301
Views
0
CrossRef citations to date
0
Altmetric
Review

An Epigenetic Synopsis of Parental Substance Use

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 453-473 | Received 21 Feb 2023, Accepted 16 May 2023, Published online: 07 Jun 2023

References

  • UN Office on Drugs and Crime . UNODC World Drug Report 2020. United Nations Office on Drugs and Crime, Vienna, Austria (2020).
  • Hales CN , BarkerDJ, ClarkPMet al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ303(6809), 1019–1022 (1991).
  • Barker DJ . The fetal and infant origins of adult disease. BMJ301(6761), 1111 (1990).
  • Wanner NM , ColwellML, FaulkC. The epigenetic legacy of illicit drugs: developmental exposures and late-life phenotypes. Environ. Epigenet.5(4), dvz022 (2019).
  • Chang G . Maternal substance use: consequences, identification, and interventions. Alcohol Res.40(2), 06 (2020).
  • Dodge NC , JacobsonJL, JacobsonSW. Effects of fetal substance exposure on offspring substance use. Pediatr. Clin. North Am.66(6), 1149–1161 (2019).
  • Ruisch IH , DietrichA, GlennonJC, BuitelaarJK, HoekstraPJ. Maternal substance use during pregnancy and offspring conduct problems: a meta-analysis. Neurosci. Biobehav. Rev.84, 325–336 (2018).
  • Chassin L , CurranPJ, HussongAM, ColderCR. The relation of parent alcoholism to adolescent substance use: a longitudinal follow-up study. J. Abnorm. Psychol.105(1), 70–80 (1996).
  • Hussong AM , CurranPJ, ChassinL. Pathways of risk for accelerated heavy alcohol use among adolescent children of alcoholic parents. J. Abnorm. Child Psychol.26(6), 453–466 (1998).
  • Obot IS , WagnerFA, AnthonyJC. Early onset and recent drug use among children of parents with alcohol problems: data from a national epidemiologic survey. Drug Alcohol Depend.65(1), 1–8 (2001).
  • Vucinovic M , RojeD, VucinovicZ, CapkunV, BucatM, BanovicI. Maternal and neonatal effects of substance abuse during pregnancy: our ten-year experience. Yonsei Med. J.49(5), 705–713 (2008).
  • Hwang SS , DiopH, LiuCLet al. Maternal substance use disorders and infant outcomes in the first year of life among massachusetts singletons, 2003-2010. J. Pediatr.191, 69–75 (2017).
  • Szutorisz H , HurdYL. Epigenetic effects of cannabis exposure. Biol. Psychiatry79(7), 586–594 (2016).
  • Smith A , KaufmanF, SandyMS, CardenasA. Cannabis exposure during critical windows of development: epigenetic and molecular pathways implicated in neuropsychiatric disease. Curr. Environ. Health Rep.7(3), 325–342 (2020).
  • Knopik VS , MarceauK, BidwellLC, RolanE. Prenatal substance exposure and offspring development: does DNA methylation play a role?Neurotoxicol. Teratol.71, 50–63 (2019).
  • Garrison-Desany HM , HongX, MaherBSet al. Individual and combined association between prenatal polysubstance exposure and childhood risk of attention-deficit/hyperactivity disorder. JAMA Netw. Open5(3), e221957 (2022).
  • Ross EJ , GrahamDL, MoneyKM, StanwoodGD. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn. Neuropsychopharmacology40(1), 61–87 (2015).
  • Killinger CE , RobinsonS, StanwoodGD. Subtle biobehavioral effects produced by paternal cocaine exposure. Synapse66(10), 902–908 (2012).
  • Vassoler FM , WhiteSL, SchmidtHD, Sadri-VakiliG, PierceRC. Epigenetic inheritance of a cocaine-resistance phenotype. Nat. Neurosci.16(1), 42–47 (2013).
  • Rodgers AB , MorganCP, BronsonSL, RevelloS, BaleTL. Paternal stress exposure alters sperm microrna content and reprograms offspring HPA stress axis regulation. J. Neurosci.33(21), 9003–9012 (2013).
  • Easey KE , SharpGC. The impact of paternal alcohol, tobacco, caffeine use and physical activity on offspring mental health: a systematic review and meta-analysis. Reprod. Health18(1), 214 (2021).
  • Kaluscha S , DomckeS, WirbelauerCet al. Evidence that direct inhibition of transcription factor binding is the prevailing mode of gene and repeat repression by DNA methylation. Nat. Genet.54(12), 1895–1906 (2022).
  • Greenberg MVC , Bourc’hisD. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol.20(10), 590–607 (2019).
  • Eidem TM , KugelJF, GoodrichJA. Noncoding RNAs: regulators of the mammalian transcription machinery. J. Mol. Biol.428(12), 2652–2659 (2016).
  • Kurokawa R , RosenfeldMG, GlassCK. Transcriptional regulation through noncoding RNAs and epigenetic modifications. RNA Biol.6(3), 233–236 (2009).
