264
Views
0
CrossRef citations to date
0
Altmetric
Review

Natural Killer Cell Epigenetic Reprogramming in Tumors and Potential for Cancer Immunotherapy

ORCID Icon, ORCID Icon & ORCID Icon
Pages 249-266 | Received 18 Dec 2022, Accepted 29 Mar 2023, Published online: 26 Apr 2023

References

  • De Keukeleire SJ , VermassenT , HilgertE , CreytensD , FerdinandeL , RotteyS. Immuno-oncological biomarkers for squamous cell cancer of the head and neck: current state of the art and future perspectives. Cancers13(7), 1714 (2021).
  • June CH , O’ConnorRS , KawalekarOU , GhassemiS , MiloneMC. CAR T cell immunotherapy for human cancer. Science359(6382), 1361–1365 (2018).
  • Maali A , GholizadehM , Feghhi-NajafabadiSet al. Nanobodies in cell-mediated immunotherapy: on the road to fight cancer. Front. Immunol.14, 1012841 (2023).
  • Wang Z , GuanD , WangS , ChaiLYA , XuS , LamK-P. Glycolysis and oxidative phosphorylation play critical roles in natural killer cell receptor-mediated natural killer cell functions. Front. Immunol.11, 202 (2020).
  • Xu J , NiuT. Natural killer cell-based immunotherapy for acute myeloid leukemia. J. Hematol. Oncol.13(1), 167 (2020).
  • Melero I , RouzautA , MotzGT , CoukosG. T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discov.4(5), 522–526 (2014).
  • Jones BS , LambLS , GoldmanF , DiStasi A. Improving the safety of cell therapy products by suicide gene transfer. Front. Pharmacol.5, 254 (2014).
  • Shi L , LiK , GuoYet al. Modulation of NKG2D, NKp46, and Ly49C/I facilitates natural killer cell-mediated control of lung cancer. Proc. Natl Acad. Sci. USA115(46), 11808–11813 (2018).
  • Lazarova M , SteinleA. Impairment of NKG2D-mediated tumor immunity by TGF-β. Front. Immunol.10, 2689 (2019).
  • Merino AM , KimH , MillerJS , CichockiF. Unraveling exhaustion in adaptive and conventional NK cells. J. Leucoc. Biol.108(4), 1361–1368 (2020).
  • Chu J , GaoF , YanMet al. Natural killer cells: a promising immunotherapy for cancer. J. Transl. Med.20(1), 240 (2022).
  • Vivier E , TomaselloE , BaratinM , WalzerT , UgoliniS. Functions of natural killer cells. Nat. Immunol.9(5), 503–510 (2008).
  • Chiossone L , DumasP-Y , VienneM , VivierE. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol.18(11), 671–688 (2018).
  • Rubnitz JE , InabaH , RibeiroRCet al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J. Clin. Oncol.28(6), 955 (2010).
  • Zhang Y , WallaceDL , DeLara CMet al. In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology121(2), 258–265 (2007).
  • Seillet C , BrossayL , VivierE. Natural killers or ILC1s? That is the question. Curr. Opin. Immunol.68, 48–53 (2021).
  • Gianchecchi E , DelfinoDV , FierabracciA. Natural killer cells: potential biomarkers and therapeutic target in autoimmune diseases?Front. Immunol.12, 616853 (2021).
  • Campbell KS , HasegawaJ. Natural killer cell biology: an update and future directions. J. Allergy Clin. Immunol.132(3), 536–544 (2013).
  • Melsen JE , LugthartG , LankesterAC , SchilhamMW. Human circulating and tissue-resident CD56(bright) natural killer cell populations. Front. Immunol.7, 262 (2016).
  • Goh W , HuntingtonND. Regulation of murine natural killer cell development. Front. Immunol.8, 130 (2017).
  • Myers JA , SchirmD , BendzickLet al. Balanced engagement of activating and inhibitory receptors mitigates human NK cell exhaustion. JCI Insight7(15), e150079 (2022).
  • O’Sullivan TE , SunJC , LanierLL. Natural killer cell memory. Immunity43(4), 634–645 (2015).
  • Martinet L , SmythMJ. Balancing natural killer cell activation through paired receptors. Nat. Rev. Immunol.15(4), 243–254 (2015).
