXX , BaiTZ , ZhangJ , LiZF. Sevoflurane up-regulates microRNA-204 to ameliorate myocardial ischemia/reperfusion injury in mice by suppressing Cotl1. Life Sci.259, 118162 (2020).
  • Ma J , ChenZ , MaY , XiaY , HuK , ZhouYet al. MicroRNA-19a attenuates hypoxia-induced cardiomyocyte apoptosis by downregulating NHE-1 expression and decreasing calcium overload. J. Cell. Biochem.121(2), 1747–1758 (2020).
  • Yuan L , FanL , LiQ , CuiW , WangX , ZhangZ. Inhibition of miR-181b-5p protects cardiomyocytes against ischemia/reperfusion injury by targeting AKT3 and PI3KR3. J. Cell. Biochem.120(12), 19647–19659 (2019).
  • Nepal C , CoolenM , HadzhievY , CussighD , MydelP , SteenVMet al. Transcriptional, post-transcriptional and chromatin-associated regulation of pri-miRNAs, pre-miRNAs and moRNAs. Nucleic Acids Res.44(7), 3070–3081 (2016).
  • Dykes IM , EmanueliC. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics15(3), 177–186 (2017).
  • Sallam T , SandhuJ , TontonozP. Long noncoding RNA discovery in cardiovascular disease: decoding form to function. Circ. Res.122(1), 155–166 (2018).
  • Wang J , SuZ , LuS , FuW , LiuZ , JiangXet al. LncRNA HOXA-AS2 and its molecular mechanisms in human cancer. Clin. Chim. Acta485, 229–233 (2018).
  • Yang Z , JiangS , ShangJ , JiangY , DaiY , XuBet al. LncRNA: shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res. Rev.52, 17–31 (2019).
  • Liao K , XuJ , YangW , YouX , ZhongQ , WangX. The research progress of lncRNA involved in the regulation of inflammatory diseases. Mol. Immunol.101, 182–188 (2018).
  • Bhan A , SoleimaniM , MandalSS. Long noncoding RNA and cancer: a new paradigm. Cancer Res.77(15), 3965–3981 (2017).
  • Tao H , LiuX , LiuX , LiuW , WuD , WangRet al. LncRNA MEG3 inhibits trophoblast invasion and trophoblast-mediated VSMC loss in uterine spiral artery remodeling. Mol. Reprod. Dev.86(6), 686–695 (2019).
  • Li G , LiuK , DuX. Long non-coding RNA TUG1 promotes proliferation and inhibits apoptosis of osteosarcoma cells by sponging miR-132-3p and upregulating SOX4 expression. Yonsei Med. J.59(2), 226–235 (2018).
  • Koshiba T , DetmerSA , KaiserJT , ChenH , MccafferyJM , ChanDC. Structural basis of mitochondrial tethering by mitofusin complexes. Science305(5685), 858–862 (2004).
  • Chen H , DetmerSA , EwaldAJ , GriffinEE , FraserSE , ChanDC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol.160(2), 189–200 (2003).
  • Lugus JJ , NgohGA , BachschmidMM , WalshK. Mitofusins are required for angiogenic function and modulate different signaling pathways in cultured endothelial cells. J. Mol. Cell. Cardiol.51(6), 885–893 (2011).
  • Li J , LiY , JiaoJ , WangJ , LiY , QinDet al. Mitofusin 1 is negatively regulated by microRNA 140 in cardiomyocyte apoptosis. Mol. Cell. Biol.34(10), 1788–1799 (2014).
  • Chen Y , LiS , ZhangY , WangM , LiX , LiuSet al. The lncRNA Malat1 regulates microvascular function after myocardial infarction in mice via miR-26b-5p/Mfn1 axis-mediated mitochondrial dynamics. Redox Biol.41, 101910 (2021).
  • Brouwer JM , LanP , CowanAD , BernardiniJP , BirkinshawRW , Van DelftMFet al. Conversion of Bim-BH3 from activator to inhibitor of Bak through structure-based design. Mol. Cell68(4), 659–672 (2017).
  • Su X , LvL , LiY , FangR , YangR , LiCet al. lncRNA MIRF promotes cardiac apoptosis through the miR-26a-Bak1 axis. Mol. Ther. Nucleic Acids20, 841–850 (2020).
  • Chen J , ZhangJ , YangJ , XuL , HuQ , XuCet al. Histone demethylase KDM3a, a novel regulator of vascular smooth muscle cells, controls vascular neointimal hyperplasia in diabetic rats. Atherosclerosis257, 152–163 (2017).
  • Zhang BF , JiangH , ChenJ , GuoX , HuQ , YangS. KDM3A inhibition attenuates high concentration insulin-induced vascular smooth muscle cell injury by suppressing MAPK/NF-κB pathways. Int. J. Mol. Med.41(3), 1265–1274 (2018).
  • Zhang BF , JiangH , ChenJ , HuQ , YangS , LiuXPet al. LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. J. Cell Mol. Med.24(1), 1099–1115 (2020).
  • Del Re DP , MatsudaT , ZhaiP , MaejimaY , JainMR , LiuTet al. Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL. Mol. Cell54(4), 639–650 (2014).
  • Nakamura M , ZhaiP , DelRe DP , MaejimaY , SadoshimaJ. Mst1-mediated phosphorylation of Bcl-xL is required for myocardial reperfusion injury. JCI Insight1(5), e86217 (2016).
  • Yu W , XuM , ZhangT , ZhangQ , ZouC. Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy. J. Physiol. Sci.69(1), 113–127 (2019).
  • Zhang M , ZhangL , HuJ , LinJ , WangT , DuanYet al. MST1 coordinately regulates autophagy and apoptosis in diabetic cardiomyopathy in mice. Diabetologia59(11), 2435–2447 (2016).
  • Fuller SJ , OsborneSA , LeonardSJ , HardymanMA , VaniotisG , AllenBGet al. Cardiac protein kinases: the cardiomyocyte kinome and differential kinase expression in human failing hearts. Cardiovasc. Res.108(1), 87–98 (2015).
  • Maejima Y , KyoiS , ZhaiP , LiuT , LiH , IvessaAet al. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat. Med.19(11), 1478–1488 (2013).
  • Yamamoto S , YangG , ZablockiD , LiuJ , HongC , KimSJet al. Activation of Mst1 causes dilated cardiomyopathy by stimulating apoptosis without compensatory ventricular myocyte hypertrophy. J. Clin. Invest.111(10), 1463–1474 (2003).
  • Hu YH , SunJ , ZhangJ , HuaFZ , LiuQ , LiangYP. Long non-coding RNA ROR sponges miR-138 to aggravate hypoxia/reoxygenation-induced cardiomyocyte apoptosis via upregulating Mst1. Exp. Mol. Pathol.114, 104430 (2020).
  • Zhang L , LvL , ZhengN , LiR , YangR , LiTet al. Suppression of Sox4 protects against myocardial ischemic injury by reduction of cardiac apoptosis in mice. J. Cell. Physiol.236(2), 1094–1104 (2021).
