150
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetics and Cutaneous Neoplasms: From Mechanism to Therapy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 167-187 | Received 13 Jan 2023, Accepted 16 Mar 2023, Published online: 05 Apr 2023

References

  • Jemal A , SiegelR , XuJ , WardE. Cancer statistics, 2010. CA Cancer J. Clin.60(5), 277–300 (2010).
  • Siegel RL , MillerKD , JemalA. Cancer statistics, 2018. CA Cancer J. Clin.68(1), 7–30 (2018).
  • Rogers HW , WeinstockMA , FeldmanSR , ColdironBM. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the U.S. population, 2012. JAMA Dermatol.151(10), 1081–1086 (2015).
  • Health UDO , ServicesH. The surgeon general’s call to action to prevent skin cancer (2014). https://pubmed.ncbi.nlm.nih.gov/25320835/
  • Korgavkar K , XiongM , WeinstockM. Changing incidence trends of cutaneous T-cell lymphoma. JAMA Dermatol.149(11), 1295–1299 (2013).
  • Zackheim HS , AminS , Kashani-SabetM , McMillanA. Prognosis in cutaneous T-cell lymphoma by skin stage: long-term survival in 489 patients. J. Am. Acad. Dermatol.40(3), 418–425 (1999).
  • Rodríguez-Paredes M , EstellerM. Cancer epigenetics reaches mainstream oncology. Nat. Med.17(3), 330–339 (2011).
  • Baylin SB , HermanJG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet.16(4), 168–174 (2000).
  • Feinberg AP , TyckoB. The history of cancer epigenetics. Nat. Rev. Cancer4(2), 143–153 (2004).
  • Ehrlich M . DNA hypomethylation in cancer cells. Epigenomics1(2), 239–259 (2009).
  • Iżykowska K . Methylation patterns of cutaneous T-cell lymphomas. Exp. Dermatol.30(8), 1135–1140 (2021).
  • Arrowsmith CH , BountraC , FishPV , LeeK , SchapiraM. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov.11(5), 384–400 (2012).
  • Bolden JE , PeartMJ , JohnstoneRW. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov.5(9), 769–784 (2006).
  • Di Leva G , CroceCM. miRNA profiling of cancer. Curr. Opin. Genet. Dev.23(1), 3–11 (2013).
  • Tong AW , NemunaitisJ. Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy?Cancer Gene Ther.15(6), 341–355 (2008).
  • Yan H , BuP. Non-coding RNA in cancer. Essays Biochem.65(4), 625–639 (2021).
  • Hu W , FangL , NiR , ZhangH , PanG. Changing trends in the disease burden of non-melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years. BMC Cancer22(1), 836 (2022).
  • Lukowiak TM , AizmanL , PerzAet al. Association of age, sex, race, and geographic region with variation of the ratio of basal cell to cutaneous squamous cell carcinomas in the United States. JAMA Dermatol.156(11), 1192–1198 (2020).
  • Ciążyńska M , Kamińska-WinciorekG , LangeDet al. The incidence and clinical analysis of non-melanoma skin cancer. Sci. Rep.11(1), 4337 (2021).
  • Alam M , RatnerD. Cutaneous squamous-cell carcinoma. N. Engl. J. Med.344(13), 975–983 (2001).
  • Que SKT , ZwaldFO , SchmultsCD. Cutaneous squamous cell carcinoma: incidence, risk factors, diagnosis, and staging. J. Am. Acad. Dermatol.78(2), 237–247 (2018).
  • Martinez JC , OtleyCC , StaskoTet al. Defining the clinical course of metastatic skin cancer in organ transplant recipients: a multicenter collaborative study. Arch. Dermatol.139(3), 301–306 (2003).
  • McLaughlin EJ , MillerL , ShinTMet al. Rate of regional nodal metastases of cutaneous squamous cell carcinoma in the immunosuppressed patient. Am. J. Otolaryngol.38(3), 325–328 (2017).
  • Dotto GP , RustgiAK. Squamous cell cancers: a unified perspective on biology and genetics. Cancer Cell29(5), 622–637 (2016).
  • Chen Y , YiX , SunN , GuoW , LiC. Epigenetics regulates antitumor immunity in melanoma. Front. Immunol.13, 868786 (2022).
  • Murao K , KuboY , OhtaniN , HaraE , AraseS. Epigenetic abnormalities in cutaneous squamous cell carcinomas: frequent inactivation of the RB1/p16 and p53 pathways. Br. J. Dermatol.155(5), 999–1005 (2006).
  • Solé-Boldo L , RaddatzG , GutekunstJet al. Differentiation-related epigenomic changes define clinically distinct keratinocyte cancer subclasses. Mol. Syst. Biol.18(9), e11073 (2022).
  • Kashyap MP , SinhaR , MukhtarMS , AtharM. Epigenetic regulation in the pathogenesis of non-melanoma skin cancer. Semin. Cancer Biol.83, 36–56 (2022).
  • Tamas T , BaciutM , NutuAet al. Is miRNA regulation the key to controlling non-melanoma skin cancer evolution? Genes (Basel) 12(12), 1929 (2021).
