217
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dna Methylation Episignatures are Sensitive and Specific Biomarkers for Detection of Patients with Kat6A/Kat6B Variants

, ORCID Icon, , , , , , , , , , , , , , , , , , , , , , , , , , , ORCID Icon, , , & ORCID Icon show all
Pages 351-367 | Received 01 Mar 2023, Accepted 10 May 2023, Published online: 30 May 2023

References

  • Wakap SN , LambertDM , OlryAet al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur. J. Hum. Genet.28, 165–173 (2020).
  • Zablotsky B , BlackLI , MaennerMJet al. Prevalence and trends of developmental disabilities among children in the United States: 2009–2017. Pediatrics144(4), e20190811 (2019).
  • Aref-Eshghi E , RodenhiserDI , SchenkelLCet al. Genomic DNA methylation signatures enable concurrent diagnosis and clinical genetic variant classification in neurodevelopmental syndromes. Am. J. Hum. Genet.102(1), 156–174 (2018).
  • Richards S , AzizN , BaleSet al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med.17(5), 405–424 (2015).
  • Sadikovic B , Aref-EshghiE , LevyMA , RodenhiserD. DNA methylation signatures in Mendelian developmental disorders as a diagnostic bridge between genotype and phenotype. Epigenomics11, 563–575 (2019).
  • Skvortsova K , IovinoN , BogdanovićO. Functions and mechanisms of epigenetic inheritance in animals. Nat. Rev. Mol. Cell Biol.19(12), 774–790 (2018).
  • Costa FF . Non-coding RNAs, epigenetics and complexity. Gene410(1), 9–17 (2008).
  • Bjornsson HT . The Mendelian disorders of the epigenetic machinery. Genome Res.25(10), 1473–1481 (2015).
  • Barros-Silva D , MarquesCJ , HenriqueR , JerónimoC. Profiling DNA methylation based on next-generation sequencing approaches: new insights and clinical applications. Genes9, 429 (2018).
  • Choufani S , CytrynbaumC , ChungBHYet al. NSD1 mutations generate a genome-wide DNA methylation signature. Nat. Commun.6, 10207(2015).
  • Schenkel LC , KernohanKD , McBrideAet al. Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome. Epigenetics Chromatin10, 1–11 (2017).
  • Aref-Eshghi E , BendEG , ColaiacovoSet al. Diagnostic utility of genome-wide DNA methylation testing in genetically unsolved individuals with suspected hereditary conditions. Am. J. Hum. Genet.104, 685–700 (2019).
  • Butcher DT , CytrynbaumC , TurinskyALet al. CHARGE and Kabuki syndromes: gene-specific DNA methylation signatures identify epigenetic mechanisms linking these clinically overlapping conditions. Am. J. Hum. Genet.100, 773–788 (2017).
  • Hood RL , SchenkelLC , NikkelSMet al. The defining DNA methylation signature of Floating-Harbor syndrome. Sci. Rep.6, 38803 (2016).
  • Schenkel LC , Aref-EshghiE , SkinnerCet al. Peripheral blood epi-signature of Claes–Jensen syndrome enables sensitive and specific identification of patients and healthy carriers with pathogenic mutations in KDM5C. Clin. Epigenetics10, 1–11 (2018).
  • Schenkel LC , SchwartzC , SkinnerCet al. Clinical validation of fragile X syndrome screening by DNA methylation array. J. Mol. Diagn.18, 834–841 (2016).
  • Li Y , ChenJA , SearsRLet al. An epigenetic signature in peripheral blood associated with the haplotype on 17q21.31, a risk factor for neurodegenerative tauopathy. PLoS Genet.2014, 10 (2014).
  • Aref-Eshghi E , SchenkelLC , LinHet al. Clinical validation of a genome-wide DNA methylation assay for molecular diagnosis of imprinting disorders. J. Mol. Diagn.19, 848–856 (2017).
  • Guastafierro T , BacaliniMG , MarcocciaAet al. Genome-wide DNA methylation analysis in blood cells from patients with Werner syndrome. Clin. Epigenetics9, 92 (2017).
  • Aref-Eshghi E , KerkhofJ , PedroVPet al. Evaluation of DNA methylation episignatures for diagnosis and phenotype correlations in 42 Mendelian neurodevelopmental disorders. Am. J. Hum. Genet.106, 356–370 (2020).
  • Bend EG , Aref-EshghiE , EvermanDBet al. Gene domain-specific DNA methylation episignatures highlight distinct molecular entities of ADNP syndrome. Clin. Epigenetics11(1), 64 (2019).
  • Sadikovic B , LevyMA , KerkhofJet al. Clinical epigenomics: genome-wide DNA methylation analysis for the diagnosis of Mendelian disorders. Genet. Med.23, 1065–1074 (2021).
  • Lee KK , WorkmanJL. Histone acetyltransferase complexes: one size doesn’t fit all. Nat. Rev. Mol. Cell Biol.8(4), 284–295 (2007).
  • Akatsuki Kimura , KazukoMatsubara , MasamiHorikoshi. A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J. Biochem.138(6), 647–662 (2005).
  • Klein BJ , LalondeME , CôtéJ , YangXJ , KutateladzeTG. Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes. Epigenetics9(2), 186–193 (2014).
  • Arboleda VA , LeeH , DorraniNet al. De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am. J. Hum. Genet.96(3), 498–506 (2015).
