82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pyroptosis-Related Lncrna Prognostic Signatures for Cutaneous Melanoma and Tumor Microenvironment Status

ORCID Icon, , & ORCID Icon
Pages 657-675 | Received 24 Apr 2023, Accepted 18 Jul 2023, Published online: 14 Aug 2023

References

  • Fischer GM , Vashisht GopalYN , McquadeJL , PengW , DeberardinisRJ , DaviesMA. Metabolic strategies of melanoma cells: mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment. Cell Melanoma Res.31(1), 11–30 (2018).
  • Gorry C , MccullaghL , O’donnellHet al. Neoadjuvant treatment for stage III and IV cutaneous melanoma. Cochrane Database Syst. Rev.1(1), 1–102, CD012974 (2023). doi: 10.1002/14651858.CD012974.pub2
  • Miller KD , NogueiraL , MariottoABet al. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin.69(5), 363–385 (2019).
  • Gandini S , SeraF , CattaruzzaMSet al. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors. Eur. J. Cancer41(14), 2040–2059 (2005).
  • Berwick M , ErdeiE , HayJ. Melanoma epidemiology and public health. Dermatol. Clin.27(2), 205–214 (2009).
  • Van Der Leest RJ , FlohilSC , ArendsLR , DeVries E , NijstenT. Risk of subsequent cutaneous malignancy in patients with prior melanoma: a systematic review and meta-analysis. J. Eur. Acad Dermatol. Venereol.29(6), 1053–1062 (2015).
  • Gandini S , AutierP , BoniolM. Reviews on sun exposure and artificial light and melanoma. Prog. Biophys. Mol. Biol.107(3), 362–366 (2011).
  • O’neill CH , ScogginsCR. Melanoma. J. Surg. Oncol.120(5), 873–881 (2019).
  • Li C , KuaiL , CuiR , MiaoX. Melanogenesis and the targeted therapy of melanoma. Biomolecules12(12), 1–20 (2022).
  • Garbe C , AmaralT , PerisKet al. European consensus-based interdisciplinary guideline for melanoma. Part 2: treatment–update 2022. Eur. J. Cancer170, 256–284 (2022).
  • Long GV , MenziesAM , ScolyerRA. Neoadjuvant checkpoint immunotherapy and melanoma: the time is now. J. Clin. Oncol.41(17), 3236–3248 (2023).
  • Patel SP , OthusM , ChenYet al. Neoadjuvant-Adjuvant or Adjuvant-Only Pembrolizumab in Advanced Melanoma. N. Engl. J. Med.388(9), 813–823 (2023).
  • Leonardi GC , CandidoS , FalzoneL , SpandidosDA , LibraM. Cutaneous melanoma and the immunotherapy revolution (review). Int. J. Oncol.57(3), 609–618 (2020).
  • Schadendorf D , Van AkkooiACJ , BerkingCet al. Melanoma. Lancet392(10151), 971–984 (2018).
  • Winder M , VirosA. Mechanisms of drug resistance in melanoma. Handb. Exp. Pharmacol.249, 91–108 (2018).
  • Wozniak M , CzyzM. The functional role of long non-coding RNAs in melanoma. Cancers (Basel)13(19), 1–30 (2021).
  • Ju X , YangZ , ZhangH , WangQ. Role of pyroptosis in cancer cells and clinical applications. Biochimie185, 78–86 (2021).
  • Zaffaroni N , BerettaGL. The therapeutic potential of pyroptosis in melanoma. Int. J.Mol.Sci.24(2), 1–19 (2023).
  • Zhao Z , HuangY , WangJet al. A self-assembling CXCR4-targeted pyroptosis nanotoxin for melanoma therapy. Biomater. Sci.11(6), 2200–2210 (2023).
  • Zhang M-J , LiangM-Y , YangS-Cet al. Bioengineering of BRAF and COX2 inhibitor nanogels to boost the immunotherapy of melanoma via pyroptosis. Chem. Commun. (Camb.)59(7), 932–935 (2023).
  • Wang N , LiuC , LiYet al. A cooperative nano-CRISPR scaffold potentiates immunotherapy via activation of tumour-intrinsic pyroptosis. Nat. Commun.14(1), 779 (2023).
  • Gong L , ZhouH , ZhangSet al. CD44-targeting drug delivery system of exosomes loading forsythiaside a combats liver fibrosis via regulating NLRP3-mediated pyroptosis. Adv. Healthc. Mater.12(11), e2202228 (2023).
  • Lu L , ZhangY , TanXet al. Emerging mechanisms of pyroptosis and its therapeutic strategy in cancer. Cell Death Discov.8(1), 338 (2022).
  • Xia X , WangX , ChengZet al. The role of pyroptosis in cancer: pro-cancer or pro-“host”? Cell Death Dis. 10(9), 650 (2019).
  • Liu Z , WangC , LinC. Pyroptosis as a double-edged sword: the pathogenic and therapeutic roles in inflammatory diseases and cancers. Life Sci.318, 121498 (2023).