  • Wei JW , HuangK, YangC, KangCS. Non-coding RNAs as regulators in epigenetics (review). Oncol. Rep.37(1), 3–9 (2017).
  • Newell-Price J , ClarkAJ, KingP. DNA methylation and silencing of gene expression. Trends Endocrinol. Metab.11(4), 142–148 (2000).
  • Li S , PengY, PanchenkoAR. DNA methylation: precise modulation of chromatin structure and dynamics. Curr. Opin. Struct. Biol.75, 102430 (2022).
  • Prokhortchouk E , DefossezPA. The cell biology of DNA methylation in mammals. Biochim. Biophys. Acta1783(11), 2167–2173 (2008).
  • Weber M , SchübelerD. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr. Opin. Cell Biol.19(3), 273–280 (2007).
  • Miranda TB , JonesPA. DNA methylation: the nuts and bolts of repression. J. Cell. Physiol.213(2), 384–390 (2007).
  • Cain JA , MontibusB, OakeyRJ. Intragenic CpG islands and their impact on gene regulation. Front. Cell Dev. Biol.10, 832348 (2022).
  • Jabbari K , BernardiG. Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene333, 143–149 (2004).
  • Delcuve GP , RastegarM, DavieJR. Epigenetic control. J. Cell. Physiol.219(2), 243–250 (2009).
  • Nafee TM , FarrellWE, CarrollWD, FryerAA, IsmailKM. Epigenetic control of fetal gene expression. BJOG115(2), 158–168 (2008).
  • Gibney ER , NolanCM. Epigenetics and gene expression. Heredity105(1), 4–13 (2010).
  • Prado F , Jimeno-GonzálezS, ReyesJC. Histone availability as a strategy to control gene expression. RNA Biol.14(3), 281–286 (2017).
  • Alaskhar Alhamwe B , KhalailaR, WolfJet al. Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy, Asthma Clin. Immunol.14(1), 39 (2018).
  • Jaju Bhattad G , JeyarajahMJ, McgillMGet al. Histone deacetylase 1 and 2 drive differentiation and fusion of progenitor cells in human placental trophoblasts. Cell Death Dis.11(5), 311 (2020).
  • Montgomery RL , HsiehJ, BarbosaAC, RichardsonJA, OlsonEN. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc. Natl Acad. Sci. USA106(19), 7876–7881 (2009).
  • Ren W , FanH, GrimmSAet al. Direct readout of heterochromatic H3K9me3 regulates DNMT1-mediated maintenance DNA methylation. Proc. Natl Acad. Sci. USA117(31), 18439–18447 (2020).
  • Ren W , FanH, GrimmSAet al. DNMT1 reads heterochromatic H4K20me3 to reinforce line-1 DNA methylation. Nat. Commun.12(1), 2490 (2021).
  • De Assis S , Hilakivi-ClarkeL. Timing of dietary estrogenic exposures and breast cancer risk. Ann. NY Acad. Sci.1089, 14–35 (2006).
  • Isgor C , KabbajM, AkilH, WatsonSJ. Delayed effects of chronic variable stress during peripubertal–juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus14(5), 636–648 (2004).
  • Rogers MS , BoyartchukV, RohanRM, BirsnerAE, DietrichWF, D’AmatoRJ. The classical pink-eyed dilution mutation affects angiogenic responsiveness. PLOS ONE7(5), e35237 (2012).
  • Anway MD , MemonMA, UzumcuM, SkinnerMK. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J. Androl.27(6), 868–879 (2006).
  • Derick CL , HitchcockCH, SwiftHF. The effect of anti-rheumatic drugs on the arthritis and immune body production in serum disease. J. Clin. Invest.5(3), 427–440 (1928).
  • Anway MD , CuppAS, UzumcuM, SkinnerMK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science308(5727), 1466–1469 (2005).
  • Stockard CR , PapanicolaouGN. Further studies on the modification of the germ-cells in mammals: the effect of alcohol on treated guinea pigs and their descendants. J. Exp. Zool.26, 119–226 (1918).
  • Waddington CH . Canalisation of development and the inheritance of acquired characters. Nature150(3811), 563–565 (1942).
  • Sadat-Shirazi MS , Sadeghi-AdlM, AkbarabadiA, AshabiG, MokriA, ZarrindastMR. Inter/transgenerational effects of drugs of abuse: a scoping review. CNS Neurol. Disord. Drug Targets22(4), 512–538 (2022).
  • Schrott R , ModliszewskiJL, HawkeyABet al. Sperm DNA methylation alterations from cannabis extract exposure are evident in offspring. Epigenetics Chromatin15(1), 33 (2022).
  • Watson CT , SzutoriszH, GargPet al. Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology40(13), 2993–3005 (2015).
  • Szutorisz H , DinieriJA, SweetEet al. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. Neuropsychopharmacology39(6), 1315–1323 (2014).