  • Chen IP , BenderM , SpassovaIet al. UV-type specific alteration of miRNA expression and its association with tumor progression and metastasis in SCC cell lines. J. Cancer Res. Clin. Oncol.146(12), 3215–3231 (2020).
  • Saha K , HornyakTJ , EckertRL. Epigenetic cancer prevention mechanisms in skin cancer. AAPS J.15(4), 1064–1071 (2013).
  • McDaniel B , BadriT , SteeleRB. Basal cell carcinoma. In: StatPearls.StatPearls Publishing, FL, USA (2022).
  • Rao RC , ChanMP , AndrewsCA , KahanaA. EZH2, proliferation rate, and aggressive tumor subtypes in cutaneous basal cell carcinoma. JAMA Oncol.2(7), 962–963 (2016).
  • Epstein EH . Basal cell carcinomas: attack of the hedgehog. Nat. Rev. Cancer8(10), 743–754 (2008).
  • Krišto M , ŠitumM , ČeovićR. Systemic therapies for advanced basal cell and cutaneous squamous cell carcinomas: novel targeted therapies and immunotherapies. Acta Dermatovenerol. Croat.28(2), 80–92 (2020).
  • Sekulic A , Von HoffD. Hedgehog pathway inhibition. Cell164(5), 831 (2016).
  • Rao RC , ChanMP , AndrewsCA , KahanaA. Epigenetic markers in basal cell carcinoma: universal themes in oncogenesis and tumor stratification? A short report. Cell. Oncol. (Dordr.)41(6), 693–698 (2018).
  • Stamatelli A , VlachouC , AroniK , PapassideriI , PatsourisE , SaettaAA. Epigenetic alterations in sporadic basal cell carcinomas. Arch. Dermatol. Res.306(6), 561–569 (2014).
  • Brinkhuizen T , VanDen Hurk K , WinnepenninckxVJet al. Epigenetic changes in basal cell carcinoma affect SHH and WNT signaling components. PLOS ONE7(12), e51710 (2012).
  • Lodygin D , YazdiAS , SanderCA , HerzingerT , HermekingH. Analysis of 14-3-3σ expression in hyperproliferative skin diseases reveals selective loss associated with CpG-methylation in basal cell carcinoma. Oncogene22(35), 5519–5524 (2003).
  • Goldberg M , RummeltC , LaermA , HelmboldP , HolbachLM , BallhausenWG. Epigenetic silencing contributes to frequent loss of the fragile histidine triad tumour suppressor in basal cell carcinomas. Br. J. Dermatol.155(6), 1154–1158 (2006).
  • Al-Eryani L , JenkinsSF , StatesVAet al. miRNA expression profiles of premalignant and malignant arsenic-induced skin lesions. PLOS ONE13(8), e0202579 (2018).
  • Aoki K , TaketoMM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J. Cell Sci.120(Pt 19), 3327–3335 (2007).
  • Van Doorn R , ZoutmanWH , DijkmanRet al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J. Clin. Oncol.23(17), 3886–3896 (2005).
  • Baliñas-Gavira C , RodríguezMI , AndradesAet al. Frequent mutations in the amino-terminal domain of BCL7A impair its tumor suppressor role in DLBCL. Leukemia34(10), 2722–2735 (2020).
  • Hajra KM , FearonER. Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer34(3), 255–268 (2002).
  • Li L , JiangM , FengQet al. Aberrant methylation changes detected in cutaneous squamous cell carcinoma of immunocompetent individuals. Cell Biochem. Biophys.72(2), 599–604 (2015).
  • Andreeva AV , KutuzovMA. Cadherin 13 in cancer. Genes Chromosomes Cancer49(9), 775–790 (2010).
  • Brown VL , HarwoodCA , CrookT , CroninJG , KelsellDP , ProbyCM. p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma. J. Invest. Dermatol.122(5), 1284–1292 (2004).
  • Wu J , ZhangJR , QinJ. Clinical significance of methylation of E-cadherin and p14ARF gene promoters in skin squamous cell carcinoma tissues. Int. J. Clin. Exp. Med.7(7), 1808–1812 (2014).
  • Xia Y , LiuY , YangCet al. Dominant role of CDKN2B/p15INK4B of 9p21.3 tumor suppressor hub in inhibition of cell-cycle and glycolysis. Nat. Commun.12(1), 2047 (2021).
  • Yu X , Minter-DykhouseK , MalureanuLet al. Chfr is required for tumor suppression and Aurora A regulation. Nat. Genet.37(4), 401–406 (2005).
  • Singh P , RavananP , TalwarP. Death associated protein kinase 1 (DAPK1): a regulator of apoptosis and autophagy. Front. Mol. Neurosci.9, 46 (2016).
  • Waters CE , SaldivarJC , HosseiniSA , HuebnerK. The FHIT gene product: tumor suppressor and genome “caretaker.”Cell. Mol. Life Sci.71(23), 4577–4587 (2014).
  • Venza I , VisalliM , TripodoBet al. FOXE1 is a target for aberrant methylation in cutaneous squamous cell carcinoma. Br. J. Dermatol.162(5), 1093–1097 (2010).