  • Ruan J , WangS , WangJ. Mechanism and regulation of pyroptosis-mediated in cancer cell death. Chem. Biol. Interact.323, 109052 (2020).
  • Kolb R , LiuGH , JanowskiAM , SutterwalaFS , ZhangW. Inflammasomes in cancer: a double-edged sword. Protein Cell5(1), 12–20 (2014).
  • Cao Q , ZhangJ-B , SunD-Yet al. Pyroptosis, metabolism, and oxidation in tumorigenesis: mechanisms and therapeutic implications. Antioxid. Redox Signal. doi: 10.1089/ars.2023.0257 (2023) ( Epub ahead of print).
  • Wang L , QinX , LiangJ , GeP. Induction of pyroptosis: a promising strategy for cancer treatment. Front. Oncol.11, 635774 (2021).
  • Wang M , JiangS , ZhangY , LiP , WangK. The multifaceted roles of pyroptotic cell death pathways in cancer. Cancers11(9), 1–26 (2019).
  • Shabna A , BindhyaS , SidhanthC , GargM , GanesanTS. Long non-coding RNAs: fundamental regulators and emerging targets of cancer stem cells. Rev. Cancer1878(3), 188899 (2023).
  • Choudhari R , SedanoMJ , HarrisonALet al. Long noncoding RNAs in cancer: from discovery to therapeutic targets. Adv. Clin. Chem.95, 105–147 (2020).
  • He D , ZhengJ , HuJ , ChenJ , WeiX. Long non-coding RNAs and pyroptosis. Clin. Chim. Acta504, 201–208 (2020).
  • Batista PJ , ChangHY. Long noncoding RNAs: cellular address codes in development and disease. Cell152(6), 1298–1307 (2013).
  • Mattick JS , AmaralPP , CarninciPet al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol.24(6), 430–447 (2023).
  • Fang Y , FullwoodMJ. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics14(1), 42–54 (2016).
  • Yu X , ZhengH , TseG , ChanMT , WuWK. Long non-coding RNAs in melanoma. Cell Prolif.51(4), e12457 (2018).
  • Li X , WuZ , FuX , HanW. lncRNAs: insights into their function and mechanics in underlying disorders. Mutat. Res. Rev. Mutat. Res.762, 1–21 (2014).
  • Lin X , ZhuangS , ChenXet al. lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling. Mol. Ther.30(2), 688–702 (2022).
  • Yu Y , ZhangQ , SunKet al. Long non-coding RNA BBOX1 antisense RNA 1 increases the apoptosis of granulosa cells in premature ovarian failure by sponging miR-146b. Bioengineered13(3), 6092–6099 (2022).
  • Kay M , SoltaniBM , NemirMet al. The conserved long non-coding RNA CARMA regulates cardiomyocyte differentiation. Cardiovasc. Res.118(10), 2339–2353 (2022).
  • Yu X , ZhengH , TseG , ChanMT , WuWK. Long non-coding RNAs in melanoma. Cell Prolif.51(4), e12457 (2018).
  • Montico B , GiuratoG , PecoraroGet al. The pleiotropic roles of circular and long noncoding RNAs in cutaneous melanoma. Mol. Oncol.16(3), 565–593 (2022).
  • Yang Z , JiangS , ShangJet al. LncRNA: shedding light on mechanisms and opportunities in fibrosis and aging. Ageing Res. Rev.52, 17–31 (2019).
  • Jin X , JinH , ShiY , GuoY , ZhangH. Long non-coding RNA KCNQ1OT1 promotes cataractogenesis via miR-214 and activation of the caspase-1 pathway. Cell Physiol. Biochem.42(1), 295–305 (2017).
  • Li X , ZengL , CaoCet al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp. Cell Res.350(2), 327–335 (2017).
  • Wu L , LiuG , HeYW , ChenR , WuZY. Identification of a pyroptosis-associated long non-coding RNA signature for predicting the immune status and prognosis in skin cutaneous melanoma. Eur. Rev. Med. Pharmacol. Sci.25(18), 5597–5609 (2021).
  • Xie J , LiH , ChenLet al. A novel pyroptosis-related lncRNA signature for predicting the prognosis of skin cutaneous melanoma. Int. J. Gen. Med.14, 6517–6527 (2021).
  • Zhong JN , WangZ , HoussouHounye A , LiuJ , ZhangJ , QiM. A novel pyroptosis-related lncRNA signature predicts prognosis and indicates tumor immune microenvironment in skin cutaneous melanoma. Life Sci.307, 120832 (2022).
  • Margolis N , MarkovitsE , MarkelG. Reprogramming lymphocytes for the treatment of melanoma: from biology to therapy. Adv. Drug Deliv. Rev.141, 104–124 (2019).
  • Qin R , PengW , WangXet al. Identification of genes related to immune infiltration in the tumor microenvironment of cutaneous melanoma. Front. Oncol.11, 615963 (2021).