  • Murphy SK , Itchon-RamosN, ViscoZet al. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics13(12), 1208–1221 (2018).
  • Martin EM , FryRC. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annu. Rev. Public Health39, 309–333 (2018).
  • Lo JO , HedgesJC, GirardiG. Impact of cannabinoids on pregnancy, reproductive health, and offspring outcomes. Am. J. Obstet. Gynecol.227(4), 571–581 (2022).
  • Barker DJ . Mothers, Babies, and Disease in Later Life.BMJ Publishing Group, London, England (1994).
  • Forsén T , ErikssonJG, TuomilehtoJ, TeramoK, OsmondC, BarkerDJ. Mother’s weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. BMJ315(7112), 837–840 (1997).
  • Barker DJ , BullAR, OsmondC, SimmondsSJ. Fetal and placental size and risk of hypertension in adult life. BMJ301(6746), 259–262 (1990).
  • Barker DJ , WinterPD, OsmondC, MargettsB, SimmondsSJ. Weight in infancy and death from ischaemic heart disease. Lancet2(8663), 577–580 (1989).
  • Heijmans BT , TobiEW, SteinADet al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA105(44), 17046–17049 (2008).
  • Needham BL , SmithJA, ZhaoWet al. Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: the multi-ethnic study of atherosclerosis. Epigenetics10(10), 958–969 (2015).
  • Borghol N , SudermanM, McardleWet al. Associations with early-life socio-economic position in adult DNA methylation. Int. J. Epidemiol.41(1), 62–74 (2012).
  • Faulk C , KimJH, JonesTRet al. Bisphenol A-associated alterations in genome-wide DNA methylation and gene expression patterns reveal sequence-dependent and non-monotonic effects in human fetal liver. Environ. Epigenet.1(1), dvv006 (2015).
  • Pilsner JR , HallMN, LiuXet al. Influence of prenatal arsenic exposure and newborn sex on global methylation of cord blood DNA. PLOS ONE7(5), e37147 (2012).
  • Hossain K , SuzukiT, HasibuzzamanMMet al. Chronic exposure to arsenic, LINE-1 hypomethylation, and blood pressure: a cross-sectional study in Bangladesh. Environ. Health16(1), 20 (2017).
  • Begum G , DaviesA, StevensAet al. Maternal undernutrition programs tissue-specific epigenetic changes in the glucocorticoid receptor in adult offspring. Endocrinology154(12), 4560–9 (2013).
  • Seifuddin F , WandG, CoxOet al. Genome-wide Methyl-Seq analysis of blood-brain targets of glucocorticoid exposure. Epigenetics12(8), 637–652 (2017).
  • Novakovic B , RyanJ, PereiraN, BoughtonB, CraigJM, SafferyR. Postnatal stability, tissue, and time specific effects of AHRR methylation change in response to maternal smoking in pregnancy. Epigenetics9(3), 377–86 (2014).
  • Herman JJ , SpencerHG, DonohueK, SultanSE. How stable ‘should’ epigenetic modifications be? Insights from adaptive plasticity and bet hedging. Evolution68(3), 632–643 (2014).
  • Natarajan R , AljaberD, AuDet al. Environmental exposures during puberty: window of breast cancer risk and epigenetic damage. Int. J. Environ. Res. Public Health17(2), 493 (2020).
  • Safi-Stibler S , GaboryA. Epigenetics and the developmental origins of health and disease: parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin. Cell Dev. Biol.97, 172–180 (2020).
  • Hoffman DJ , ReynoldsRM, HardyDB. Developmental origins of health and disease: current knowledge and potential mechanisms. Nutr. Rev.75(12), 951–970 (2017).
  • Loyfer N , MagenheimJ, PeretzAet al. A DNA methylation atlas of normal human cell types. Nature613(7943), 355–364 (2023).
  • Lopez-Rodriguez D , FranssenD, BakkerJ, LomnicziA, ParentAS. Cellular and molecular features of EDC exposure: consequences for the GNRH network. Nat. Rev. Endocrinol.17(2), 83–96 (2021).
  • Skinner MK . Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol. Cell. Endocrinol.398(1–2), 4–12 (2014).
  • Takeda S , YoshidaK, NishimuraHet al. Δ(9)-tetrahydrocannabinol disrupts estrogen-signaling through up-regulation of estrogen receptor β (ERβ). Chem. Res. Toxicol.26(7), 1073–1079 (2013).
  • Takeda S . Δ9-tetrahydrocannabinol targeting estrogen receptor signaling: the possible mechanism of action coupled with endocrine disruption. Biol. Pharm. Bull.37(9), 1435–1438 (2014).
  • Maia J , AlmadaM, MidaoLet al. The cannabinoid delta-9-tetrahydrocannabinol disrupts estrogen signaling in human placenta. Toxicol. Sci.177(2), 420–430 (2020).