  • Dai W , MengX , MoSet al. FOXE1 represses cell proliferation and Warburg effect by inhibiting HK2 in colorectal cancer. CCS18(1), 7 (2020).
  • Nobeyama Y , WatanabeY , NakagawaH. Silencing of G0/G1 switch gene 2 in cutaneous squamous cell carcinoma. PLOS ONE12(10), e0187047 (2017).
  • Yim CY , SekulaDJ , Hever-JardineMPet al. G0S2 suppresses oncogenic transformation by repressing a MYC-regulated transcriptional program. Cancer Res.76(5), 1204–1213 (2016).
  • Lai P , WangY. Epigenetics of cutaneous T-cell lymphoma: biomarkers and therapeutic potentials. Cancer Biol. Med.18(1), 34–51 (2021).
  • Yanamadala S , LjungmanM. Potential role of MLH1 in the induction of p53 and apoptosis by blocking transcription on damaged DNA templates. Mol. Cancer Res.1(10), 747–754 (2003).
  • Jones CL , FerreiraS , McKenzieRCet al. Regulation of T-plastin expression by promoter hypomethylation in primary cutaneous T-cell lymphoma. J. Invest. Dermatol.132(8), 2042–2049 (2012).
  • Velthaus A , CornilsK , HennigsJKet al. The actin binding protein plastin-3 is involved in the pathogenesis of acute myeloid leukemia. Cancers11(11), 1663 (2019).
  • Boni C , SorioC. The role of the tumor suppressor gene protein tyrosine phosphatase gamma in cancer. Front. Cell Dev. Biol.9, 768969 (2021).
  • Meier K , DrexlerSK , EberleFC , LefortK , YazdiAS. Silencing of ASC in cutaneous squamous cell carcinoma. PLOS ONE11(10), e0164742 (2016).
  • Ohtsuka T , RyuH , MinamishimaYAet al. ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nat. Cell Biol.6(2), 121–128 (2004).
  • Amin KS , BanerjeePP. The cellular functions of RASSF1A and its inactivation in prostate cancer. J. Carcinog.11, 3 (2012).
  • Wang Y , GuX , ZhangGet al. SATB1 overexpression promotes malignant T-cell proliferation in cutaneous CD30+ lymphoproliferative disease by repressing p21. Blood123(22), 3452–3461 (2014).
  • Sun J , YiS , QiuLet al. SATB1 defines a subtype of cutaneous CD30+ lymphoproliferative disorders associated with a T-helper 17 cytokine profile. J. Invest. Dermatol.138(8), 1795–1804 (2018).
  • Poglio S , MerlioJP. SATB1 is a pivotal epigenetic biomarker in cutaneous T-cell lymphomas. J. Invest. Dermatol.138(8), 1694–1696 (2018).
  • Jeng KS , ChangCF , LinSS. Sonic hedgehog signaling in organogenesis, tumors, and tumor microenvironments. Int. J. Mol. Sci.21(3), 758 (2020).
  • Yang HY , WenYY , ChenCH , LozanoG , LeeMH. 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol. Cell. Biol.23(20), 7096–7107 (2003).
  • Liang J , KangX , HalifuYet al. Secreted frizzled-related protein promotors are hypermethylated in cutaneous squamous carcinoma compared with normal epidermis. BMC Cancer15, 641 (2015).
  • Darr OA , ColacinoJA , T angALet al. Epigenetic alterations in metastatic cutaneous carcinoma. Head Neck37(7), 994–1001 (2015).
  • Liang J , KangX , HalifuYet al. Secreted frizzled-related protein promotors are hypermethylated in cutaneous squamous carcinoma compared with normal epidermis. BMC Cancer15(1), 641 (2015).
  • Greco SA , ChiaJ , InglisKJet al. Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation. BMC Cancer10(1), 494 (2010).
  • O’Leary L , VanDer Sloot AM , ReisCRet al. Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity. Oncogene35(10), 1261–1270 (2016).
  • Yoon MK , HaJH , LeeMS , ChiSW. Structure and apoptotic function of p73. BMB Rep.48(2), 81–90 (2015).
  • Wei HP , ZhanS , ZhuQAet al. Genome-wide expression difference of microRNAs in basal cell carcinoma. J. Immunol. Res.2021, 7223500 (2021).
  • Hu P , MaL , WuZ , ZhengG , LiJ. Expression of miR-34a in basal cell carcinoma patients and its relationship with prognosis. J. BUON24(3), 1283–1288 (2019).
  • Sand M , BecharaFG , SandDet al. Long-noncoding RNAs in basal cell carcinoma. Tumour Biol.37(8), 10595–10608 (2016).
  • Sand M , BecharaFG , SandDet al. Circular RNA expression in basal cell carcinoma. Epigenomics8(5), 619–632 (2016).
  • Li Y , LiY , LiL. Circular RNA hsa_Circ_0005795 mediates cell proliferation of cutaneous basal cell carcinoma via sponging miR-1231. Arch. Dermatol. Res.313(9), 773–782 (2021).