  • Tham E , LindstrandA , SantaniAet al. Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features. Am. J. Hum. Genet.96(3), 507–513 (2015).
  • Kennedy J , GoudieD , BlairEet al. KAT6A syndrome: genotype–phenotype correlation in 76 patients with pathogenic KAT6A variants. Genet. Med.21(4), 850–860 (2019).
  • Su Y , LiuJ , YuB , BaR , ZhaoC. BRPF1 haploinsufficiency impairs dendritic arborization and spine formation, leading to cognitive deficits. Front Cell Neurosci.13, 249 (2019).
  • Yan K , RousseauJ , LittlejohnROet al. Mutations in the chromatin regulator gene BRPF1 cause syndromic intellectual disability and deficient histone acetylation. Am. J. Hum. Genet.100(1), 91–104 (2017).
  • Clayton-Smith J , O’SullivanJ , DalySet al. Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say–Barber–Biesecker variant of Ohdo syndrome. Am. J. Hum. Genet.89(5), 675–681 (2011).
  • Kraft M , CirsteaIC , VossAKet al. Disruption of the histone acetyltransferase MYST4 leads to a Noonan syndrome-like phenotype and hyperactivated MAPK signaling in humans and mice. J. Clin. Invest.121(9), 3479–3491 (2011).
  • Wiesel-Motiuk N , AssarafYG. The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology. Drug Resist. Updat.53, 100729 (2020).
  • Aref-Eshghi E , BendEG , HoodRLet al. BAFopathies’ DNA methylation epi-signatures demonstrate diagnostic utility and functional continuum of Coffin–Siris and Nicolaides–Baraitser syndromes. Nat. Commun.9(1), 4885 (2018).
  • Aryee MJ , JaffeAE , Corrada-BravoHet al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics30(10), 1363–1369 (2014).
  • Ritchie ME , PhipsonB , WuDet al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43(7), e47 (2015).
  • Houseman EA , AccomandoWP , KoestlerDCet al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics13(1), 86 (2012).
  • Reinius LE , AcevedoN , JoerinkMet al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLOS ONE7(7), e41361 (2012).
  • Advances in Large-Margin Classifiers . The MIT Press Published: 2000. SmolaAJ, BartlettP, SchölkopfB, SchuurmansD. doi:10.7551/mitpress/1113.001.0001 (2000).
  • Peters TJ , BuckleyMJ , StathamAL , PidsleyR , SamarasK , V LordRet al. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin8(1), 6 (2015).
  • Levy MA , McConkeyH , KerkhofJet al. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG Adv.3(1), 100075 (2021).
  • Haghshenas S , LevyMA , KerkhofJet al. Detection of a DNA methylation signature for the intellectual developmental disorder, X-linked, syndromic, Armfield type. Int. J. Mol. Sci.22(3), 1111 (2021).
  • Aref-Eshghi E , BourqueDK , KerkhofJet al. Genome-wide DNA methylation and RNA analyses enable reclassification of two variants of uncertain significance in a patient with clinical Kabuki syndrome. Hum. Mutat.40(10), 1684–1689 (2019).
  • Aref-Eshghi E , SchenkelLC , LinHet al. The defining DNA methylation signature of Kabuki syndrome enables functional assessment of genetic variants of unknown clinical significance. Epigenetics12(11), 923–933 (2017).
  • Cappuccio , Gerardaet al. De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis distinct from Nicolaides–Baraitser syndrome. Genet. Med.22(11), 1838–1850 (2020).
  • Rots , Dmitrijset al. Truncating SRCAP variants outside the Floating-Harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature. Am. J. Hum. Genet.108(6), 1053–1068 (2021).
  • Cuvertino , Saraet al. A restricted spectrum of missense KMT2D variants cause a multiple malformations disorder distinct from Kabuki syndrome. Genet. Med.22(5), 867–877 (2020).
  • Blackburn , PatrickRet al. Variable expressivity of syndromic BMP4-related eye, brain, and digital anomalies: a review of the literature and description of three new cases. Eur. J. Hum. Genet.27(9), 1379–1388 (2019).
  • Reamon-Buettner SM , BorlakJ. HEY2 mutations in malformed hearts. Hum. Mutat.27(1), 118 (2006).
  • Voss AK , CollinC , DixonMP , ThomasT. MOZ and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. Dev. Cell17(5), 674–686 (2009).
  • Shane C Quinonez , InnisJW. Human HOX gene disorders. Mol. Genet. Metab.111(1), 4–15 (2014).
  • Klengel T , PapeJ , BinderEB , MehtaD. The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology80, 115–132 (2014).
  • Lussier AA , BodnarTS , MingayMet al. Prenatal alcohol exposure: profiling developmental DNA methylation patterns in central and peripheral tissues. Front. Genet.9, 6102018).
  • Levy MA , RelatorR , McConkeyHet al. Functional correlation of genome-wide DNA methylation profiles in genetic neurodevelopmental disorders. Hum. Mutat.43(11), 1609–1628 (2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.