  • Hackett JA , SuraniMA. DNA methylation dynamics during the mammalian life cycle. Philos. Trans. R. Soc. Lond. B Biol. Sci.368(1609), 20110328 (2013).
  • Guo H , ZhuP, YanLet al. The DNA methylation landscape of human early embryos. Nature511(7511), 606–610 (2014).
  • Wasserzug-Pash P , KlutsteinM. Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma128(3), 423–441 (2019).
  • Monk D . Germline-derived DNA methylation and early embryo epigenetic reprogramming: the selected survival of imprints. Int. J. Biochem. Cell Biol.67, 128–138 (2015).
  • Marcho C , CuiW, MagerJ. Epigenetic dynamics during preimplantation development. Reproduction150(3), R109–120 (2015).
  • Borgel J , GuibertS, LiYet al. Targets and dynamics of promoter DNA methylation during early mouse development. Nat. Genet.42(12), 1093–1100 (2010).
  • Tang WW , DietmannS, IrieNet al. A unique gene regulatory network resets the human germline epigenome for development. Cell161(6), 1453–1467 (2015).
  • Hackett JA , SenguptaR, ZyliczJJet al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science339(6118), 448–452 (2013).
  • Szutorisz H , EgerváriG, SperryJ, CarterJM, HurdYL. Cross-generational THC exposure alters the developmental sensitivity of ventral and dorsal striatal gene expression in male and female offspring. Neurotoxicol. Teratol.58, 107–114 (2016).
  • Perobelli JE . The male peripubertal phase as a developmental window for reproductive toxicology studies. Curr. Pharm. Des.20(34), 5398–5415 (2014).
  • Accordini S , CalcianoL, JohannessenAet al. Prenatal and prepubertal exposures to tobacco smoke in men may cause lower lung function in future offspring: a three-generation study using a causal modelling approach. Eur. Respir. J.58(4), 2002791 (2021).
  • Svanes C , KoplinJ, SkulstadSMet al. Father’s environment before conception and asthma risk in his children: a multi-generation analysis of the respiratory health in northern europe study. Int. J. Epidemiol.46(1), 235–245 (2017).
  • Schneider M . Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure. Addict. Biol.13(2), 253–263 (2008).
  • Cabrera-Mendoza B , StertzL, NajeraKet al. Within subject cross-tissue analyzes of epigenetic clocks in substance use disorder postmortem brain and blood. Am J. Med. Genet. B Neuropsychiatr. Genet.192(1–2), 13–27 (2023).
  • Levine ME , LuAT, QuachAet al. An epigenetic biomarker of aging for lifespan and healthspan. Aging10(4), 573–591 (2018).
  • Luo A , JungJ, LongleyMet al. Epigenetic aging is accelerated in alcohol use disorder and regulated by genetic variation in APOL2. Neuropsychopharmacology45(2), 327–336 (2020).
  • Huang C-H , ChangM-C, LaiY-Cet al. Mitochondrial DNA methylation profiling of the human prefrontal cortex and nucleus accumbens: correlations with aging and drug use. Clin. Epigenetics14(1), 79 (2022).
  • Marjonen H , SierraA, NymanAet al. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model. PLOS ONE10(5), e0124931 (2015).
  • Ngai YF , SulistyoningrumDC, O’NeillR, InnisSM, WeinbergJ, DevlinAM. Prenatal alcohol exposure alters methyl metabolism and programs serotonin transporter and glucocorticoid receptor expression in brain. Am. J. Physiol. Regul. Integr. Comp. Physiol.309(5), R613–622 (2015).
  • Jabbar S , ChastainLG, GangisettyO, CabreraMA, SochackiK, SarkarDK. Preconception alcohol increases offspring vulnerability to stress. Neuropsychopharmacology41(11), 2782–2793 (2016).
  • Haycock PC , RamsayM. Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the H19 imprinting control region. Biol. Reprod.81(4), 618–627 (2009).
  • Kim P , ParkJH, ChoiCSet al. Effects of ethanol exposure during early pregnancy in hyperactive, inattentive and impulsive behaviors and mecp2 expression in rodent offspring. Neurochem. Res.38(3), 620–631 (2013).
  • Martin CE , LonginakerN, MarkK, ChisolmMS, TerplanM. Recent trends in treatment admissions for marijuana use during pregnancy. J. Addict. Med.9(2), 99–104 (2015).
  • National Academies of Sciences Engineering AM . The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research.The National Academies Press, WA, USA (2017).
  • Passey ME , Sanson-FisherRW, D’EsteCA, StirlingJM. Tobacco, alcohol and cannabis use during pregnancy: clustering of risks. Drug Alcohol Depend.134, 44–50 (2014).
  • Beatty JR , SvikisDS, OndersmaSJ. Prevalence and perceived financial costs of marijuana versus tobacco use among urban low-income pregnant women. J. Addict. Res. Ther.3(4), 10001352012).