  • Dhanyamraju PK , HolzPS , FinkernagelF , FendrichV , LauthM. Histone deacetylase 6 represents a novel drug target in the oncogenic hedgehog signaling pathway. Mol. Cancer Ther.14(3), 727–739 (2015).
  • Coni S , MancusoAB , DiMagno Let al. Selective targeting of HDAC1/2 elicits anticancer effects through Gli1 acetylation in preclinical models of SHH medulloblastoma. Sci. Rep.7, 44079 (2017).
  • Gruber W , PeerE , ElmerDPet al. Targeting class I histone deacetylases by the novel small molecule inhibitor 4SC-202 blocks oncogenic hedgehog-GLI signaling and overcomes smoothened inhibitor resistance. Int. J. Cancer142(5), 968–975 (2018).
  • Mirza AN , FryMA , UrmanNMet al. Combined inhibition of atypical PKC and histone deacetylase 1 is cooperative in basal cell carcinoma treatment. JCI Insight2(21), e97071 (2017).
  • Zhao J , QuanH , XieC , LouL. NL-103, a novel dual-targeted inhibitor of histone deacetylases and hedgehog pathway, effectively overcomes vismodegib resistance conferred by Smo mutations. Pharmacol. Res. Perspect.2(3), e00043 (2014).
  • Li J , CaiH , LiHet al. Combined inhibition of sonic hedgehog signaling and histone deacetylase is an effective treatment for liver cancer. Oncol. Rep.41(3), 1991–1997 (2019).
  • Kilgour JM , ShahA , UrmanNMet al. Phase II open-label, single-arm trial to investigate the efficacy and safety of topical remetinostat gel in patients with basal cell carcinoma. Clin. Cancer Res.27(17), 4717–4725 (2021).
  • Chong CY , GohMS , PorcedduSV , RischinD , LimAM. The current treatment landscape of cutaneous squamous cell carcinoma. Am. J. Clin. Dermatol.doi: https://doi.org/10.1007/s40257-022-00742-8 (2022). ( Epub ahead of print).
  • Hedberg ML , BerryCT , MoshiriASet al. Molecular mechanisms of cutaneous squamous cell carcinoma. Int. J. Mol. Sci.23(7), 3478 (2022).
  • Inman GJ , WangJ , NaganoAet al. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat. Commun.9(1), 3667 (2018).
  • Grönniger E , WeberB , HeilOet al. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet.6(5), e1000971 (2010).
  • Vandiver AR , IrizarryRA , HansenKDet al. Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin. Genome Biol.16(1), 80 (2015).
  • Boudra R , WoappiY , WangDet al. Regulation of 5-hydroxymethylcytosine by TET2 contributes to squamous cell carcinoma tumorigenesis. J. Invest. Dermatol.142(5), 1270–1279.e1272 (2022).
  • Hervas-Marin D , HigginsF , SanmartinOet al. Genome wide DNA methylation profiling identifies specific epigenetic features in high-risk cutaneous squamous cell carcinoma. PLOS ONE14(12), e0223341 (2019).
  • Sand M , HessamS , AmurSet al. Expression of oncogenic miR-17-92 and tumor suppressive miR-143-145 clusters in basal cell carcinoma and cutaneous squamous cell carcinoma. J. Dermatol. Sci.86(2), 142–148 (2017).
  • Toll A , SalgadoR , EspinetBet al. miR-204 silencing in intraepithelial to invasive cutaneous squamous cell carcinoma progression. Mol. Cancer15(1), 53 (2016).
  • Das Mahapatra K , PasqualiL , SøndergaardJNet al. A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell carcinoma. Sci. Rep.10(1), 3637 (2020).
  • Anastasi S , AlemàS , SegattoO. Making sense of Cbp/p300 loss of function mutations in skin tumorigenesis. J. Pathol.250(1), 3–6 (2020).
  • Zhang L , ShanX , ChenQet al. Downregulation of HDAC3 by ginsenoside Rg3 inhibits epithelial–mesenchymal transition of cutaneous squamous cell carcinoma through c-Jun acetylation. J. Cell. Physiol.234(12), 22207–22219 (2019).
  • Hernández-Ruiz E , TollA , García-DiezIet al. The polycomb proteins RING1B and EZH2 repress the tumoral pro-inflammatory function in metastasizing primary cutaneous squamous cell carcinoma. Carcinogenesis39(3), 503–513 (2018).
  • Shea LK , AkhaveNS , SuttonLAet al. Combined Kdm6a and Trp53 deficiency drives the development of squamous cell skin cancer in mice. J. Invest. Dermatol. doi:10.1016/j.jid.2022.08.037 (2022). ( Epub ahead of print).
  • Dauch C , ShimS , ColeMWet al. KMT2D loss drives aggressive tumor phenotypes in cutaneous squamous cell carcinoma. Am. J. Cancer Res.12(3), 1309–1322 (2022).
  • Egolf S , ZouJ , AndersonAet al. MLL4 mediates differentiation and tumor suppression through ferroptosis. Sci. Adv.7(50), eabj9141 (2021).
  • Egolf S , AubertY , DoepnerMet al. LSD1 inhibition promotes epithelial differentiation through derepression of fate-determining transcription factors. Cell Rep.28(8), 1981–1992.e1987 (2019).
