900
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Beadchip Technology to Detect DNA Methylation in Mouse Faithfully Recapitulates Whole-Genome Bisulfite Sequencing

ORCID Icon, , , &
Pages 115-129 | Received 01 Feb 2023, Accepted 15 Mar 2023, Published online: 05 Apr 2023

References

  • Jin Z , LiuY. DNA methylation in human diseases. Genes Dis.5(1), 1–8 (2018).
  • Salameh Y , BejaouiY , ElHajj N. DNA methylation biomarkers in aging and age-related diseases. Front. Genet.11, 171 (2020).
  • Papanicolau-Sengos A , AldapeK. DNA methylation profiling: an emerging paradigm for cancer diagnosis. Annu. Rev. Pathol.17, 295–321 (2022).
  • Yousefi PD , SudermanM , LangdonR , WhitehurstO , DaveySmith G , ReltonCL. DNA methylation-based predictors of health: applications and statistical considerations. Nat. Rev. Genet.23(6), 369–383 (2022).
  • Belsky DW , CaspiA , CorcoranDLet al. DunedinPACE, a DNA methylation biomarker of the pace of aging. Elife11, e73420 (2022).
  • Martin EM , FryRC. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annu. Rev. Public Health39, 309–333 (2018).
  • Nwanaji-Enwerem JC , ColicinoE. DNA methylation-based biomarkers of environmental exposures for human population studies. Curr. Environ. Health Rep.7(2), 121–128 (2020).
  • Lu AT , QuachA , WilsonJGet al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany)11(2), 303–327 (2019).
  • Kim H , WangX , JinP. Developing DNA methylation-based diagnostic biomarkers. J. Genet. Genomics45(2), 87–97 (2018).
  • Taryma-Lesniak O , SokolowskaKE , WojdaczTK. Current status of development of methylation biomarkers for in vitro diagnostic IVD applications. Clin. Epigenetics12(1), 100 (2020).
  • Levenson VV . DNA methylation as a universal biomarker. Expert Rev. Mol. Diagn.10(4), 481–488 (2010).
  • Mikeska T , CraigJM. DNA methylation biomarkers: cancer and beyond. Genes (Basel)5(3), 821–864 (2014).
  • Dor Y , CedarH. Principles of DNA methylation and their implications for biology and medicine. Lancet392(10149), 777–786 (2018).
  • Jiang R , JonesMJ , ChenEet al. Discordance of DNA methylation variance between two accessible human tissues. Sci. Rep.5, 8257 (2015).
  • Lam LL , EmberlyE , FraserHBet al. Factors underlying variable DNA methylation in a human community cohort. Proc. Natl Acad. Sci. USA109(Suppl. 2), 17253–17260 (2012).
  • Blewitt M , WhitelawE. The use of mouse models to study epigenetics. Cold Spring Harb. Perspect. Biol.5(11), a017939 (2013).
  • Suzuki M , LiaoW , WosFet al. Whole-genome bisulfite sequencing with improved accuracy and cost. Genome Res.28(9), 1364–1371 (2018).
  • Zhou W , HinoueT , BarnesBet al. DNA methylation dynamics and dysregulation delineated by high-throughput profiling in the mouse. Cell Genom.2(7), 100153 (2022).
  • Garcia-Prieto CA , Alvarez-ErricoD , MusulenEet al. Validation of a DNA methylation microarray for 285,000 CpG sites in the mouse genome. Epigenetics17(12), 1677–1685 (2022).
  • Fennell LJ , HartelG , MckeoneDMet al. Comparative analysis of Illumina Mouse Methylation BeadChip and reduced-representation bisulfite sequencing for routine DNA methylation analysis. Cell Rep. Methods2(11), 100323 (2022).
  • Duge De Bernonville T , DaviaudC , ChaparroC , TostJ , MauryS. From methylome to integrative analysis of tissue specificity. Methods Mol. Biol.2505, 223–240 (2022).
  • Grimm SA , ShimboT , TakakuMet al. DNA methylation in mice is influenced by genetics as well as sex and life experience. Nat. Commun.10(1), 305 (2019).
  • Duncan CG , GrimmSA , MorganDLet al. Dosage compensation and DNA methylation landscape of the X chromosome in mouse liver. Sci. Rep.8(1), 10138 (2018).
  • National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th Edition. Washington, DC, USA (2011).
  • Xu Z , NiuL , LiL , TaylorJA. ENmix: a novel background correction method for Illumina HumanMethylation450 BeadChip. Nucleic Acids Res.44(3), e20 (2016).
  • Ritchie ME , PhipsonB , WuDet al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43(7), e47 (2015).
  • Bibikova M , BarnesB , TsanCet al. High density DNA methylation array with single CpG site resolution. Genomics98(4), 288–295 (2011).