  • Moore DG , TurnerJD, ParrottACet al. During pregnancy, recreational drug-using women stop taking ecstasy (3,4-methylenedioxy-n-methylamphetamine) and reduce alcohol consumption, but continue to smoke tobacco and cannabis: initial findings from the development and infancy study. J. Psychopharmacol.24(9), 1403–1410 (2010).
  • Brown QL , SarvetAL, ShmulewitzD, MartinsSS, WallMM, HasinDS. Trends in marijuana use among pregnant and nonpregnant reproductive-aged women, 2002–2014. JAMA317(2), 207–209 (2017).
  • Volkow ND , ComptonWM, WargoEM. The risks of marijuana use during pregnancy. JAMA317(2), 129–130 (2017).
  • Fergusson DM , HorwoodLJ, NorthstoneK. Maternal use of cannabis and pregnancy outcome. BJOG109(1), 21–27 (2002).
  • El Marroun H , TiemeierH, SteegersEAet al. Intrauterine cannabis exposure affects fetal growth trajectories: the Generation R study. J. Am. Acad. Child Adolesc. Psychiatry48(12), 1173–1181 (2009).
  • Hurd YL , WangX, AndersonV, BeckO, MinkoffH, Dow-EdwardsD. Marijuana impairs growth in mid-gestation fetuses. Neurotoxicol. Teratol.27(2), 221–229 (2005).
  • Hutchings DE , MartinBR, GamagarisZ, MillerN, FicoT. Plasma concentrations of delta-9-tetrahydrocannabinol in dams and fetuses following acute or multiple prenatal dosing in rats. Life Sci.44(11), 697–701 (1989).
  • Cristino L , DiMarzo V. Fetal cannabinoid receptors and the ‘dis-joint-ed’ brain. EMBO J.33(7), 665–667 (2014).
  • Kenney SP , KekudaR, PrasadPD, LeibachFH, DevoeLD, GanapathyV. Cannabinoid receptors and their role in the regulation of the serotonin transporter in human placenta. Am. J. Obstet. Gynecol.181(2), 491–497 (1999).
  • Lorenzetti V , SolowijN, FornitoA, LubmanDI, YucelM. The association between regular cannabis exposure and alterations of human brain morphology: an updated review of the literature. Curr. Pharm. Des.20(13), 2138–2167 (2014).
  • Varner MW , SilverRM, RowlandHogue CJet al. Association between stillbirth and illicit drug use and smoking during pregnancy. Obstet. Gynecol.123(1), 113–125 (2014).
  • Conner SN , BedellV, LipseyK, MaconesGA, CahillAG, TuuliMG. Maternal marijuana use and adverse neonatal outcomes: a systematic review and meta-analysis. Obstet. Gynecol.128(4), 713–723 (2016).
  • Baía I , DominguesR. The effects of cannabis use during pregnancy on low birth weight and preterm birth: a systematic review and meta-analysis. Am. J. Perinatol.doi:10.1055/a-1911-3326 (2022) ( Epub ahead of print).
  • Marchand G , MasoudAT, GovindanMet al. Birth outcomes of neonates exposed to marijuana in utero: a systematic review and meta-analysis. JAMA Netw. Open5(1), e2145653 (2022).
  • Corsi DJ , DonelleJ, SuchaEet al. Maternal cannabis use in pregnancy and child neurodevelopmental outcomes. Nat. Med.26(10), 1536–1540 (2020).
  • Day NL , GoldschmidtL, ThomasCA. Prenatal marijuana exposure contributes to the prediction of marijuana use at age 14. Addiction101(9), 1313–1322 (2006).
  • Leech SL , LarkbyCA, DayR, DayNL. Predictors and correlates of high levels of depression and anxiety symptoms among children at age 10. J. Am. Acad. Child Adolesc. Psychiatry45(2), 223–230 (2006).
  • Day NL , LeechSL, GoldschmidtL. The effects of prenatal marijuana exposure on delinquent behaviors are mediated by measures of neurocognitive functioning. Neurotoxicol. Teratol.33(1), 129–136 (2011).
  • Goldschmidt L , DayNL, RichardsonGA. Effects of prenatal marijuana exposure on child behavior problems at age 10. Neurotoxicol. Teratol.22(3), 325–336 (2000).
  • Dinieri JA , WangX, SzutoriszHet al. Maternal cannabis use alters ventral striatal dopamine d2 gene regulation in the offspring. Biol. Psychiatry70(8), 763–769 (2011).
  • Wanner NM , ColwellM, DrownC, FaulkC. Developmental cannabidiol exposure increases anxiety and modifies genome-wide brain DNA methylation in adult female mice. Clin. Epigenetics13(1), 4 (2021).
  • Khare M , TaylorAH, KonjeJC, BellSC. Delta9-tetrahydrocannabinol inhibits cytotrophoblast cell proliferation and modulates gene transcription. Mol. Hum. Reprod.12(5), 321–333 (2006).