  • Liu W , LinW , YuL. Long non-coding RNA muscleblind like splicing regulator 1 antisense RNA 1 (LncRNA MBNL1-AS1) promotes the progression of acute myocardial infarction by regulating the microRNA-132-3p/SRY-related high-mobility-group box 4 (SOX4) axis. Bioengineered13(1), 1424–1435 (2022).
  • Yu SY , DongB , FangZF , HuXQ , TangL. Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy. J. Cell Mol. Med.22(10), 4886–4898 (2018).
  • Lv J , ZhuY. LncRNAMORT is upregulated in myocardial infarction and promotes the apoptosis of cardiomyocyte by downregulating miR-93. BMC Cardiovasc. Disord.20(1), 247 (2020).
  • Zhou XH , ChaiHX , BaiM , ZhangZ. LncRNA-GAS5 regulates PDCD4 expression and mediates myocardial infarction-induced cardiomyocytes apoptosis via targeting MiR-21. Cell Cycle19(11), 1363–1377 (2020).
  • Zhu F , LiQ , LiJ , LiB , LiD. Long noncoding Mirt2 reduces apoptosis to alleviate myocardial infarction through regulation of the miR-764/PDK1 axis. Lab. Investig.101(2), 165–176 (2021).
  • Xiong X , LiuJ , HeQ , DaiR , ZhangH , CaoZet al. Long non-coding RNA NORAD aggravates acute myocardial infarction by promoting fibrosis and apoptosis via miR-577/COBLL1 axis. Environ. Toxicol.36(11), 2256–2265 (2021).
  • Li J , TongY , ZhouY , HanZ , WangX , DingTet al. LncRNA KCNQ1OT1 as a miR-26a-5p sponge regulates ATG12-mediated cardiomyocyte autophagy and aggravates myocardial infarction. Int. J. Cardiol.338, 14–23 (2021).
  • Huang L , GuoB , LiuS , MiaoC , LiY. Inhibition of the LncRNA Gpr19 attenuates ischemia-reperfusion injury after acute myocardial infarction by inhibiting apoptosis and oxidative stress via the miR-324-5p/Mtfr1 axis. IUBMB life72(3), 373–383 (2020).doi:10.1002/iub.2187
  • Xiao SH , WangY , CaoX , SuZ. Long non-coding RNA LUCAT1 inhibits myocardial oxidative stress and apoptosis after myocardial infarction via targeting microRNA-181a-5p. Bioengineered12(1), 4546–4555 (2021).
  • Zhang JY , YangZ , FangK , ShiZL , RenDH , SunJ. Long noncoding RNA ILF3-AS1 regulates myocardial infarction via the miR-212-3p/SIRT1 axis and PI3K/Akt signaling pathway. Eur. Rev. Med. Pharmacol. Sci.24(5), 2647–2658 (2020).
  • Yan M , LiuQ , JiangY , WangB , JiY , LiuHet al. Long noncoding RNA LNC_000898 alleviates cardiomyocyte apoptosis and promotes cardiac repair after myocardial infarction through modulating the miR-375/PDK1 axis. J. Cardiovasc. Pharmacol.76(1), 77–85 (2020).
  • Gong X , ZhuY. Long noncoding RNA MALAT1 promotes cardiomyocyte apoptosis after myocardial infarction via targeting miR-144-3p. 39(8), BSR20191103 (2019).
  • Zhou J , LiD , YangBP , CuiWJ. LncRNA XIST inhibits hypoxia-induced cardiomyocyte apoptosis via mediating miR-150-5p/Bax in acute myocardial infarction. Eur. Rev. Med. Pharmacol. Sci.24(3), 1357–1366 (2020).
  • Fu D , GaoT , LiuM , LiC , LiH , JiangHet al. LncRNA TUG1 aggravates cardiomyocyte apoptosis and myocardial ischemia/reperfusion injury. Histol. Histopathol.36(12), 1261–1272 (2021).
  • Zhang Y , HouYM , GaoF , XiaoJW , LiCC , TangY. lncRNA GAS5 regulates myocardial infarction by targeting the miR-525-5p/CALM2 axis. J. Cell. Biochem.120(11), 18678–18688 (2019).
  • Xu L , WangF. LINC00936 exacerbated myocardial infarction progression via miR-4795-3p/Wnt3a signaling pathway based on biological and imaging methods. Perfusion doi:10.1177/026765912210767882676591221076788 (2022).
  • Lin B , XuJ , WangF , WangJ , ZhaoH , FengD. LncRNA XIST promotes myocardial infarction by regulating FOS through targeting miR-101a-3p. Aging12(8), 7232–7247 (2020).
  • Zhou T , QinG , YangL , XiangD , LiS. LncRNA XIST regulates myocardial infarction by targeting miR-130a-3p. J. Cell. Physiol.234(6), 8659–8667 (2019).
  • Wu T , WuD. Knockdown of long non-coding RNA-ZFAS1 protects cardiomyocytes against acute myocardial infarction via anti-apoptosis by regulating miR-150/CRP. J. Cell. Biochem.118(10), 3281–3289 (2017).
  • Zhang D , WangB , MaM , YuK , ZhangQ , ZhangX. lncRNA HOTAIR protects myocardial infarction rat by sponging miR-519d-3p. J. Cardiovasc. Transl. Res.12(3), 171–183 (2019).
  • Yao J , MaR , WangC , ZhaoG. LncRNA-HOTAIR Inhibits H9c2 Apoptosis After Acute Myocardial Infarction via miR-206/FN1 Axis. Biochem. Genet. doi:10.1007/s10528-022-10185-9 (2022).
  • Cao X , MaQ , WangB , QianQ , LiuN , LiuTet al. Silencing long non-coding RNA MIAT ameliorates myocardial dysfunction induced by myocardial infarction via MIAT/miR-10a-5p/EGR2 axis. Aging13(8), 11188–11206 (2021).
  • Wang L , WangL , WangQ. Constitutive activation of the NEAT1/miR-22-3p/Ltb4r1 signaling pathway in mice with myocardial injury following acute myocardial infarction. Aging13(11), 15307–15319 (2021).
  • Chen M , GuoY , SunZ , MengX. Long non-coding RNA SENCR alleviates hypoxia/reoxygenation-induced cardiomyocyte apoptosis and inflammatory response by sponging miR-1. Cardiovasc. Diag. Ther.11(3), 707–715 (2021).
  • Liao B , DongS , XuZ , GaoF , ZhangS , LiangR. LncRNA Kcnq1ot1 renders cardiomyocytes apoptosis in acute myocardial infarction model by up-regulating Tead1. Life Sci.256, 117811 (2020).
  • Hu H , WuJ , LiD , ZhouJ , YuH , MaL. Knockdown of lncRNA MALAT1 attenuates acute myocardial infarction through miR-320-Pten axis. Biomed. Pharmacother.106, 738–746 (2018).
  • Wang F , YuR , WenS , YinJ , ShiY , HuHet al. Overexpressing microRNA-203 alleviates myocardial infarction via interacting with long non-coding RNA MIAT and mitochondrial coupling factor 6. Arch. Pharm. Res.44(5), 525–535 (2021).