  • Zhou R , GaoY , LvD , WangC , WangD , LiQ. METTL3 mediated m6A modification plays an oncogenic role in cutaneous squamous cell carcinoma by regulating ΔNp63. Biochem. Biophys. Res. Commun.515(2), 310–317 (2019).
  • Kang T , ZhangC , LeiHet al. NPTX2 promotes epithelial–mesenchymal transition in cutaneous squamous cell carcinoma through METTL3-mediated N6-methyladenosine methylation of SNAIL. J. Invest. Dermatol. doi:10.1016/j.jid.2022.12.015 (2023). ( Epub ahead of print).
  • Willemze R , CerroniL , KempfWet al. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood133(16), 1703–1714 (2019).
  • Agar NS , WedgeworthE , CrichtonSet al. Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J. Clin. Oncol.28(31), 4730–4739 (2010).
  • Yumeen S , GirardiM. Insights into the molecular and cellular underpinnings of cutaneous T cell lymphoma. Yale J. Biol. Med.93(1), 111–121 (2020).
  • Duvic M , TalpurR , NiXet al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood109(1), 31–39 (2007).
  • Olsen EA , KimYH , KuzelTMet al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J. Clin. Oncol.25(21), 3109–3115 (2007).
  • Duvic M , OlsenEA , BrenemanDet al. Evaluation of the long-term tolerability and clinical benefit of vorinostat in patients with advanced cutaneous T-cell lymphoma. Clin. Lymphoma Myeloma9(6), 412–416 (2009).
  • Prince HM , DickinsonM , KhotA. Romidepsin for cutaneous T-cell lymphoma. Future Oncol.9(12), 1819–1827 (2013).
  • Vandermolen KM , McCullochW , PearceCJ , OberliesNH. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J. Antibiot. (Tokyo)64(8), 525–531 (2011).
  • Piekarz RL , FryeR , TurnerMet al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol.27(32), 5410–5417 (2009).
  • Whittaker SJ , DemierreMF , KimEJet al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol.28(29), 4485–4491 (2010).
  • Moskowitz AJ , HorwitzSM. Targeting histone deacetylases in T-cell lymphoma. Leuk. Lymphoma58(6), 1306–1319 (2017).
  • O’Connor OA , HeaneyML , SchwartzLet al. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J. Clin. Oncol.24(1), 166–173 (2006).
  • Piekarz RL , RobeyR , SandorVet al. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood98(9), 2865–2868 (2001).
  • Valdez BC , BrammerJE , LiYet al. Romidepsin targets multiple survival signaling pathways in malignant T cells. Blood Cancer J.5, e357 (2015).
  • Piekarz RL , RobeyRW , ZhanZet al. T-cell lymphoma as a model for the use of histone deacetylase inhibitors in cancer therapy: impact of depsipeptide on molecular markers, therapeutic targets, and mechanisms of resistance. Blood103(12), 4636–4643 (2004).
  • Zhang C , RichonV , NiX , TalpurR , DuvicM. Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J. Invest. Dermatol.125(5), 1045–1052 (2005).
  • Conti C , LeoE , EichlerGSet al. Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res.70(11), 4470–4480 (2010).
  • Rozati S , ChengPF , WidmerDS , FujiiK , LevesqueMP , DummerR. Romidepsin and azacitidine synergize in their epigenetic modulatory effects to induce apoptosis in CTCL. Clin. Cancer Res.22(8), 2020–2031 (2016).
  • Marquard L , GjerdrumLM , ChristensenIJ , JensenPB , SehestedM , RalfkiaerE. Prognostic significance of the therapeutic targets histone deacetylase 1, 2, 6 and acetylated histone H4 in cutaneous T-cell lymphoma. Histopathology53(3), 267–277 (2008).
  • Qu K , ZabaLC , SatpathyATet al. Chromatin accessibility landscape of cutaneous T cell lymphoma and dynamic response to HDAC inhibitors. Cancer Cell32(1), 27–41e24 (2017).
  • McGirt LY , JiaP , BaerenwaldDAet al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood126(4), 508–519 (2015).
  • Zhang P , ZhangM. Epigenetics in the pathogenesis and treatment of cutaneous T-cell lymphoma. Front. Oncol.11, 663961 (2021).
  • Qiu L , LiuF , YiSet al. Loss of 5-hydroxymethylcytosine is an epigenetic biomarker in cutaneous T-cell lymphoma. J. Invest. Dermatol.138(11), 2388–2397 (2018).
  • Harro CM , Perez-SanzJ , CostichTLet al. Methyltransferase inhibitors restore SATB1 protective activity against cutaneous T cell lymphoma in mice. J. Clin. Invest.131(3), e135711 (2021).
  • Kohnken R , MishraA. MicroRNAs in cutaneous T-cell lymphoma: the future of therapy. J. Invest. Dermatol.139(3), 528–534 (2019).
  • Ralfkiaer U , HagedornPH , BangsgaardNet al. Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood118(22), 5891–5900 (2011).
  • Sandoval J , Diaz-LagaresA , SalgadoRet al. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma. J. Invest. Dermatol.135(4), 1128–1137 (2015).