  • Villa-Álvarez M , Sordo-BahamondeC , Lorenzo-HerreroSet al. Ig-like transcript 2 (ILT2) blockade and lenalidomide restore NK cell function in chronic lymphocytic leukemia. Front. Immunol.9, 2917 (2018).
  • Wu S-Y , FuT , JiangY-Z , ShaoZ-M. Natural killer cells in cancer biology and therapy. Mol. Cancer19(1), 120 (2020).
  • Hammer Q , RückertT , BorstEMet al. Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat. Immunol.19(5), 453–463 (2018).
  • Brodin P , LakshmikanthT , JohanssonS , KärreK , HöglundP. The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood113(11), 2434–2441 (2009).
  • Voskoboinik I , SmythMJ , TrapaniJA. Perforin-mediated target-cell death and immune homeostasis. Nat. Rev. Immunol.6(12), 940–952 (2006).
  • Regis S , DonderoA , SpaggiariGMet al. miR-24-3p down-regulates the expression of the apoptotic factors FasL and BIM in human natural killer cells. Cell. Signal.98, 110415 (2022).
  • Leijonhufvud C , SchlumsH , StikvoortA , UhlinM , BrycesonYT , CarlstenM. Comprehensive exploration of NK cell education in ADCC triggered by a monoclonal antibody or a bispecific killer engager molecule (BiKE). Blood140(Suppl. 1), 8350–8350 (2022).
  • Deniz G , AkdisM , AktasE , BlaserK , AkdisCA. Human NK1 and NK2 subsets determined by purification of IFN-γ-secreting and IFN-γ-nonsecreting NK cells. Eur. J. Immunol.32(3), 879–884 (2002).
  • Brillantes M , BeaulieuAM. Memory and memory-like NK cell responses to microbial pathogens. Front. Cell. Infect. Microbiol.10, 102 (2020).
  • Lopez-Vergès S , MilushJM , SchwartzBSet al. Expansion of a unique CD57+ NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl Acad. Sci. USA108(36), 14725–14732 (2011).
  • Paul S , KulkarniN , Shilpi , LalG. Intratumoral natural killer cells show reduced effector and cytolytic properties and control the differentiation of effector Th1 cells. Oncoimmunology5(12), e1235106 (2016).
  • Peng Y-P , ZhuY , ZhangJ-Jet al. Comprehensive analysis of the percentage of surface receptors and cytotoxic granules positive natural killer cells in patients with pancreatic cancer, gastric cancer, and colorectal cancer. J. Transl. Med.11, 262 (2013).
  • Beldi-Ferchiou A , LambertM , DogniauxSet al. PD-1 mediates functional exhaustion of activated NK cells in patients with Kaposi sarcoma. Oncotarget7(45), 72961 (2016).
  • Wiesmayr S , WebberSA , MacedoCet al. Decreased NKp46 and NKG2D and elevated PD-1 are associated with altered NK-cell function in pediatric transplant patients with PTLD. Eur. J. Immunol.42(2), 541–550 (2012).
  • Li F , WeiH , WeiHet al. Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice. Gastroenterology144(2), 392–401 (2013).
  • Bi J , TianZ. NK cell exhaustion. Front. Immunol.8, 760 (2017).
  • Zhang C , LiuY. Targeting NK cell checkpoint receptors or molecules for cancer immunotherapy. Front. Immunol.11, 1295 (2020).
  • Hsu J , HodginsJJ , MaratheMet al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Invest.128(10), 4654–4668 (2018).
  • Xia M , WangB , WangZ , ZhangX , WangX. Epigenetic regulation of NK cell-mediated antitumor immunity. Front. Immunol.12, 672328 (2021).
  • Lanier LL . NK cell recognition. Annu. Rev. Immunol.23, 225–274 (2005).
  • Huang HT , SuSC , ChiouTJet al. DNA methylation-mediated Siglec-7 regulation in natural killer cells via two 5′ promoter CpG sites. Immunology160(1), 38–51 (2020).
  • Chan H-W , KuragoZB , StewartCAet al. DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J. Exp. Med.197(2), 245–255 (2003).
  • Gao X-N , LinJ , WangL-L , YuL. Demethylating treatment suppresses natural killer cell cytolytic activity. Mol. Immunol.46(10), 2064–2070 (2009).
  • Santourlidis S , TrompeterH-I , WeinholdSet al. Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells. J. Immunol.169(8), 4253–4261 (2002).