  • Lin J , ZhouJ , XieG , XieX , LuoY , LiuJ. Functional analysis of ceRNA network of lncRNA TSIX/miR-34a-5p/RBP2 in acute myocardial infarction based on GEO database. Bioengineered doi:10.1080/21655979.2021.2006865 (2021).
  • Jiang C , ZhaoQ , WangC , PengM , HaoG , LiuZet al. Downregulation of long noncoding RNA LINC00261 attenuates myocardial infarction through the miR-522-3p/trinucleotide repeat-containing gene 6a (TNRC6A) axis. Cardiovasc. Ther.2021, 6628194 (2021).
  • Liu Y , ZhouP , WangF , ZhangX , YangD , HongLet al. Inhibition of lncRNA SNHG8 plays a protective role inhypoxia-ischemia-reoxygenation-induced myocardial injury by regulating miR-335 and RASA1 expression. Mol. Med. Rep.24(2), 597 (2021).
  • Ouyang M , LuJ , DingQ , QinT , PengC , GuoQ. Knockdown of long non-coding RNA PVT1 protects human AC16 cardiomyocytes from hypoxia/reoxygenation-induced apoptosis and autophagy by regulating miR-186/Beclin-1 axis. Gene754, 144775 (2020).
  • Huang P , YangD , YuL , ShiY. Downregulation of lncRNA ZFAS1 protects H9c2 cardiomyocytes from ischemia/reperfusion-induced apoptosis via the miR-590-3p/NF-κB signaling pathway. Mol. Med. Rep.22(3), 2300–2306 (2020).
  • Zhang G , DingL , SunG , LiuZ , OuW , WangBet al. LncRNA AZIN1-AS1 ameliorates myocardial ischemia-reperfusion injury by targeting miR-6838-5p/WNT3A axis to activate Wnt-β/catenin signaling pathway. In Vitro Cell. Dev. Biol. Anim.58(1), 54–68 (2022).
  • Cai X , WangS , HongL , YuS , LiB , ZengHet al. Long noncoding RNA taurine-upregulated gene 1 knockdown protects cardiomyocytes against hypoxia/reoxygenation-induced injury through regulating miR-532-5p/Sox8 axis. J. Cardiovasc. Pharmacol.76(5), 556–563 (2020).
  • Song B , WeiD , YinG , SongX , WangS , JiaSet al. Critical role of SIRT1 upregulation on the protective effect of lncRNA ANRIL against hypoxia/reoxygenation injury in H9c2 cardiomyocytes. Mol. Med. Rep.24(2), 547 (2021).
  • Gao L , LiuY , GuoS , YaoR , WuL , XiaoLet al. Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell. Physiol. Biochem.44(4), 1497–1508 (2017).
  • Xu JJ , ZhengWH , WangJ , ChenYY. Long non-coding RNA plasmacytoma variant translocation 1 linked to hypoxia-induced cardiomyocyte injury of H9c2 cells by targeting miR-135a-5p/forkhead box O1 axis. Chin. Med. J.133(24), 2953–2962 (2020).
  • Xiang X , ZhengL , LiX. Silencing of long noncoding RNA zinc finger antisense 1 protects against hypoxia/reoxygenation-induced injury in HL-1 cells through targeting the miR-761/cell death inducing p53 target 1 axis. J. Cardiovasc. Pharmacol.76(5), 564–573 (2020).
  • Zhou Y , LiX , ZhaoD , LiX , DaiJ. Long non-coding RNA MEG3 knockdown alleviates hypoxia-induced injury in rat cardiomyocytes via the miR-325-3p/TRPV4 axis. Mol. Med. Rep.23(1), (2021).
  • Chi K , ZhangJ , SunH , LiuY , LiY , YuanTet al. Knockdown of lncRNA HOXA-AS3 suppresses the progression of atherosclerosis via sponging miR-455-5p. Drug Design Dev. Ther.14, 3651–3662 (2020).
  • Ma R , GaoL , LiuY , DuP , ChenX , LiG. LncRNA TTTY15 knockdown alleviates H(2)O(2)-stimulated myocardial cell injury by regulating the miR-98-5p/CRP pathway. Mol. Cell. Biochem.476(1), 81–92 (2021).
  • Gidlöf O , BaderK , CelikS , GrossiM , NakagawaS , HiroseTet al. Inhibition of the long non-coding RNA NEAT1 protects cardiomyocytes from hypoxia in vitro via decreased pri-miRNA processing. Cell Death Dis.11(8), 677 (2020).
  • Wang JJ , BieZD , SunCF. Long noncoding RNA AK088388 regulates autophagy through miR-30a to affect cardiomyocyte injury. J. Cell. Biochem.120(6), 10155–10163 (2019).
  • Chen D , ZhangZ , LuX , YangX. Long non-coding RNA SNHG15 regulates cardiomyocyte apoptosis after hypoxia/reperfusion injury via modulating miR-188-5p/PTEN axis. Arch. Physiol. Biochem.doi:10.1080/13813455.2020.18193361-8 (2020).
  • Ruan Y , LiH , CaoX , MengS , JiaR , PuLet al. Inhibition of the lncRNA DANCR attenuates cardiomyocyte injury induced by oxygen-glucose deprivation via the miR-19a-3p/MAPK1 axis. Acta Biochim. Biophys. Sin.53(10), 1377–1386 (2021).
  • Gong L , XuH , ChangH , TongY , ZhangT , GuoG. Knockdown of long non-coding RNA MEG3 protects H9c2 cells from hypoxia-induced injury by targeting microRNA-183. J. Cell. Biochem.119(2), 1429–1440 (2018).
  • Wang K , LongB , ZhouLY , LiuF , ZhouQY , LiuCYet al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat. Commun.5, 3596 (2014).
  • Li C , ZhangL , BuX , ChuG , ZhaoX , LiuY. LncRNA NORAD promotes the progression of myocardial infarction by targeting the miR-22-3p/PTEN axis. Acta Biochim. Biophys. Sin.54(4), 463–473 (2022).
  • Hu X , LiuB , WuP , LangY , LiT. LncRNA Oprm1 overexpression attenuates myocardial ischemia/reperfusion injury by increasing endogenous hydrogen sulfide via Oprm1/miR-30b-5p/CSE axis. Life Sci.254, 117699 (2020).
  • Zhao J , ChenF , MaW , ZhangP. Suppression of long noncoding RNA NEAT1 attenuates hypoxia-induced cardiomyocytes injury by targeting miR-378a-3p. Gene731, 144324 (2020).
  • Shu L , ZhangW , HuangC , HuangG , SuG , XuJ. lncRNA ANRIL protects H9c2 cells against hypoxia-induced injury through targeting the miR-7-5p/SIRT1 axis. J. Cell. Physiol.235(2), 1175–1183 (2020).
  • Yang D , YuJ , LiuHB , YanXQ , HuJ , YuYet al. The long non-coding RNA TUG1-miR-9a-5p axis contributes to ischemic injuries by promoting cardiomyocyte apoptosis via targeting KLF5. Cell Death Dis.10(12), 908 (2019).