  • Gillies R , LeeK, VaninSet al. Maternal exposure to δ9-tetrahydrocannabinol impairs female offspring glucose homeostasis and endocrine pancreatic development in the rat. Reprod. Toxicol.94, 84–91 (2020).
  • Young-Wolff KC , SarovarV, TuckerLYet al. Self-reported daily, weekly, and monthly cannabis use among women before and during pregnancy. JAMA Netw. Open2(7), e196471 (2019).
  • England LJ , BunnellRE, PechacekTF, TongVT, McAfeeTA. Nicotine and the developing human: a neglected element in the electronic cigarette debate. Am. J. Prev. Med.49(2), 286–293 (2015).
  • Havard A , ChandranJJ, OeiJL. Tobacco use during pregnancy. Addiction117(6), 1801–1810 (2022).
  • Di HK , GanY, LuKet al. Maternal smoking status during pregnancy and low birth weight in offspring: systematic review and meta-analysis of 55 cohort studies published from 1986 to 2020. World J. Pediatr.18(3), 176–185 (2022).
  • Ren M , LotfipourS, LeslieF. Unique effects of nicotine across the lifespan. Pharmacol. Biochem. Behav.214, 173343 (2022).
  • Joubert BR , HabergSE, NilsenRMet al. 450k epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ. Health Perspect.120(10), 1425–1431 (2012).
  • Joubert BR , FelixJF, YousefiPet al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am. J. Hum. Genet.98(4), 680–696 (2016).
  • Everson TM , Vives-UsanoM, SeyveEet al. Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. Nat. Commun.12(1), 5095 (2021).
  • Blostein FA , FisherJ, DouJet al. Polymethylation scores for prenatal maternal smoke exposure persist until age 15 and are detected in saliva in the Fragile Families and Child Wellbeing cohort. Epigenetics17(13), 2223–2240 (2022).
  • Fuemmeler BF , DozmorovMG, DoEKet al. DNA methylation in babies born to nonsmoking mothers exposed to secondhand smoke during pregnancy: an epigenome-wide association study. Environ. Health Perspect.129(5), 057010-1–057010-13 (2021).
  • Hall BJ , CauleyM, BurkeDA, KianyA, SlotkinTA, LevinED. Cognitive and behavioral impairments evoked by low-level exposure to tobacco smoke components: comparison with nicotine alone. Toxicol. Sci.151(2), 236–244 (2016).
  • Cauley M , HallBJ, Abreu-VillacaYet al. Critical developmental periods for effects of low-level tobacco smoke exposure on behavioral performance. Neurotoxicology68, 81–87 (2018).
  • Hawkey A , JunaidS, YaoLet al. Gestational exposure to nicotine and/or benzo[a]pyrene causes long-lasting neurobehavioral consequences. Birth Defects Res.111(17), 1248–1258 (2019).
  • Fuemmeler BF , GlasgowTE, SchechterJCet al. Prenatal and childhood smoke exposure associations with cognition, language, and attention-deficit/hyperactivity disorder. J. Pediatr.256, 77–84.e1 (2023).
  • Oh K , XuY, TerrizziBFet al. Associations between early low-level tobacco smoke exposure and executive function at age 8 years. J. Pediatr.221, 174–180.e1 (2020).
  • Gustavson K , YstromE, StoltenbergCet al. Smoking in pregnancy and child ADHD. Pediatrics139(2), e20162509 (2017).
  • Joglekar R , CauleyM, LipsichTet al. Developmental nicotine exposure and masculinization of the rat preoptic area. Neurotoxicology89, 41–54 (2022).
  • Hirai AH , KoJY, OwensPL, StocksC, PatrickSW. Neonatal abstinence syndrome and maternal opioid-related diagnoses in the US, 2010–2017. JAMA325(2), 146–155 (2021).
  • Corsi DJ , HsuH, FellDB, WenSW, WalkerM. Association of maternal opioid use in pregnancy with adverse perinatal outcomes in Ontario, Canada, from 2012 to 2018. JAMA Netw. Open3(7), e208256 (2020).
  • Wachman EM , FarrerLA. The genetics and epigenetics of neonatal abstinence syndrome. Semin. Fetal Neonatal Med.24(2), 105–110 (2019).
  • Doehring A , OertelBG, SittlR, LötschJ. Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain. Pain154(1), 15–23 (2013).
  • Wachman EM , HayesMJ, LesterBMet al. Epigenetic variation in the mu-opioid receptor gene in infants with neonatal abstinence syndrome. J. Pediatr.165(3), 472–478 (2014).
  • Wachman EM , HayesMJ, ShresthaHet al. Epigenetic variation in OPRM1 gene in opioid-exposed mother–infant dyads. Genes Brain Behav.17(7), e12476 (2018).