  • Gluud M , Willerslev-OlsenA , GjerdrumLMRet al. MicroRNAs in the pathogenesis, diagnosis, prognosis and targeted treatment of cutaneous T-cell lymphomas. Cancers12(5), 1229 (2020).
  • Guo W , LiuGM , GuanJYet al. Epigenetic regulation of cutaneous T-cell lymphoma is mediated by dysregulated lncRNA MALAT1 through modulation of tumor microenvironment. Front. Oncol.12, 977266 (2022).
  • Ralfkiaer U , LindahlLM , LitmanTet al. MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Res.34(12), 7207–7217 (2014).
  • Fredholm S , Willerslev-OlsenA , MetOet al. SATB1 in malignant T cells. J. Invest. Dermatol.138(8), 1805–1815 (2018).
  • Witten L , SlackFJ. miR-155 as a novel clinical target for hematological malignancies. Carcinogenesis41(1), 2–7 (2020).
  • Seto AG , BeattyX , LynchJMet al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br. J. Haematol.183(3), 428–444 (2018).
  • Querfeld C , FossFM , Pinter-BrownLCet al. Phase 1 study of the safety and efficacy of MRG-106, a synthetic inhibitor of microRNA-155, in CTCL patients. Blood130(Suppl. 1), S820 (2017).
  • Berwick M , BullerDB , CustAet al. Melanoma epidemiology and prevention. In: Melanoma.KaufmanHL, MehnertJM ( Eds). Springer International Publishing Cham, NY, USA, 17–49 (2016).
  • Saginala K , BarsoukA , AluruJS , RawlaP , BarsoukA. Epidemiology of melanoma. Med. Sci.9(4), 63 (2021).
  • American Cancer Society . Cancer Facts and Figures 2022.GA, USA (2022).
  • Gracia-Hernandez M , MunozZ , VillagraA. Enhancing therapeutic approaches for melanoma patients targeting epigenetic modifiers. Cancers13(24), 6180 (2021).
  • Chatterjee A , RodgerEJ , AhnAet al. Marked global DNA hypomethylation is associated with constitutive PD-L1 expression in melanoma. iScience4, 312–325 (2018).
  • Sarkar D , LeungEY , BaguleyBC , FinlayGJ , Askarian-AmiriME. Epigenetic regulation in human melanoma: past and future. Epigenetics10(2), 103–121 (2015).
  • Micevic G , MuthusamyV , DamskyWet al. DNMT3b modulates melanoma growth by controlling levels of mTORC2 component RICTOR. Cell. Rep.14(9), 2180–2192 (2016).
  • Gassenmaier M , RentschlerM , FehrenbacherBet al. Expression of DNA methyltransferase 1 is a hallmark of melanoma, correlating with proliferation and response to B-Raf and mitogen-activated protein kinase inhibition in melanocytic tumors. Am. J. Pathol.190(10), 2155–2164 (2020).
  • Fonsatti E , NicolayHJ , SigalottiLet al. Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin. Cancer Res.13(11), 3333–3338 (2007).
  • Triozzi PL , AldrichW , AchbergerS , PonnazhaganS , AlcazarO , SaunthararajahY. Differential effects of low-dose decitabine on immune effector and suppressor responses in melanoma-bearing mice. Cancer Immunol. Immunother.61(9), 1441–1450 (2012).
  • Emran AA , ChatterjeeA , RodgerEJet al. Targeting DNA methylation and EZH2 activity to overcome melanoma resistance to immunotherapy. Trends Immunol.40(4), 328–344 (2019).
  • Chiappinelli KB , StrisselPL , DesrichardAet al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell162(5), 974–986 (2015).
  • Mueller DW , RehliM , BosserhoffAK. miRNA expression profiling in melanocytes and melanoma cell lines reveals miRNAs associated with formation and progression of malignant melanoma. J. Invest. Dermatol.129(7), 1740–1751 (2009).
  • Caramuta S , EgyháziS , RodolfoMet al. MicroRNA expression profiles associated with mutational status and survival in malignant melanoma. J. Invest. Dermatol.130(8), 2062–2070 (2010).
  • Chen J , FeilotterHE , ParéGCet al. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am. J. Pathol.176(5), 2520–2529 (2010).
  • Schultz J , LorenzP , GrossG , IbrahimS , KunzM. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell. Res.18(5), 549–557 (2008).
  • Dar AA , MajidS , DeSemir D , NosratiM , BezrookoveV , Kashani-SabetM. miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J. Biol. Chem.286(19), 16606–16614 (2011).
  • Noguchi S , MoriT , OtsukaYet al. Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells. J. Biol. Chem.287(15), 11769–11777 (2012).
  • Xu Y , BrennT , BrownER , DohertyV , MeltonDW. Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors. Br. J. Cancer106(3), 553–561 (2012).
  • Liu S , TetzlaffMT , LiuA , Liegl-AtzwangerB , GuoJ , XuX. Loss of microRNA-205 expression is associated with melanoma progression. Lab. Invest.92(7), 1084–1096 (2012).