  • Du J , YangST , LiuJ , ZhangKX , LengJY. Silence of lncRNA GAS5 protects cardiomyocytes H9c2 against hypoxic injury via sponging miR-142-5p. Mol. Cells42(5), 397–405 (2019).
  • Xia J , JiangN , LiY , WeiY , ZhangX. The long noncoding RNA THRIL knockdown protects hypoxia-induced injuries of H9C2 cells through regulating miR-99a. Cardiol. J.26(5), 564–574 (2019).
  • Wang Y , LiuY , FeiA , YuZ. LncRNA XIST facilitates hypoxia-induced myocardial cell injury through targeting miR-191-5p/TRAF3 axis. Mol. Cell. Biochem.477(6), 1697–1707 (2022).
  • Li L , ZhangM , ChenW , WangR , YeZ , WangYet al. LncRNA-HOTAIR inhibition aggravates oxidative stress-induced H9c2 cells injury through suppression of MMP2 by miR-125. Acta Biochim. Biophys. Sin.50(10), 996–1006 (2018).
  • Wang X , RenL , ChenS , TaoY , ZhaoD , WuC. Long non-coding RNA MIR4435-2HG/microRNA-125a-5p axis is involved in myocardial ischemic injuries. Bioengineered13(4), 10707–10720 (2022).
  • Du H , DingL , ZengT , LiD , LiuL. LncRNA SNHG15 modulates ischemia-reperfusion injury in human AC16 cardiomyocytes depending on the regulation of the miR-335-3p/TLR4/NF-κB pathway. Int. Heart J.63(3), 578–590 (2022).
  • Zhang R , LiY , LiuX , QinS , GuoB , ChangLet al. FOXO3a-mediated long non-coding RNA LINC00261 resists cardiomyocyte hypoxia/reoxygenation injury via targeting miR23b-3p/NRF2 axis. J. Cell Mol. Med.24(15), 8368–8378 (2020).
  • Yan X , HouJ. miR-22 host gene enhances nuclear factor-kappa B activation to aggravate hypoxia-induced injury in AC16 cardiomyocytes. Cell Transplant.30, 963689721990323 (2021).
  • Huang S , TaoW , GuoZ , CaoJ , HuangX. Suppression of long noncoding RNA TTTY15 attenuates hypoxia-induced cardiomyocytes injury by targeting miR-455-5p. Gene701, 1–8 (2019).
  • Yang G , LinC. Long noncoding RNA SOX2-OT exacerbates hypoxia-induced cardiomyocytes injury by regulating miR-27a-3p/TGFβR1 axis. Cardiovasc. Ther.2020, 2016259 (2020).
  • Zhang Y , FanX , YangH. Long noncoding RNA FTX ameliorates hydrogen peroxide-induced cardiomyocyte injury by regulating the miR-150/KLF13 axis. Open Life Sci.15(1), 1000–1012 (2020).
  • Guo X , WuX , HanY , TianE , ChengJ. LncRNA MALAT1 protects cardiomyocytes from isoproterenol-induced apoptosis through sponging miR-558 to enhance ULK1-mediated protective autophagy. J. Cell. Physiol.234(7), 10842–10854 (2019).
  • Sun R , ZhangL. Long non-coding RNA MALAT1 regulates cardiomyocytes apoptosis after hypoxia/reperfusion injury via modulating miR-200a-3p/PDCD4 axis. Biomed. Pharmacother.111, 1036–1045 (2019).
  • Chen Z , WangX , HouX , DingF , YiK , ZhangPet al. Knockdown of long non-coding RNA AFAP1-AS1 promoted viability and suppressed death of cardiomyocytes in response to I/R in vitro and in vivo. J. Cardiovasc. Transl. Res.13(6), 996–1007 (2020).
  • Zhang Z , LiH , CuiZ , ZhouZ , ChenS , MaJet al. Long non-coding RNA UCA1 relieves cardiomyocytes H9c2 injury aroused by oxygen-glucose deprivation via declining miR-122. Artif. Cells Nanomed. Biotechnol.47(1), 3492–3499 (2019).
  • Zhang L , YangC , QiuB. LncRNA RP11-400K9.4 aggravates cardiomyocytes apoptosis after hypoxia/reperfusion injury by targeting miR-423. Int. Heart J.62(5), 1124–1134 (2021).
  • Cai CL , JinL , LangXL , LiBL. Long noncoding RNA XIST regulates cardiomyocyte apoptosis by targeting miR-873-5p/MCL1 axis. Eur. Rev. Med. Pharmacol. Sci.24(24), 12878–12886 (2020).
  • Nie S , CuiX , GuoJ , MaX , ZhiH , LiSet al. Long non-coding RNA AK006774 inhibits cardiac ischemia-reperfusion injury via sponging miR-448. Bioengineered12(1), 4972–4982 (2021).
  • Peng Q , LiL , BiX. Long noncoding RNA small nuclear RNA host gene 7 knockdown protects mouse cardiac fibroblasts against myocardial infarction by regulating miR-455-3p/platelet-activating factor receptor axis. J. Cardiovasc. Pharmacol.77(6), 796–804 (2021).
  • Su Q , LiuY , LvXW , YeZL , SunYH , KongBHet al. Inhibition of lncRNA TUG1 upregulates miR-142-3p to ameliorate myocardial injury during ischemia and reperfusion via targeting HMGB1- and Rac1-induced autophagy. J. Mol. Cell. Cardiol.133, 12–25 (2019).
  • Hao L , WangJ , BiSJ , ChengC. Upregulation of long noncoding RNA FGD5-AS1 ameliorates myocardial ischemia/reperfusion injury via microRNA-106a-5p and microRNA-106b-5p. J. Cardiovasc. Pharmacol.78(1), e45–e54 (2021).
  • Li J , XieJ , WangYZ , GanYR , WeiL , DingGWet al. Overexpression of lncRNA Dancr inhibits apoptosis and enhances autophagy to protect cardiomyocytes from endoplasmic reticulum stress injury via sponging microRNA-6324. Mol. Med. Rep.23(2), (2021).
  • Teng Y , DingM , WangX , LiH , GuoQ , YanJet al. LncRNA RMRP accelerates hypoxia-induced injury by targeting miR-214-5p in H9c2 cells. J. Pharmacol. Sci.142(2), 69–78 (2020).
  • Cai X , ZhangP , WangS , HongL , YuS , LiBet al. lncRNA FGD5 antisense RNA 1 upregulates RORA to suppress hypoxic injury of human cardiomyocyte cells by inhibiting oxidative stress and apoptosis via miR-195. Mol. Med. Rep.22(6), 4579–4588 (2020).
  • Wang QS , ZhouJ , LiX. LncRNA UCA1 protects cardiomyocytes against hypoxia/reoxygenation induced apoptosis through inhibiting miR-143/MDM2/p53 axis. Genomics112(1), 574–580 (2020).
  • Wang B , MaL , WangJ. LncRNA HOTTIP knockdown attenuates acute myocardial infarction via regulating miR-92a-2/c-Met axis. Cardiovasc. Toxicol.22(4), 352–364 (2022).