  • Radhakrishna U , VishweswaraiahS, UppalaLVet al. Placental DNA methylation profiles in opioid-exposed pregnancies and associations with the neonatal opioid withdrawal syndrome. Genomics113(3), 1127–1135 (2021).
  • Borrelli KN , WachmanEM, BeierleJAet al. Effect of prenatal opioid exposure on the human placental methylome. Biomedicines10(5), 1150 (2022).
  • Park SY , HanJS. Phospholipase d1 signaling: essential roles in neural stem cell differentiation. J. Mol. Neurosci.64(3), 333–340 (2018).
  • Auclair N , SanéAT, DelvinE, SpahisS, LevyE. Phospholipase D as a potential modulator of metabolic syndrome: impact of functional foods. Antioxid. Redox Signal.34(3), 252–278 (2021).
  • Ren L , QinX, CaoXet al. Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell2(10), 827–836 (2011).
  • Liang L , LiuH, BartholdiDet al. Identification and functional analysis of two new de novo KCNMA1 variants associated with Liang–Wang syndrome. Acta Physiol.235(1), e13800 (2022).
  • Liang L , LiX, MouttonSet al. De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes. Hum. Mol. Genet.28(17), 2937–2951 (2019).
  • Zhao Q , HouJ, ChenBet al. Prenatal cocaine exposure impairs cognitive function of progeny via insulin growth factor II epigenetic regulation. Neurobiol. Dis.82, 54–65 (2015).
  • Itzhak Y , ErguiI, YoungJI. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring. Mol. Psychiatry20(2), 232–239 (2015).
  • Novikova SI , HeF, BaiJ, CutrufelloNJ, LidowMS, UndiehAS. Maternal cocaine administration in mice alters DNA methylation and gene expression in hippocampal neurons of neonatal and prepubertal offspring. PLOS ONE3(4), e1919 (2008).
  • Dong N , ZhuJ, WangRet al. Maternal methamphetamine exposure influences behavioral sensitization and nucleus accumbens DNA methylation in subsequent generation. Front. Pharmacol.13, 940798 (2022).
  • Rompala GR , HomanicsGE. Intergenerational effects of alcohol: a review of paternal preconception ethanol exposure studies and epigenetic mechanisms in the male germline. Alcohol. Clin. Exp. Res.43(6), 1032–1045 (2019).
  • Rahimipour M , TalebiAR, AnvariM, SarcheshmehAA, OmidiM. Effects of different doses of ethanol on sperm parameters, chromatin structure and apoptosis in adult mice. Eur. J. Obstet. Gynecol. Reprod. Biol.170(2), 423–428 (2013).
  • Rompala GR , MounierA, WolfeCM, LinQ, LefterovI, HomanicsGE. Heavy chronic intermittent ethanol exposure alters small noncoding RNAs in mouse sperm and epididymosomes. Front. Genet.9, 32 (2018).
  • Cambiasso MY , GotfrydL, StinsonMGet al. Paternal alcohol consumption has intergenerational consequences in male offspring. J. Assist. Reprod. Genet.39(2), 441–459 (2022).
  • Nieto SJ , HardingMJ, NielsenDA, KostenTA. Paternal alcohol exposure has task- and sex-dependent behavioral effect in offspring. Alcohol. Clin. Exp. Res.46(12), 2191–2202 (2022).
  • Chang RC , SkilesWM, ChronisterSSet al. DNA methylation-independent growth restriction and altered developmental programming in a mouse model of preconception male alcohol exposure. Epigenetics12(10), 841–853 (2017).
  • Knezovich J , RamsayM. The effect of preconception paternal alcohol exposure on epigenetic remodeling of the H19 and Rasgrf1 imprinting control regions in mouse offspring. Front. Genet.3, 1–10 (2012).
  • Schrott R , MurphySK. Cannabis use and the sperm epigenome: a budding concern?Environ. Epigenet.6(1), dvaa002 (2020).
  • Schrott R , MurphySK, ModliszewskiJLet al. Refraining from use diminishes cannabis-associated epigenetic changes in human sperm. Environ. Epigenet.7(1), dvab009 (2021).
  • Schrott R , RajavelM, AcharyaKet al. Sperm DNA methylation altered by THC and nicotine: vulnerability of neurodevelopmental genes with bivalent chromatin. Sci. Rep.10(1), 16022 (2020).
  • Schrott R , AcharyaK, Itchon-RamosNet al. Cannabis use is associated with potentially heritable widespread changes in autism candidate gene DLGAP2 DNA methylation in sperm. Epigenetics15(1–2), 161–173 (2020).
  • Innocenzi E , DeDomenico E, CiccaroneFet al. Paternal activation of CB(2) cannabinoid receptor impairs placental and embryonic growth via an epigenetic mechanism. Sci. Rep.9(1), 17034 (2019).
  • Jenkins TG , JamesER, AlonsoDFet al. Cigarette smoking significantly alters sperm DNA methylation patterns. Andrology5(6), 1089–1099 (2017).