  • Luetke-Eversloh M , HammerQ , DurekPet al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog.10(10), e1004441 (2014).
  • Schenk A , BlochW , ZimmerP. Natural killer cells – an epigenetic perspective of development and regulation. Int. J. Mol. Sci.17(3), 326 (2016).
  • Schlums H , CichockiF , TesiBet al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity42(3), 443–456 (2015).
  • Luetke-Eversloh M , CicekBB , SiracusaFet al. NK cells gain higher IFN-γ competence during terminal differentiation. Eur. J. Immunol.44(7), 2074–2084 (2014).
  • Zhao N-H , QianY , WuC-Set al. Diagnostic value of NKG2D promoter methylation in hepatitis B virus-associated hepatocellular carcinoma. Biomark. Med.13(13), 1093–1105 (2019).
  • Rogers SL , RouhiA , TakeiF , MagerDL. A role for DNA hypomethylation and histone acetylation in maintaining allele-specific expression of mouse NKG2A in developing and mature NK cells. J. Immunol.177(1), 414–421 (2006).
  • Li Y , WangJ , YinJet al. Chromatin state dynamics during NK cell activation. Oncotarget8(26), 41854 (2017).
  • Zhang Y , SunZ , JiaJet al. Overview of histone modification. Adv. Exp. Med. Biol.1283, 1–16 (2021).
  • Black JC , Van RechemC , WhetstineJR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell48(4), 491–507 (2012).
  • Cichocki F , FelicesM , MccullarVet al. Cutting edge: microRNA-181 promotes human NK cell development by regulating Notch signaling. J. Immunol.187(12), 6171–6175 (2011).
  • Fernández-Sánchez A , BaraganoRaneros A , CarvajalPalao Ret al. DNA demethylation and histone H3K9 acetylation determine the active transcription of the NKG2D gene in human CD8+ T and NK cells. Epigenetics8(1), 66–78 (2013).
  • Chang S , AuneTM. Histone hyperacetylated domains across the Ifng gene region in natural killer cells and T cells. Proc. Natl Acad. Sci. USA102(47), 17095–17100 (2005).
  • Ogbomo H , MichaelisM , KreuterJ , DoerrHW , CinatlJJr. Histone deacetylase inhibitors suppress natural killer cell cytolytic activity. FEBS Lett.581(7), 1317–1322 (2007).
  • Zimmer P , BaumannFT , BlochWet al. Impact of exercise on pro inflammatory cytokine levels and epigenetic modulations of tumor-competitive lymphocytes in non-Hodgkin-lymphoma patients – randomized controlled trial. Eur. J. Haematol.93(6), 527–532 (2014).
  • Zimmer P , BlochW , SchenkAet al. Exercise-induced natural killer cell activation is driven by epigenetic modifications. Int. J. Sports Med.36(06), 510–515 (2015).
  • Eddy JL , KrukowskiK , JanusekL , MathewsHL. Glucocorticoids regulate natural killer cell function epigenetically. Cell. Immunol.290(1), 120–130 (2014).
  • Yin J , LeavenworthJW , LiYet al. Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proc. Natl Acad. Sci. USA112(52), 15988–15993 (2015).
  • Bugide S , GreenMR , WajapeyeeN. Inhibition of Enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells. Proc. Natl Acad. Sci. USA115(15), E3509–E3518 (2018).
  • Ramakrishnan S , GrangerV , RakMet al. Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer. Cell Death Differ.26(10), 2100–2114 (2019).
  • Rasid O , ChevalierC , CamarasaTM-N , FittingC , CavaillonJ-M , HamonMA. H3K4me1 supports memory-like NK cells induced by systemic inflammation. Cell Rep.29(12), 3933–3945 e3933 (2019).
  • Fabian MR , SonenbergN. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol.19(6), 586–593 (2012).
  • Pesce S , GreppiM , FerrettiEet al. miRNAs in NK cell-based immune responses and cancer immunotherapy. Front. Cell Dev. Biol.8, 119 (2020).
  • Sullivan RP , LeongJW , SchneiderSEet al. MicroRNA-15/16 antagonizes Myb to control NK cell maturation. J. Immunol.195(6), 2806–2817 (2015).
  • Orange JS . Formation and function of the lytic NK-cell immunological synapse. Nat. Rev. Immunol.8(9), 713–725 (2008).