  • Li L , GuoJ , ChenY , ChangC , XuC. Comprehensive circRNA expression profile and selection of key circRNAs during priming phase of rat liver regeneration. BMC Genomics18(1), 80 (2017).
  • Li M , DingW , SunT , TariqMA , XuT , LiPet al. Biogenesis of circular RNAs and their roles in cardiovascular development and pathology. FEBS J.285(2), 220–232 (2018).
  • Wang K , LongB , LiuF , WangJX , LiuCY , ZhaoBet al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur. Heart J.37(33), 2602–2611 (2016).
  • Du WW , YangW , ChenY , WuZK , FosterFS , YangZet al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur. Heart J.38(18), 1402–1412 (2017).
  • Zeng Y , DuWW , WuY , YangZ , AwanFM , LiXet al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics7(16), 3842–3855 (2017).
  • Werfel S , NothjungeS , SchwarzmayrT , StromTM , MeitingerT , EngelhardtS. Characterization of circular RNAs in human, mouse and rat hearts. J. Mol. Cell. Cardiol.98, 103–107 (2016).
  • Banerjee I , GuptaV , AhmedT , FaizaanM , AgarwalP , GaneshS. Inflammatory system gene polymorphism and the risk of stroke: a case-control study in an Indian population. Brain Res. Bull.75(1), 158–165 (2008).
  • Lehnart SE , WehrensXH , ReikenS , WarrierS , BelevychAE , HarveyRDet al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell123(1), 25–35 (2005).
  • Ren K , LiB , JiangL , LiuZ , WuF , ZhangYet al. Circ_0023461 silencing protects cardiomyocytes from hypoxia-induced dysfunction through targeting miR-370-3p/PDE4D signaling. Oxid. Med. Cell Longev.2021, 8379962 (2021).
  • Carrizzo A , ForteM , LemboM , FormisanoL , PucaAA , VecchioneC. Rac-1 as a new therapeutic target in cerebro- and cardio-vascular diseases. Curr. Drug Targets15(13), 1231–1246 (2014).
  • Niermann C , GorressenS , KlierM , GowertNS , BilluartP , KelmMet al. Oligophrenin1 protects mice against myocardial ischemia and reperfusion injury by modulating inflammation and myocardial apoptosis. Cell. Signal.28(8), 967–978 (2016).
  • Henninger C , PohlmannS , ZieglerV , OhligJ , SchmittJ , FritzG. Distinct contribution of Rac1 expression in cardiomyocytes to anthracycline-induced cardiac injury. Biochem. Pharmacol.164, 82–93 (2019).
  • Pan Y , WangN , XiaP , WangE , GuoQ , YeZ. Inhibition of Rac1 ameliorates neuronal oxidative stress damage via reducing Bcl-2/Rac1 complex formation in mitochondria through PI3K/Akt/mTOR pathway. Exp. Neurol.300, 149–166 (2018).
  • Zhang L , LiangH , XinY. Cucurbitacin E inhibits esophageal carcinoma cell proliferation, migration, and invasion by suppressing Rac1 expression through PI3K/AKT/mTOR pathway. Anticancer Drugs31(8), 847–855 (2020).
  • Meng H , ZhangY , AnST , ChenY. Annexin A3 gene silencing promotes myocardial cell repair through activation of the PI3K/Akt signaling pathway in rats with acute myocardial infarction. J. Cell. Physiol.234(7), 10535–10546 (2019).
  • Zhang S , CuiR. The targeted regulation of miR-26a on PTEN-PI3K/AKT signaling pathway in myocardial fibrosis after myocardial infarction. Eur. Rev. Med. Pharmacol. Sci.22(2), 523–531 (2018).
  • Wu Y , WuM , YangJ , LiY , PengW , WuMet al. Silencing circHIPK3 sponges miR-93-5p to inhibit the activation of Rac1/PI3K/AKT pathway and improves myocardial infarction-induced cardiac dysfunction. Front. Cardiovasc. Med.8, 645378 (2021).
  • Burton TR , GibsonSB. The role of Bcl-2 family member BNIP3 in cell death and disease: NIPping at the heels of cell death. Cell Death Differ.16(4), 515–523 (2009).
  • Chinnadurai G , VijayalingamS , GibsonSB. BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions. Oncogene27(Suppl. 1), S114–S127 (2008).
  • Webster KA , GrahamRM , BishopricNH. BNip3 and signal-specific programmed death in the heart. J. Mol. Cell. Cardiol.38(1), 35–45 (2005).
  • Wu P , CaoY , ZhaoR , WangY. miR-96-5p regulates wound healing by targeting BNIP3/FAK pathway. J. Cell. Biochem.120(8), 12904–12911 (2019).
  • Fordjour PA , WangL , GaoH , LiL , WangY , NyagblordzroMet al. Targeting BNIP3 in inflammation-mediated heart failure: a novel concept in heart failure therapy. Heart Fail. Rev.21(5), 489–497 (2016).
  • Diwan A , KrenzM , SyedFM , WansapuraJ , RenX , KoestersAGet al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J. Clin. Invest.117(10), 2825–2833 (2007).
  • Cheng N , WangMY , WuYB , CuiHM , WeiSX , LiuBet al. Circular RNA POSTN promotes myocardial infarction-induced myocardial injury and cardiac remodeling by regulating miR-96-5p/BNIP3 axis. Front. Cell Dev. Biol.8, 618574 (2020).
  • Khachigian LM . Early growth response-1 in the pathogenesis of cardiovascular disease. J. Mol. Med. (Berlin)94(7), 747–753 (2016).
  • Huang Z , LiH , GuoF , JiaQ , ZhangY , LiuXet al. Egr-1, the potential target of calcium channel blockers in cardioprotection with ischemia/reperfusion injury in rats. Cell Physiol. Biochem.24(1–2), 17–24 (2009).
  • Wang XT , WuXD , LuYX , SunYH , ZhuHH , LiangJBet al. Egr-1 is involved in coronary microembolization-induced myocardial injury via Bim/Beclin-1 pathway-mediated autophagy inhibition and apoptosis activation. Aging (Albany)10(11), 3136–3147 (2018).
  • Su B , WangXT , SunYH , LongMY , ZhengJ , WuWHet al. Ischemia/hypoxia inhibits cardiomyocyte autophagy and promotes apoptosis via the Egr-1/Bim/Beclin-1 pathway. J. Geriatr. Cardiol.17(5), 284–293 (2020).
  • Wu C , MaX , ZhouY , LiuY , ShaoY , WangQ. Klotho restraining Egr1/TLR4/mTOR axis to reducing the expression of fibrosis and inflammatory cytokines in high glucose cultured rat mesangial cells. Exp. Clin. Endocrinol. Diabetes127(9), 630–640 (2019).
  • Pan J , AlimujiangM , ChenQ , ShiH , LuoX. Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1. J. Cell. Biochem.120(3), 4433–4443 (2019).
  • Huang C , QuY , FengF , ZhangH , ShuL , ZhuXet al. Cardioprotective effect of circ_SMG6 knockdown against myocardial ischemia/reperfusion injury correlates with miR-138-5p-mediated EGR1/TLR4/TRIF inactivation. Oxid. Med. Cell Longev.2022, 1927260 (2022).