  • Alegre E , SanmamedMF , RodriguezC , CarranzaO , Martín-AlgarraS , GonzálezA. Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Arch. Pathol. Lab. Med.138(6), 828–832 (2014).
  • Zhang J , LuL , XiongYet al. MLK3 promotes melanoma proliferation and invasion and is a target of microRNA-125b. Clin. Exp. Dermatol.39(3), 376–384 (2014).
  • Kappelmann M , KuphalS , MeisterG , VardimonL , BosserhoffAK. MicroRNA miR-125b controls melanoma progression by direct regulation of c-Jun protein expression. Oncogene32(24), 2984–2991 (2013).
  • Glud M , RossingM , HotherCet al. Downregulation of miR-125b in metastatic cutaneous malignant melanoma. Melanoma Res.20(6), 479–484 (2010).
  • Bell RE , KhaledM , NetanelyDet al. Transcription factor/microRNA axis blocks melanoma invasion program by miR-211 targeting NUAK1. J. Invest. Dermatol.134(2), 441–451 (2014).
  • Boyle GM , WoodsSL , BonazziVFet al. Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor. Pigment Cell Melanoma Res.24(3), 525–537 (2011).
  • Levy C , KhaledM , IliopoulosDet al. Intronic miR-211 assumes the tumor suppressive function of its host gene in melanoma. Mol. Cell40(5), 841–849 (2010).
  • Mazar J , DeyoungK , KhaitanDet al. The regulation of miRNA-211 expression and its role in melanoma cell invasiveness. PLOS ONE5(11), e13779 (2010).
  • Grignol V , FairchildET , ZimmererJMet al. miR-21 and miR-155 are associated with mitotic activity and lesion depth of borderline melanocytic lesions. Br. J. Cancer105(7), 1023–1029 (2011).
  • Satzger I , MatternA , KuettlerUet al. microRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp. Dermatol.21(7), 509–514 (2012).
  • Jiang L , LvX , LiJet al. The status of microRNA-21 expression and its clinical significance in human cutaneous malignant melanoma. Acta Histochem.114(6), 582–588 (2012).
  • Martin Del Campo SE , LatchanaN , LevineKMet al. miR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of miR-21 inhibitor. PLOS ONE10(1), e0115919 (2015).
  • Yang CH , YueJ , PfefferSR , HandorfCR , PfefferLM. MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J. Biol. Chem.286(45), 39172–39178 (2011).
  • Garofalo M , DiLeva G , RomanoGet al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell16(6), 498–509 (2009).
  • Igoucheva O , AlexeevV. MicroRNA-dependent regulation of cKit in cutaneous melanoma. Biochem. Biophys. Res. Commun.379(3), 790–794 (2009).
  • Felicetti F , ErricoMC , BotteroLet al. The promyelocytic leukemia zinc finger–microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res.68(8), 2745–2754 (2008).
  • Streicher KL , ZhuW , LehmannKPet al. A novel oncogenic role for the miRNA-506-514 cluster in initiating melanocyte transformation and promoting melanoma growth. Oncogene31(12), 1558–1570 (2012).
  • Sun V , ZhouWB , MajidS , Kashani-SabetM , DarAA. MicroRNA-mediated regulation of melanoma. Br. J. Dermatol.171(2), 234–241 (2014).
  • Fattore L , CostantiniS , MalpicciDet al. MicroRNAs in melanoma development and resistance to target therapy. Oncotarget8(13), 22262–22278 (2017).
  • Latchana N , GanjuA , HowardJH , CarsonWE3rd. MicroRNA dysregulation in melanoma. Surg. Oncol.25(3), 184–189 (2016).
  • Varrone F , CaputoE. The miRNAs role in melanoma and in its resistance to therapy. Int. J. Mol. Sci.21(3), 878 (2020).
  • Lorusso C , DeSumma S , PintoR , DanzaK , TommasiS. miRNAs as key players in the management of cutaneous melanoma. Cells9(2), 415 (2020).
  • Leucci E , VendraminR , SpinazziMet al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature531(7595), 518–522 (2016).
  • Liu Y , HeD , XiaoM , ZhuY , ZhouJ , CaoK. Long noncoding RNA LINC00518 induces radioresistance by regulating glycolysis through an miR-33a-3p/HIF-1α negative feedback loop in melanoma. Cell Death Dis.12(3), 245 (2021).
  • Li F , LiX , QiaoL , LiuW , XuC , WangX. MALAT1 regulates miR-34a expression in melanoma cells. Cell Death Dis.10(6), 389 (2019).
  • Hanniford D , Ulloa-MoralesA , KarzAet al. Epigenetic silencing of CDR1as drives IGF2BP3-mediated melanoma invasion and metastasis. Cancer Cell37(1), 55–70.e15 (2020).
  • Chen Z , ChenJ , WaQet al. Knockdown of circ_0084043 suppresses the development of human melanoma cells through miR-429/tribbles homolog 2 axis and Wnt/β-catenin pathway. Life Sci.243, 117323 (2020).
  • Wang Q , ChenJ , WangAet al. Differentially expressed circRNAs in melanocytes and melanoma cells and their effect on cell proliferation and invasion. Oncol. Rep.39(4), 1813–1824 (2018).