  • Gordon SM , ChaixJ , RuppLJet al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity36(1), 55–67 (2012).
  • Mundy-Bosse BL , ScovilleSD , ChenLet al. MicroRNA-29b mediates altered innate immune development in acute leukemia. J. Clin. Invest.126(12), 4404–4416 (2016).
  • Regis S , CaliendoF , DonderoAet al. TGF-β1 downregulates the expression of CX3CR1 by inducing miR-27a-5p in primary human NK cells. Front. Immunol.8, 868 (2017).
  • Kim T-D , LeeSU , YunSet al. Human microRNA-27a* targets Prf1 and GzmB expression to regulate NK-cell cytotoxicity. Blood118(20), 5476–5486 (2011).
  • Tato CM , MasonN , ArtisDet al. Opposing roles of NF-κB family members in the regulation of NK cell proliferation and production of IFN-γ. Int. Immunol.18(4), 505–513 (2006).
  • Ni F , GuoC , SunRet al. MicroRNA transcriptomes of distinct human NK cell populations identify miR-362-5p as an essential regulator of NK cell function. Sci. Rep.5(1), 1–11 (2015).
  • Cheng YQ , RenJP , ZhaoJet al. Micro RNA-155 regulates interferon-γ production in natural killer cells via Tim-3 signalling in chronic hepatitis C virus infection. Immunology145(4), 485–497 (2015).
  • Ma Y , GongJ , LiuYet al. MicroRNA-30c promotes natural killer cell cytotoxicity via up-regulating the expression level of NKG2D. Life Sci.151, 174–181 (2016).
  • Abdelrahman MM , FawzyIO , BassiouniAAet al. Enhancing NK cell cytotoxicity by miR-182 in hepatocellular carcinoma. Hum. Immunol.77(8), 667–673 (2016).
  • Wang P , GuY , ZhangQet al. Identification of resting and type I IFN-activated human NK cell miRNomes reveals microRNA-378 and microRNA-30e as negative regulators of NK cell cytotoxicity. J. Immunol.189(1), 211–221 (2012).
  • Liu S , ChenL , ZengYet al. Suppressed expression of miR-378 targeting gzmb in NK cells is required to control dengue virus infection. Cell. Mol. Immunol.13(5), 700–708 (2016).
  • Davies G , LockeS , WrightPet al. Identification of bidirectional promoters in the human KIR genes. Genes Immun.8(3), 245–253 (2007).
  • Pesce S , SquillarioM , GreppiMet al. New miRNA signature heralds human NK cell subsets at different maturation steps: involvement of miR-146a-5p in the regulation of KIR expression. Front. Immunol.9, 2360 (2018).
  • Nutalai R , GaudieriS , JumnainsongA , LeelayuwatC. Regulation of KIR3DL3 expression via miRNA. Genes10(8), 603 (2019).
  • Wang X , LiJ , DongKet al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell. Signal.27(3), 443–452 (2015).
  • Xu S , TaoZ , HaiBet al. miR-424 (322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat. Commun.7(1), 11406 (2016).
  • Donatelli SS , ZhouJ-M , GilvaryDLet al. TGF-β–inducible microRNA-183 silences tumor-associated natural killer cells. Proc. Natl Acad. Sci. USA111(11), 4203–4208 (2014).
  • Chen E-B , ZhouZ-J , XiaoKet al. The miR-561-5p/CX3CL1 signaling axis regulates pulmonary metastasis in hepatocellular carcinoma involving CX3CR1+ natural killer cells infiltration. Theranostics9(16), 4779 (2019).
  • Herberman RB , NunnME , LavrinDH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity. Int. J. Cancer16(2), 216–229 (1975).
  • Chiang SC , TheorellJ , EntesarianMet al. Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production. Blood121(8), 1345–1356 (2013).
  • Deguine J , BreartB , LemaîtreF , DiSanto JP , BoussoP. Intravital imaging reveals distinct dynamics for natural killer and CD8+ T cells during tumor regression. Immunity33(4), 632–644 (2010).
  • Imai K , MatsuyamaS , MiyakeS , SugaK , NakachiK. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet356(9244), 1795–1799 (2000).
  • Hinshaw DC , ShevdeLA. The tumor microenvironment innately modulates cancer progression. Cancer Res.79(18), 4557–4566 (2019).