  • Bialik S , KimchiA. The death-associated protein kinases: structure, function, and beyond. Ann. Rev. Biochem.75, 189–210 (2006).
  • Cohen O , InbalB , KissilJL , RavehT , BerissiH , Spivak-KroizamanTet al. DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J. Cell Biol.146(1), 141–148 (1999).
  • Pelled D , RavehT , RiebelingC , FridkinM , BerissiH , FutermanAHet al. Death-associated protein (DAP) kinase plays a central role in ceramide-induced apoptosis in cultured hippocampal neurons. J. Biol. Chem.277(3), 1957–1961 (2002).
  • Wang S , ShiX , LiH , PangP , PeiL , ShenHet al. DAPK1 signaling pathways in stroke: from mechanisms to therapies. Mol. Neurobiol.54(6), 4716–4722 (2017).
  • Yu S , ZhaiJ , YuJ , YangQ , YangJ. miR-98-5p protects against cerebral ischemia/reperfusion injury through anti-apoptosis and anti-oxidative stress in mice. J. Biochem.169(2), 195–206 (2021).
  • Li D , XuD , XuY , ChenL , LiC , DaiXet al. MicroRNA-141-3p targets DAPK1 and inhibits apoptosis in rat ovarian granulosa cells. Cell Biochem. Funct.35(4), 197–201 (2017).
  • Wu B , YaoH , WangS , XuR. DAPK1 modulates a curcumin-induced G2/M arrest and apoptosis by regulating STAT3, NF-κB, and caspase-3 activation. Biochem. Biophys. Res. Commun.434(1), 75–80 (2013).
  • Zhao Q , LiW , PanW , WangZ. CircRNA 010567 plays a significant role in myocardial infarction via the regulation of the miRNA-141/DAPK1 axis. J. Thorac. Dis.13(4), 2447–2459 (2021).
  • Huang S , LiX , ZhengH , SiX , LiB , WeiGet al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation139(25), 2857–2876 (2019).
  • Wang S , LiL , DengW , JiangM. CircRNA MFACR is upregulated in myocardial infarction and downregulates miR-125b to promote cardiomyocyte apoptosis induced by hypoxia. J. Cardiovasc. Pharmacol.78(6), 802–808 (2021).
  • Zhang J , TangY , ZhangJ , WangJ , HeJ , ZhangZet al. CircRNA ACAP2 is overexpressed in myocardial infarction and promotes the maturation of miR-532 to induce the apoptosis of cardiomyocyte. J. Cardiovasc. Pharmacol.78(2), 247–252 (2021).
  • Zhao B , LiG , PengJ , RenL , LeiL , YeHet al. CircMACF1 attenuates acute myocardial infarction through miR-500b-5p-EMP1 axis. J. Cardiovasc. Transl. Res.14(1), 161–172 (2021).
  • Liu X , WangM , LiQ , LiuW , SongQ , JiangH. CircRNA ACAP2 induces myocardial apoptosis after myocardial infarction by sponging miR-29. Minerva Med.113(1), 128–134 (2022).
  • Cai X , LiB , WangY , ZhuH , ZhangP , JiangPet al. CircJARID2 regulates hypoxia-induced injury in H9c2 cells by affecting miR-9-5p-mediated BNIP3. J. Cardiovasc. Pharmacol.78(1), e77–e85 (2021).
  • Zhang Y , LiZ , WangJ , ChenH , HeR , WuH. CircTRRAP knockdown has cardioprotective function in cardiomyocytes via the signal regulation of miR-370-3p/PAWR axis. Cardiovasc. Ther.2022, 7125602 (2022).
  • Li Y , RenS , XiaJ , WeiY , XiY. EIF4A3-induced circ-BNIP3 aggravated hypoxia-induced injury of H9c2 cells by targeting miR-27a-3p/BNIP3. Mol. Ther. Nucleic Acids19, 533–545 (2020).
  • Wu N , LiC , XuB , XiangY , JiaX , YuanZet al. Circular RNA mmu_circ_0005019 inhibits fibrosis of cardiac fibroblasts and reverses electrical remodeling of cardiomyocytes. BMC Cardiovasc. Dis.21(1), 308 (2021).
  • Geng HH , LiR , SuYM , XiaoJ , PanM , CaiXXet al. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLOS ONE11(3), e0151753 (2016).
  • Li W , WangY , DengY , NiH , ShenG , LiuXet al. Epigenetic control of circHNRNPH1 in postischemic myocardial fibrosis through targeting of TGF-β receptor type I. Mol. Ther. Nucleic Acids25, 93–104 (2021).
  • Zhu Y , ZouC , JiaY , ZhangH , MaX , ZhangJ. Knockdown of circular RNA circMAT2B reduces oxygen-glucose deprivation-induced inflammatory injury in H9c2 cells through up-regulating miR-133. Cell Cycle19(20), 2622–2630 (2020).
  • Chen S , SunL , HaoM , LiuX. Circ-SWT1 ameliorates H(2)O(2)-induced apoptosis, oxidative stress and endoplasmic reticulum stress in cardiomyocytes via miR-192-5p/SOD2 axis. Cardiovasc. Toxicol.22(4), 378–389 (2022).
  • Liu B , GuoK. CircRbms1 knockdown alleviates hypoxia-induced cardiomyocyte injury via regulating the miR-742-3p/FOXO1 axis. Cell Mol. Biol. Lett.27(1), 31 (2022).
  • Jin L , ZhangY , JiangY , TanM , LiuC. Circular RNA Rbms1 inhibited the development of myocardial ischemia reperfusion injury by regulating miR-92a/BCL2L11 signaling pathway. Bioengineered13(2), 3082–3092 (2022).
  • Wang D , TianL , WangY , GaoX , TangH , GeJ. Circ_0001206 regulates miR-665/CRKL axis to alleviate hypoxia/reoxygenation-induced cardiomyocyte injury in myocardial infarction. ESC Heart Fail.9(2), 998–1007 (2022).
  • Xu C , JiaZ , CaoX , WangS , WangJ , AnL. Hsa_circ_0007059 promotes apoptosis and inflammation in cardiomyocytes during ischemia by targeting microRNA-378 and microRNA-383. Cell Cycle21(10), 1003–1019 (2022).
  • Zhang Y , LiuS , DingL , WangD , LiQ , LiD. Circ_0030235 knockdown protects H9c2 cells against OGD/R-induced injury via regulation of miR-526b. PeerJ9, e11482 (2021).
  • Tan J , PanW , ChenH , DuY , JiangP , ZengDet al. Circ_0124644 serves as a ceRNA for miR-590-3p to promote hypoxia-induced cardiomyocytes injury via regulating SOX4. Front. Genet.12, 667724 (2021).
  • Cai L , QiB , WuX , PengS , ZhouG , WeiYet al. Circular RNA Ttc3 regulates cardiac function after myocardial infarction by sponging miR-15b. J. Mol. Cell. Cardiol.130, 10–22 (2019).