  • Juhling F , KretzmerH , BernhartSH , OttoC , StadlerPF , HoffmannS. Metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Res.26(2), 256–262 (2016).
  • Houseman EA , MolitorJ , MarsitCJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics30(10), 1431–1439 (2014).
  • Wu H , XuT , FengHet al. Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates. Nucleic Acids Res.43(21), e141 (2015).
  • Mclean CY , BristorD , HillerMet al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol.28(5), 495–501 (2010).
  • Xu Z , TaylorJA. Reliability of DNA methylation measures using Illumina methylation BeadChip. Epigenetics16(5), 495–502 (2021).
  • Shvetsov YB , SongMA , CaiQet al. Intraindividual variation and short-term temporal trend in DNA methylation of human blood. Cancer Epidemiol. Biomarkers Prev.24(3), 490–497 (2015).
  • Wang T , GuanW , LinJet al. A systematic study of normalization methods for Infinium 450K methylation data using whole-genome bisulfite sequencing data. Epigenetics10(7), 662–669 (2015).
  • Pidsley R , ZotenkoE , PetersTJet al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol.17(1), 208 (2016).
  • Heiss JA , BrennanKJ , BaccarelliAAet al. Battle of epigenetic proportions: comparing Illumina’s EPIC methylation microarrays and TruSeq targeted bisulfite sequencing. Epigenetics15(1-2), 174–182 (2020).
  • Shu C , ZhangX , AouizeratBE , XuK. Comparison of methylation capture sequencing and Infinium MethylationEPIC array in peripheral blood mononuclear cells. Epigenetics Chromatin13(1), 51 (2020).
  • Yousefi P , HuenK , DaveV , BarcellosL , EskenaziB , HollandN. Sex differences in DNA methylation assessed by 450 K BeadChip in newborns. BMC Genomics16, 911 (2015).
  • Martin E , SmeesterL , BommaritoPAet al. Sexual epigenetic dimorphism in the human placenta: implications for susceptibility during the prenatal period. Epigenomics9(3), 267–278 (2017).
  • Solomon O , HuenK , YousefiPet al. Meta-analysis of epigenome-wide association studies in newborns and children show widespread sex differences in blood DNA methylation. Mutat. Res. Rev. Mutat. Res.789, 108415 (2022).
  • Grant OA , WangY , KumariM , ZabetNR , SchalkwykL. Characterising sex differences of autosomal DNA methylation in whole blood using the Illumina EPIC array. Clin. Epigenetics14(1), 62 (2022).
  • Solomon O , MacisaacJ , QuachHet al. Comparison of DNA methylation measured by Illumina 450K and EPIC BeadChips in blood of newborns and 14-year-old children. Epigenetics13(6), 655–664 (2018).
  • Chen YA , LemireM , ChoufaniSet al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics8(2), 203–209 (2013).
  • Labarre BA , GoncearencoA , PetrykowskaHMet al. MethylToSNP: identifying SNPs in Illumina DNA methylation array data. Epigenetics Chromatin12(1), 79 (2019).
  • Yousefi P , HuenK , AguilarSchall Ret al. Considerations for normalization of DNA methylation data by Illumina 450K BeadChip assay in population studies. Epigenetics8(11), 1141–1152 (2013).
  • Villicana S , BellJT. Genetic impacts on DNA methylation: research findings and future perspectives. Genome Biol.22(1), 127 (2021).
  • Mansell G , Gorrie-StoneTJ , BaoYet al. Guidance for DNA methylation studies: statistical insights from the Illumina EPIC array. BMC Genomics20(1), 366 (2019).
  • Crabbe JC , WahlstenD , DudekBC. Genetics of mouse behavior: interactions with laboratory environment. Science284(5420), 1670–1672 (1999).
  • Kobayashi Y , InabaH , IwakuraYet al. Inter-breeder differences in prepulse inhibition deficits of C57BL/6J mice in a maternal immune activation model. Neuropsychopharmacol. Rep.41(3), 416–421 (2021).
  • Von Kortzfleisch VT , KarpNA , PalmeR , KaiserS , SachserN , RichterSH. Improving reproducibility in animal research by splitting the study population into several ‘mini-experiments’. Sci. Rep.10(1), 16579 (2020).
  • Saffari A , SilverMJ , ZavattariPet al. Estimation of a significance threshold for epigenome-wide association studies. Genet. Epidemiol.42(1), 20–33 (2018).
  • Wessely F , EmesRD. Identification of DNA methylation biomarkers from Infinium arrays. Front. Genet.3, 161 (2012).