  • Laqqan MM , YassinMM. Cigarette heavy smoking alters DNA methylation patterns and gene transcription levels in humans spermatozoa. Environ. Sci. Pollut. Res. Int.29(18), 26835–26849 (2022).
  • Liu Y , ChenS, PangDet al. Effects of paternal exposure to cigarette smoke on sperm DNA methylation and long-term metabolic syndrome in offspring. Epigenetics Chromatin15(1), 3 (2022).
  • Dai J , WangZ, XuWet al. Paternal nicotine exposure defines different behavior in subsequent generation via hyper-methylation of mmu-mir-15b. Sci. Rep.7(1), 7286 (2017).
  • Goldberg LR , GouldTJ. Multigenerational and transgenerational effects of paternal exposure to drugs of abuse on behavioral and neural function. Eur. J. Neurosci.50(3), 2453–2466 (2019).
  • Vallaster MP , KukrejaS, BingXYet al. Paternal nicotine exposure alters hepatic xenobiotic metabolism in offspring. Elife6, e24771 (2017).
  • McCarthy DM , MorganTJJr, LoweSEet al. Nicotine exposure of male mice produces behavioral impairment in multiple generations of descendants. PLoS Biol.16(10), e2006497 (2018).
  • Nieto SJ , KostenTA. Who’s your daddy? Behavioral and epigenetic consequences of paternal drug exposure. Int. J. Dev. Neurosci.78, 109–121 (2019).
  • Hawkey AB , WhiteH, PippenEet al. Paternal nicotine exposure in rats produces long-lasting neurobehavioral effects in the offspring. Neurotoxicol. Teratol.74, 106808 (2019).
  • Jalali Z , BahrampourS, KhaliliP, KhademalhosseiniM, EsmaeiliNadimi A. Cohort-based analysis of paternal opioid use in relation to offspring’s BMI and plasma lipid profile. Sci. Rep.11(1), 9462 (2021).
  • Cicero TJ , AdamsML, GiordanoA, MillerBT, O’ConnorL, NockB. Influence of morphine exposure during adolescence on the sexual maturation of male rats and the development of their offspring. J. Pharmacol. Exp. Ther.256(3), 1086–1093 (1991).
  • Cicero TJ , NockB, O’ConnorL, AdamsM, MeyerER. Adverse effects of paternal opiate exposure on offspring development and sensitivity to morphine-induced analgesia. J. Pharmacol. Exp. Ther.273(1), 386–392 (1995).
  • Joffe JM , PeruzovićM, MilkovićK. Progeny of male rats treated with methadone: physiological and behavioural effects. Mutat. Res.229(2), 201–211 (1990).
  • Li CQ , LuoYW, BiFFet al. Development of anxiety-like behavior via hippocampal IGF-2 signaling in the offspring of parental morphine exposure: effect of enriched environment. Neuropsychopharmacology39(12), 2777–2787 (2014).
  • Sarkaki A , AssaeiR, MotamediF, BadaviM, PajouhiN. Effect of parental morphine addiction on hippocampal long-term potentiation in rats offspring. Behav. Brain Res.186(1), 72–77 (2008).
  • Maze I , NestlerEJ. The epigenetic landscape of addiction. Ann. NY Acad. Sci.1216, 99–113 (2011).
  • Sun H , MazeI, DietzDMet al. Morphine epigenomically regulates behavior through alterations in histone h3 lysine 9 dimethylation in the nucleus accumbens. J. Neurosci.32(48), 17454–17464 (2012).
  • Rice JC , AllisCD. Code of silence. Nature414(6861), 258–261 (2001).
  • Nielsen DA , YuferovV, HamonSet al. Increased OPRM1 DNA methylation in lymphocytes of methadone-maintained former heroin addicts. Neuropsychopharmacology34(4), 867–873 (2009).
  • Trivedi M , ShahJ, HodgsonN, ByunHM, DethR. Morphine induces redox-based changes in global DNA methylation and retrotransposon transcription by inhibition of excitatory amino acid transporter type 3-mediated cysteine uptake. Mol. Pharmacol.85(5), 747–757 (2014).
  • Chorbov VM , TodorovAA, LynskeyMT, CiceroTJ. Elevated levels of DNA methylation at the OPRM1 promoter in blood and sperm from male opioid addicts. J. Opioid Manag.7(4), 258–264 (2011).
  • Rorabaugh BR . Does prenatal exposure to cns stimulants increase the risk of cardiovascular disease in adult offspring?Front. Cardiovasc. Med.8, 652634 (2021).
  • Hedges JC , HannaCB, Shorey-KendrickLEet al. Cessation of chronic delta-9-tetrahydrocannabinol use partially reverses impacts on male fertility and the sperm epigenome in rhesus macaques. Fertil Steril.24, S0015-0282(23)00167-X doi:10.1016/j.fertnstert.2023.02.034. (2023).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.