  • Yang C , ChengH , ZhangYet al. Anergic natural killer cells educated by tumor cells are associated with a poor prognosis in patients with advanced pancreatic ductal adenocarcinoma. Cancer Immunol. Immunother.67(12), 1815–1823 (2018).
  • Tang Y-P , XieM-Z , LiK-Z , LiJ-L , CaiZ-M , HuB-L. Prognostic value of peripheral blood natural killer cells in colorectal cancer. BMC Gastroenterol.20(1), 31 (2020).
  • Rathore AS , GoelMM , MakkerA , KumarS , SrivastavaAN. Is the tumor infiltrating natural killer cell (NK-TILs) count in infiltrating ductal carcinoma of breast prognostically significant?Asian Pac. J. Cancer Prev.15(8), 3757–3761 (2014).
  • Okada K , SadahiroS , ChanLFet al. The number of natural killer cells in the largest diameter lymph nodes is associated with the number of retrieved lymph nodes and lymph node size, and is an independent prognostic factor in patients with stage II colon cancer. Oncology95(5), 288–296 (2018).
  • Dorner BG , SmithHR , FrenchARet al. Coordinate expression of cytokines and chemokines by NK cells during murine cytomegalovirus infection. J. Immunol.172(5), 3119–3131 (2004).
  • Best SA , HessJB , Souza-Fonseca-GuimaraesFet al. Harnessing natural killer immunity in metastatic SCLC. J. Thorac. Oncol.15(9), 1507–1521 (2020).
  • Merino A , ZhangB , DoughertyPet al. Chronic stimulation drives human NK cell dysfunction and epigenetic reprograming. J. Clin. Invest.129(9), 3770–3785 (2019).
  • Lambert AW , PattabiramanDR , WeinbergRA. Emerging biological principles of metastasis. Cell168(4), 670–691 (2017).
  • Groh V , WuJ , YeeC , SpiesT. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature419(6908), 734–738 (2002).
  • Fauriat C , MalletF , OliveD. Impaired activating receptor expression pattern in natural killer cells from patients with multiple myeloma. Leukemia20(4), 732–733 (2006).
  • Schleypen JS , Von GeldernM , WeißEHet al. Renal cell carcinoma-infiltrating natural killer cells express differential repertoires of activating and inhibitory receptors and are inhibited by specific HLA class I allotypes. Int. J. Cancer106(6), 905–912 (2003).
  • Holt D , MaX , KunduN , FultonA. Prostaglandin E2 (PGE2) suppresses natural killer cell function primarily through the PGE2 receptor EP4. Cancer Immunol. Immunother.60(11), 1577–1586 (2011).
  • Inoue T , AdachiK , KawanaKet al. Cancer-associated fibroblast suppresses killing activity of natural killer cells through downregulation of poliovirus receptor (PVR/CD155), a ligand of activating NK receptor. Int. J. Oncol.49(4), 1297–1304 (2016).
  • Li T , YangY , HuaXet al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett.318(2), 154–161 (2012).
  • Bommarito D , MartinA , ForcadeE , NastkeM-D , RitzJ , BellucciR. Enhancement of tumor cell susceptibility to natural killer cell activity through inhibition of the PI3K signaling pathway. Cancer Immunol. Immunother.65(3), 355–366 (2016).
  • Al Absi A , WurzerH , GuerinCet al. Actin cytoskeleton remodeling drives breast cancer cell escape from natural killer–mediated cytotoxicity. Cancer Res.78(19), 5631–5643 (2018).
  • Neo SY , YangY , RecordJet al. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J. Clin. Invest.130(3), 1185–1198 (2020).
  • Kao SC , ChengYY , WilliamsMet al. Tumor suppressor microRNAs contribute to the regulation of PD-L1 expression in malignant pleural mesothelioma. J. Thorac. Oncol.12(9), 1421–1433 (2017).
  • Guo W , TanW , LiuSet al. MiR-570 inhibited the cell proliferation and invasion through directly targeting B7-H1 in hepatocellular carcinoma. Tumor Biol.36(11), 9049–9057 (2015).
  • Shen J , PanJ , DuCet al. Silencing NKG2D ligand-targeting miRNAs enhances natural killer cell-mediated cytotoxicity in breast cancer. Cell Death Dis.8(4), e2740–e2740 (2017).
  • Wu Y , KuangDM , PanWDet al. Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatology57(3), 1107–1116 (2013).