  • Zhang J , GaoC , ZhangJ , YeF. Circ_0010729 knockdown protects cardiomyocytes against hypoxic dysfunction via miR-370-3p/TRAF6 axis. EXCLI J.19, 1520–1532 (2020).
  • Sun LY , ZhaoJC , GeXM , ZhangH , WangCM , BieZD. Circ_LAS1L regulates cardiac fibroblast activation, growth, and migration through miR-125b/SFRP5 pathway. Cell Biochem. Funct.38(4), 443–450 (2020).
  • Luo C , LingGX , LeiBF , FengX , XieXY , FangCet al. Circular RNA PVT1 silencing prevents ischemia-reperfusion injury in rat by targeting microRNA-125b and microRNA-200a. J. Mol. Cell. Cardiol.159, 80–90 (2021).
  • Hu X , MaR , CaoJ , DuX , CaiX , FanY. CircSAMD4A aggravates H/R-induced cardiomyocyte apoptosis and inflammatory response by sponging miR-138-5p. J. Cell Mol. Med.26(6), 1776–1784 (2022).
  • Kalluri R . The biology and function of exosomes in cancer. J. Clin. Invest.126(4), 1208–1215 (2016).
  • Tkach M , ThéryC. Communication by extracellular vesicles: where we are and where we need to go. Cell164(6), 1226–1232 (2016).
  • Hu Y , RaoSS , WangZX , CaoJ , TanYJ , LuoJet al. Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics8(1), 169–184 (2018).
  • Li Y , ChengQ , HuG , DengT , WangQ , ZhouJet al. Extracellular vesicles in mesenchymal stromal cells: a novel therapeutic strategy for stroke. Exp. Ther. Med.15(5), 4067–4079 (2018).
  • Sluijter JPG , DavidsonSM , BoulangerCM , BuzásEI , DeKleijn DPV , EngelFBet al. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: position paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc. Res.114(1), 19–34 (2018).
  • Barile L , CervioE , LionettiV , MilanoG , CiulloA , BiemmiVet al. Cardioprotection by cardiac progenitor cell-secreted exosomes: role of pregnancy-associated plasma protein-A. Cardiovasc. Res.114(7), 992–1005 (2018).
  • Chen CY , RaoSS , RenL , HuXK , TanYJ , HuYet al. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Theranostics8(6), 1607–1623 (2018).
  • Mathiyalagan P , LiangY , KimD , MisenerS , ThorneT , KamideCEet al. Angiogenic mechanisms of human CD34(+) stem cell exosomes in the repair of ischemic hindlimb. Circ. Res.120(9), 1466–1476 (2017).
  • Huang J , WangF , SunX , ChuX , JiangR , WangYet al. Myocardial infarction cardiomyocytes-derived exosomal miR-328-3p promote apoptosis via Caspase signaling. Am. J. Transl. Res.13(4), 2365–2378 (2021).
  • Derynck R , ZhangYE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature425(6958), 577–584 (2003).
  • Chen Y , LiT , GaoQ , WangLY , CuiLQ. MiR-1908 improves cardiac fibrosis after myocardial infarction by targeting TGF-β1. Eur. Rev. Med. Pharmacol. Sci.22(7), 2061–2069 (2018).
  • Wang L , ShiH , HuangJL , XuS , LiuPP. Linggui Zhugan decoction inhibits ventricular remodeling after acute myocardial infarction in mice by suppressing TGF-β(1)/Smad signaling pathway. Chin. J. Integr. Med.26(5), 345–352 (2020).
  • Shi X , LiuQ , LiN , TuW , LuoR , MeiXet al. MiR-3606-3p inhibits systemic sclerosis through targeting TGF-β type II receptor. Cell Cycle17(16), 1967–1978 (2018).
  • Zhu X , ZhangT , ZhangY , ChenH , ShenJ , JinXet al. A super-enhancer controls TGF- β signaling in pancreatic cancer through downregulation of TGFBR2. Cell. Signal.66, 109470 (2020).
  • Chen P , WuR , ZhuW , JiangZ , XuY , ChenHet al. Hypoxia preconditioned mesenchymal stem cells prevent cardiac fibroblast activation and collagen production via leptin. PLOS ONE9(8), e103587 (2014).
  • Xu HM , SuiFH , SunMH , GuoGL. Downregulated microRNA-224 aggravates vulnerable atherosclerotic plaques and vascular remodeling in acute coronary syndrome through activation of the TGF-β/Smad pathway. J. Cell. Physiol.234(3), 2537–2551 (2019).
  • He Y , ZhouX , ZhengX , JiangX. Exogenous high-mobility group box 1 protein prevents postinfarction adverse myocardial remodeling through TGF-β/Smad signaling pathway. J. Cell. Biochem.114(7), 1634–1641 (2013).
  • Ding YF , PengYR , LiJ , ShenH , ShenMQ , FangTH. Gualou Xiebai decoction prevents myocardial fibrosis by blocking TGF-beta/Smad signalling. J. Pharm. Pharmacol.65(9), 1373–1381 (2013).
  • Wang X , ZhuY , WuC , LiuW , HeY , YangQ. Adipose-derived mesenchymal stem cells-derived exosomes carry microRNA-671 to alleviate myocardial infarction through inactivating the TGFBR2/Smad2 axis. Inflammation44(5), 1815–1830 (2021).
  • Xue X , LuoL. LncRNA HIF1A-AS1 contributes to ventricular remodeling after myocardial ischemia/reperfusion injury by adsorption of microRNA-204 to regulating SOCS2 expression. Cell Cycle18(19), 2465–2480 (2019).
  • Barroso A , Gualdrón-LópezM , EsperL , BrantF , AraújoRR , CarneiroMBet al. The aryl hydrocarbon receptor modulates production of cytokines and reactive oxygen species and development of myocarditis during Trypanosoma cruzi infection. Infect. Immun.84(10), 3071–3082 (2016).
  • Sheng M , HuangZ , PanL , YuM , YiC , TengLet al. SOCS2 exacerbates myocardial injury induced by ischemia/reperfusion in diabetic mice and H9c2 cells through inhibiting the JAK-STAT-IGF-1 pathway. Life Sci.188, 101–109 (2017).
  • Li Y , ZhouJ , ZhangO , WuX , GuanX , XueYet al. Bone marrow mesenchymal stem cells-derived exosomal microRNA-185 represses ventricular remolding of mice with myocardial infarction by inhibiting SOCS2. Int. Immunopharmacol.80, 106156 (2020).
  • Sun G , LuY , LiY , MaoJ , ZhangJ , JinYet al. miR-19a protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis via PTEN/PI3K/p-Akt pathway. Biosci. Rep.37(6), BSR20170899 (2017).
  • Pei B , YangM , QiX , ShenX , ChenX , ZhangF. Quercetin ameliorates ischemia/reperfusion-induced cognitive deficits by inhibiting ASK1/JNK3/caspase-3 by enhancing the Akt signaling pathway. Biochem. Biophys. Res. Commun.478(1), 199–205 (2016).
  • Huang L , YangL , DingY , JiangX , XiaZ , YouZ. Human umbilical cord mesenchymal stem cells-derived exosomes transfers microRNA-19a to protect cardiomyocytes from acute myocardial infarction by targeting SOX6. Cell Cycle19(3), 339–353 (2020).