  • Bachmann IM , HalvorsenOJ , CollettKet al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J. Clin. Oncol.24(2), 268–273 (2006).
  • Mahmoud F , ShieldsB , MakhoulI , HutchinsLF , ShalinSC , TackettAJ. Role of EZH2 histone methyltrasferase in melanoma progression and metastasis. Cancer Biol. Ther.17(6), 579–591 (2016).
  • Boumahdi S , DeSauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov.19(1), 39–56 (2020).
  • Zingg D , DebbacheJ , SchaeferSMet al. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat. Commun.6, 6051 (2015).
  • Tiffen JC , GallagherSJ , TsengHY , FilippFV , FazekasDe St Groth B , HerseyP. EZH2 as a mediator of treatment resistance in melanoma. Pigment Cell Melanoma Res.29(5), 500–507 (2016).
  • Tiago M , CapparelliC , ErkesDAet al. Targeting BRD/BET proteins inhibits adaptive kinome upregulation and enhances the effects of BRAF/MEK inhibitors in melanoma. Br. J. Cancer122(6), 789–800 (2020).
  • Nikbakht N , TiagoM , ErkesDA , ChervonevaI , AplinAE. BET inhibition modifies melanoma infiltrating T cells and enhances response to PD-L1 blockade. J. Invest. Dermatol.139(7), 1612–1615 (2019).
  • Rothhammer T , BosserhoffAK. Epigenetic events in malignant melanoma. Pigment Cell Res20(2), 92–111 (2007).
  • Emmons MF , Faião-FloresF , SharmaRet al. HDAC8 regulates a stress response pathway in melanoma to mediate escape from BRAF inhibitor therapy. Cancer Res.79(11), 2947–2961 (2019).
  • Gallagher SJ , GunatilakeD , BeaumontKAet al. HDAC inhibitors restore BRAF-inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma. Int. J. Cancer142(9), 1926–1937 (2018).
  • Maertens O , KuzmickasR , ManchesterHEet al. MAPK pathway suppression unmasks latent DNA repair defects and confers a chemical synthetic vulnerability in BRAF-, NRAS-, and NF1-mutant melanomas. Cancer Discov.9(4), 526–545 (2019).
  • Lienlaf M , Perez-VillarroelP , KnoxTet al. Essential role of HDAC6 in the regulation of PD-L1 in melanoma. Mol. Oncol.10(5), 735–750 (2016).
  • Woan KV , LienlafM , Perez-VillaroelPet al. Targeting histone deacetylase 6 mediates a dual anti-melanoma effect: enhanced antitumor immunity and impaired cell proliferation. Mol. Oncol.9(7), 1447–1457 (2015).
  • Woods DM , WoanK , ChengFet al. The antimelanoma activity of the histone deacetylase inhibitor panobinostat (LBH589) is mediated by direct tumor cytotoxicity and increased tumor immunogenicity. Melanoma Res.23(5), 341–348 (2013).
  • Khushalani NI , MarkowitzJ , ErogluZet al. A phase I trial of panobinostat with ipilimumab in advanced melanoma. J. Clin. Oncol.35(Suppl. 15), S9547 (2017).
  • Kalin JH , WuM , GomezAVet al. Targeting the CoREST complex with dual histone deacetylase and demethylase inhibitors. Nat. Commun.9(1), 53 (2018).
  • Portela A , EstellerM. Epigenetic modifications and human disease. Nat. Biotechnol.28(10), 1057–1068 (2010).
  • Strub T , GhiraldiniFG , CarcamoSet al. SIRT6 haploinsufficiency induces BRAF(V600E) melanoma cell resistance to MAPK inhibitors via IGF signalling. Nat. Commun.9(1), 3440 (2018).
  • Shalem O , SanjanaNE , HartenianEet al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science343(6166), 84–87 (2014).
  • Iyer NG , OzdagH , CaldasC. p300/CBP and cancer. Oncogene23(24), 4225–4231 (2004).
  • Bandyopadhyay D , OkanNA , BalesE , NascimentoL , ColePA , MedranoEE. Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res.62(21), 6231–6239 (2002).
  • Kim E , ZucconiBE , WuMet al. MITF expression predicts therapeutic vulnerability to p300 inhibition in human melanoma. Cancer Res.79(10), 2649–2661 (2019).
  • Wang R , HeY , RobinsonVet al. Targeting lineage-specific MITF pathway in human melanoma cell lines by A-485, the selective small-molecule inhibitor of p300/CBP. Mol. Cancer Ther.17(12), 2543–2550 (2018).
  • Arozarena I , WellbrockC. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat. Rev. Cancer19(7), 377–391 (2019).
  • Wu H , XuH , JiaD , LiT , XiaL. METTL3-induced UCK2 m(6)A hypermethylation promotes melanoma cancer cell metastasis via the WNT/β-catenin pathway. Ann.Transl. Med.9(14), 1155 (2021).
  • Bhattarai PY , KimG , PoudelM , LimS-C , ChoiHS. METTL3 induces PLX4032 resistance in melanoma by promoting m6A-dependent EGFR translation. Cancer Lett.522, 44–56 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.