  • Espinoza JL , TakamiA , YoshiokaKet al. Human microRNA-1245 down-regulates the NKG2D receptor in natural killer cells and impairs NKG2D-mediated functions. Haematologica97(9), 1295 (2012).
  • Ansell SM , LesokhinAM , BorrelloIet al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med.372(4), 311–319 (2015).
  • Sanmamed MF , ChenL. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell175(2), 313–326 (2018).
  • Parkhurst MR , RileyJP , DudleyME , RosenbergSA. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin. Cancer Res.17(19), 6287–6297 (2011).
  • Krause SW , GastparR , AndreesenRet al. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clin. Cancer Res.10(11), 3699–3707 (2004).
  • Geller MA , CooleyS , JudsonPLet al. A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy13(1), 98–107 (2011).
  • Klingemann H , BoisselL , ToneguzzoF. Natural killer cells for immunotherapy – advantages of the NK-92 cell line over blood NK cells. Front. Immunol.7, 91 (2016).
  • Eguizabal C , ZenarruzabeitiaO , MongeJet al. Natural killer cells for cancer immunotherapy: pluripotent stem cells-derived NK cells as an immunotherapeutic perspective. Front. Immunol.5, 439 (2014).
  • Woll PS , GrzywaczB , TianXet al. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood113(24), 6094–6101 (2009).
  • Maali A , MaroufiF , SadeghiFet al. Induced pluripotent stem cell technology: trends in molecular biology, from genetics to epigenetics. Epigenomics13(8), 631–647 (2021).
  • Zhang C , OberoiP , OelsnerSet al. Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity. Front. Immunol.8, 533 (2017).
  • Daher M , RezvaniK. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr. Opin. Immunol.51, 146–153 (2018).
  • Maroufi F , MaaliA , Abdollahpour-AlitappehM , AhmadiMH , AzadM. CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy. Epigenomics12(20), 1845–1859 (2020).
  • Zingg D , Arenas-RamirezN , SahinDet al. The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep.20(4), 854–867 (2017).
  • Schenk A , PulvererW , KoliamitraCet al. Acute exercise increases the expression of KIR2DS4 by promoter demethylation in NK cells. Int. J. Sports Med.40(01), 62–70 (2019).
  • Schmiedel BJ , ArélinV , GruenebachF , KruschM , SchmidtSM , SalihHR. Azacytidine impairs NK cell reactivity while decitabine augments NK cell responsiveness toward stimulation. Int. J. Cancer128(12), 2911–2922 (2011).
  • Sohlberg E , PfefferleA , AnderssonS , BaumannBC , Hellström-LindbergE , MalmbergK-J. Imprint of 5-azacytidine on the natural killer cell repertoire during systemic treatment for high-risk myelodysplastic syndrome. Oncotarget6(33), 34178 (2015).
  • Hicks KC , FantiniM , DonahueRNet al. Epigenetic priming of both tumor and NK cells augments antibody-dependent cellular cytotoxicity elicited by the anti-PD-L1 antibody avelumab against multiple carcinoma cell types. Oncoimmunology7(11), e1466018 (2018).
  • Jennings VA , ScottGB , RoseAMet al. Potentiating oncolytic virus-induced immune-mediated tumor cell killing using histone deacetylase inhibition. Mol. Ther.27(6), 1139–1152 (2019).
  • Zhu S , DenmanCJ , CobanogluZSet al. The narrow-spectrum HDAC inhibitor entinostat enhances NKG2D expression without NK cell toxicity, leading to enhanced recognition of cancer cells. Pharm. Res.32(3), 779–792 (2015).
  • Pace M , WilliamsJ , KuriokaAet al. Histone deacetylase inhibitors enhance CD4 T cell susceptibility to NK cell killing but reduce NK cell function. PLoS Pathog.12(8), e1005782 (2016).
  • Rossi LE , AvilaDE , SpallanzaniRGet al. Histone deacetylase inhibitors impair NK cell viability and effector functions through inhibition of activation and receptor expression. J. Leukoc. Biol.91(2), 321–331 (2012).
  • Shi X , LiM , CuiMet al. Epigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid. Am. J. Cancer Res.6(3), 600 (2016).
  • Sun W , LvS , LiH , CuiW , WangL. Enhancing the anticancer efficacy of immunotherapy through combination with histone modification inhibitors. Genes9(12), 633 (2018).