  • Mao Q , LiangXL , ZhangCL , PangYH , LuYX. LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Res. Ther.10(1), 393 (2019).
  • Peng Y , ZhaoJL , PengZY , XuWF , YuGL. Exosomal miR-25-3p from mesenchymal stem cells alleviates myocardial infarction by targeting pro-apoptotic proteins and EZH2. Cell Death Dis.11(5), 317 (2020).
  • Zhu LP , TianT , WangJY , HeJN , ChenT , PanMet al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics8(22), 6163–6177 (2018).
  • Cheng H , ChangS , XuR , ChenL , SongX , WuJet al. Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Res. Ther.11(1), 224 (2020).
  • Liao Z , ChenY , DuanC , ZhuK , HuangR , ZhaoHet al. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Theranostics11(1), 268–291 (2021).
  • Zhu W , SunL , ZhaoP , LiuY , ZhangJ , ZhangYet al. Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p. 19(1), 61 (2021).
  • Chen Z , YanY , WuJ , QiC , LiuJ , WangJ. Expression level and diagnostic value of exosomal NEAT1/miR-204/MMP-9 in acute ST-segment elevation myocardial infarction. 72(11), 2499–2507 (2020).
  • Huang P , WangL , LiQ , TianX , XuJ , XuJet al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc. Res.116(2), 353–367 (2020).
  • Zhao P , ZhuY , SunL , ZhuW , LuY , ZhangJet al. Circulating exosomal miR-1-3p from rats with myocardial infarction plays a protective effect on contrast-induced nephropathy via targeting ATG13 and activating the AKT signaling pathway. Int. J. Biol. Sci.17(4), 972–985 (2021).
  • Fu DL , JiangH , LiCY , GaoT , LiuMR , LiHW. MicroRNA-338 in MSCs-derived exosomes inhibits cardiomyocyte apoptosis in myocardial infarction. Eur. Rev. Med. Pharmacol. Sci.24(19), 10107–10117 (2020).
  • Xiao C , WangK , XuY , HuH , ZhangN , WangYet al. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b. Circ. Res.123(5), 564–578 (2018).
  • Jiang W , SongQ , LuZ , WangS , LiuT , WangXet al. Myocardial infarction-associated extracellular vesicle-delivered miR-208b affects the growth of human umbilical vein endothelial cells via regulating CDKN1A. 2021, 9965639 (2021).
  • Wang W , ZhengY , WangM , YanM , JiangJ , LiZ. Exosomes derived miR-126 attenuates oxidative stress and apoptosis from ischemia and reperfusion injury by targeting ERRFI1. Gene690, 75–80 (2019).
  • Long R , GaoL , LiY , LiG , QinP , WeiZet al. M2 macrophage-derived exosomes carry miR-1271-5p to alleviate cardiac injury in acute myocardial infarction through down-regulating SOX6. Mol. Immunol.136, 26–35 (2021).
  • Chen G , WangM , RuanZ , ZhuL , TangC. Mesenchymal stem cell-derived exosomal miR-143-3p suppresses myocardial ischemia-reperfusion injury by regulating autophagy. Life Sci.280, 119742 (2021).
  • Youn SW , LiY , KimYM , SudhaharV , AbdelsaidK , KimHWet al. Modification of cardiac progenitor cell-derived exosomes by miR-322 provides protection against myocardial infarction through Nox2-dependent angiogenesis. Antioxidants (Basel)8(1), 18 (2019).
  • Wang Y , ShenY. Exosomal miR-455-3p from BMMSCs prevents cardiac ischemia-reperfusion injury. Hum. Exp. Toxicol.41, 9603271221102508 (2022).
  • Eguchi S , TakefujiM , SakaguchiT , IshihamaS , MoriY , TsudaTet al. Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction. J. Biol. Chem.294(31), 11665–11674 (2019).
  • Zhu J , LuK , ZhangN , ZhaoY , MaQ , ShenJet al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artif. Cell. Nanomed. Biotechnol.46(8), 1659–1670 (2018).
  • Wang Z , GaoD , WangS , LinH , WangY , XuW. Exosomal microRNA-1246 from human umbilical cord mesenchymal stem cells potentiates myocardial angiogenesis in chronic heart failure. Cell Biol. Int.45(11), 2211–2225 (2021).
  • Ning W , LiS , YangW , YangB , XinC , PingXet al. Blocking exosomal miRNA-153-3p derived from bone marrow mesenchymal stem cells ameliorates hypoxia-induced myocardial and microvascular damage by targeting the ANGPT1-mediated VEGF/PI3k/Akt/eNOS pathway. Cell. Signal.77, 109812 (2021).
  • Lan Z , WangT , ZhangL , JiangZ , ZouX. CircSLC8A1 exacerbates hypoxia-induced myocardial injury via interacting with MiR-214-5p to upregulate TEAD1 expression. Int. Heart J.63(3), 591–601 (2022).
  • Zhang J , MaJ , LongK , QiuW , WangY , HuZet al. Overexpression of exosomal cardioprotective miRNAs mitigates hypoxia-induced H9c2 cells apoptosis. Int. J. Mol. Sci.18(4), 711 (2017).
  • Mao S , ZhaoJ , ZhangZJ , ZhaoQ. MiR-183-5p overexpression in bone mesenchymal stem cell-derived exosomes protects against myocardial ischemia/reperfusion injury by targeting FOXO1. Immunobiology227(3), 152204 (2022).
  • Wang S , LiL , LiuT , JiangW , HuX. miR-19a/19b-loaded exosomes in combination with mesenchymal stem cell transplantation in a preclinical model of myocardial infarction. Regen. Med.15(6), 1749–1759 (2020).
  • Wang B , CaoC , HanD , BaiJ , GuoJ , GuoQet al. Dysregulation of miR-342-3p in plasma exosomes derived from convalescent AMI patients and its consequences on cardiac repair. Biomed. Pharmacother.142, 112056 (2021).
  • Sun L , ZhuW , ZhaoP , ZhangJ , LuY , ZhuYet al. Down-regulated exosomal microRNA-221-3p derived from senescent mesenchymal stem cells impairs heart repair. Front. Cell Dev. Biol.8, 263 (2020).
  • Hayasaka T , TakeharaN , AonumaT , KanoK , HoriuchiK , NakagawaNet al. Sarcopenia-derived exosomal micro-RNA 16-5p disturbs cardio-repair via a pro-apoptotic mechanism in myocardial infarction in mice. Sci. Rep.11(1), 19163 (2021).
  • Pu L , KongX , LiH , HeX. Exosomes released from mesenchymal stem cells overexpressing microRNA-30e ameliorate heart failure in rats with myocardial infarction. Am. J. Transl. Res.13(5), 4007–4025 (2021).
  • Dong J , ZhuW , WanD. Downregulation of microRNA-21-5p from macrophages-derived exosomes represses ventricular remodeling after myocardial infarction via inhibiting tissue inhibitors of metalloproteinase 3. Int. Immunopharmacol.96, 107611 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.