  • Bailey CP , FigueroaM , GangadharanAet al. Pharmacologic inhibition of lysine-specific demethylase 1 as a therapeutic and immune-sensitization strategy in pediatric high-grade glioma. Neuro Oncol.22(9), 1302–1314 (2020).
  • Bailey CP , FigueroaM , GangadharanA , LeeDA , ChandraJ. Scaffolding LSD1 inhibitors impair NK cell metabolism and cytotoxic function through depletion of glutathione. Front. Immunol.11, 2196 (2020).
  • Stern-Ginossar N , GurC , BitonMet al. Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat. Immunol.9(9), 1065–1073 (2008).
  • Yee D , ShahKM , ColesMC , SharpTV , LagosD. MicroRNA-155 induction via TNF-α and IFN-γ suppresses expression of programmed death ligand-1 (PD-L1) in human primary cells. J. Biol. Chem.292(50), 20683–20693 (2017).
  • Allen TM , CullisPR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev.65(1), 36–48 (2013).
  • Yang L , SunJ , LiuQet al. Synergetic functional nanocomposites enhance immunotherapy in solid tumors by remodeling the immunoenvironment. Adv. Sci.6(8), 1802012 (2019).
  • Neviani P , WisePM , MurtadhaMet al. Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms. Cancer Res.79(6), 1151–1164 (2019).
  • Fabbri M . Natural killer cell-derived vesicular miRNAs: a new anticancer approach?Cancer Res.80(1), 17–22 (2020).
  • Yáñez-Mó M , SiljanderPR-M , AndreuZet al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles4(1), 27066 (2015).
  • Parolini I , FedericiC , RaggiCet al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem.284(49), 34211–34222 (2009).
  • Federici C , ShahajE , CecchettiSet al. Natural-killer-derived extracellular vesicles: immune sensors and interactors. Front. Immunol.11, 262 (2020).
  • Lugini L , CecchettiS , HuberVet al. Immune surveillance properties of human NK cell-derived exosomes. J. Immunol.189(6), 2833–2842 (2012).
  • Hollenbach PW , NguyenAN , BradyHet al. A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS ONE5(2), e9001 (2010).
  • Jabbour E , Garcia-ManeroG , BattyNet al. Outcome of patients with myelodysplastic syndrome after failure of decitabine therapy. Cancer116(16), 3830–3834 (2010).
  • Cabrero M , JabbourE , RavandiFet al. Discontinuation of hypomethylating agent therapy in patients with myelodysplastic syndromes or acute myelogenous leukemia in complete remission or partial response: retrospective analysis of survival after long-term follow-up. Leuk. Res.39(5), 520–524 (2015).
  • Moon JH , KimSN , KangBWet al. Predictive value of pretreatment risk group and baseline LDH levels in MDS patients receiving azacitidine treatment. Ann. Hematol.89, 681–689 (2010).
  • Mahfouz RZ , JankowskaA , EbrahemQet al. Increased CDA expression/activity in males contributes to decreased cytidine analog half-life and likely contributes to worse outcomes with 5-azacytidine or decitabine therapygender, cytidine deaminase, and 5-aza/decitabine. Clin. Cancer Res.19(4), 938–948 (2013).
  • Sun Y , ZhouB , MaoFet al. HOXA9 reprograms the enhancer landscape to promote leukemogenesis. Cancer Cell34(4), 643–658 e645 (2018).
  • Tikellis G , DwyerT , PaltielOet al. The International Childhood Cancer Cohort Consortium (I4C): a research platform of prospective cohorts for studying the aetiology of childhood cancers. Paediatr. Perinat. Epidemiol.32(6), 568–583 (2018).
  • Craddock CF , HoultonAE , QuekLSet al. Outcome of azacitidine therapy in acute myeloid leukemia is not improved by concurrent vorinostat therapy but is predicted by a diagnostic molecular signature. Clin. Cancer Res.23(21), 6430–6440 (2017).
  • Sekeres MA , OthusM , ListAFet al. Randomized phase II study of azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117. J. Clin. Oncol.35(24), 2745 (2017).
  • Burke MJ , KostadinovR , SpostoRet al. Decitabine and vorinostat with chemotherapy in relapsed pediatric acute lymphoblastic leukemia: a TACL pilot study. Clin. Cancer Res.26(10), 2297–2307 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.