  • Tracey EH , VijA. Updates in melanoma. Dermatol. Clin.37(1), 73–82 (2019).
  • Fang Y , TianS , PanYet al. Pyroptosis: a new frontier in cancer. Biomed. Pharmacother.121, 109595 (2020).
  • Ping L , ZhangK , OuX , QiuX , XiaoX. A novel pyroptosis-associated long non-coding RNA signature predicts prognosis and tumor immune microenvironment of patients with breast cancer. Front. Cell Dev. Biol.9, 727183 (2021).
  • Chen S , ZhuJ , ZhiX. A novel pyroptosis-associated long noncoding RNA signature to predict the prognosis of patients with colorectal cancer. Int. J. Gen. Med.14, 6111–6123 (2021).
  • Zhu W , YeZ , ChenL , LiangH , CaiQ. A pyroptosis-related lncRNA signature predicts prognosis and immune microenvironment in head and neck squamous cell carcinoma. Int. Immunopharmacol.101(Pt B), 108268 (2021).
  • Wang Q , ZhangR , LiuD. Long non-coding RNA ZEB1-AS1 indicates poor prognosis and promotes melanoma progression through targeting miR-1224-5p. Exp. Ther. Med.17(1), 857–862 (2019).
  • Gao H , LiuR , SunX. STAT3-induced upregulation of lncRNA SNHG17 predicts a poor prognosis of melanoma and promotes cell proliferation and metastasis through regulating PI3K-AKT pathway. Eur. Rev. Med. Pharmacol. Sci.23(18), 8000–8010 (2019).
  • Guo J , GanQ , GanC , ZhangX , MaX , DongM. LncRNA MIR205HG regulates melanomagenesis via the miR-299-3p/VEGFA axis. Aging13(4), 5297–5311 (2021).
  • Keung EZ , GershenwaldJE. The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: implications for melanoma treatment and care. Expert Rev. Anticancer Ther.18(8), 775–784 (2018).
  • Yan X , WanH , HaoXet al. Importance of gene expression signatures in pancreatic cancer prognosis and the establishment of a prediction model. Cancer Manag. Res.11, 273–283 (2019).
  • Wijnhoven BP , TranKT , EstermanA , WatsonDI , TilanusHW. An evaluation of prognostic factors and tumor staging of resected carcinoma of the esophagus. Ann. Surg.245(5), 717–725 (2007).
  • Sun Y , RevachO-Y , AndersonSet al. Targeting TBK1 to overcome resistance to cancer immunotherapy. Nature615(7950), 158–167 (2023).
  • Zhou Z , ChenM-JM , LuoYet al. Tumor-intrinsic SIRPA promotes sensitivity to checkpoint inhibition immunotherapy in melanoma. Cancer Cell40(11), 1324–1340 (2022).
  • Cui Z , LiangZ , SongBet al. Machine learning-based signature of necrosis-associated lncRNAs for prognostic and immunotherapy response prediction in cutaneous melanoma and tumor immune landscape characterization. Front. Endocrinol.14, 1180732 (2023).
  • Zhang M , YangL , WangY , ZuoY , ChenD , GuoX. Comprehensive prediction of immune microenvironment and hot and cold tumor differentiation in cutaneous melanoma based on necroptosis-related lncRNA. Sci. Rep.13(1), 7299 (2023).
  • Tang Y , FengH , ZhangLet al. A novel prognostic model for cutaneous melanoma based on an immune-related gene signature and clinical variables. Sci. Rep.12(1), 20374 (2022).
  • Ding Y , LiT , LiMet al. A novel autophagy-related lncRNA gene signature to improve the prognosis of patients with melanoma. BioMed. Res. Int.2021, 8848227 (2021).
  • Xue L , WuP , ZhaoXet al. Using immune-related lncRNA signature for prognosis and response to immunotherapy in cutaneous melanoma. Int. J. Gen. Med.14, 6463–6475 (2021).
  • Li Z , WeiJ , ZhengHet al. The new horizon of biomarker in melanoma patients: a study based on autophagy-related long non-coding RNA. Medicine101(1), e28553 (2022).
  • Fang Y , YangQ. Specificity protein 1-induced serine peptidase inhibitor, Kunitz Type 1 antisense RNA1 regulates colorectal cancer cell proliferation, migration, invasion and apoptosis through targeting heparin binding growth factor via sponging microRNA-214. Bioengineered13(2), 3309–3322 (2022).
  • Li C , LiangX , LiuY. lncRNA USP30-AS1 sponges miR-765 and modulates the progression of colon cancer. World J. Surg. Oncol.20(1), 73 (2022).
  • Duan B , ZhangH , ZhuZ , YanX , JiZ , LiJ. LncRNA LINC01871 sponging miR-142-3p to modulate ZYG11B promotes the chemoresistance of colorectal cancer cells by inducing autophagy. Anticancer Drugs34(7), 827–836 (2023).
  • Song H , LiuY , LiangH , JinX , LiuL. SPINT1-AS1 drives cervical cancer progression via repressing miR-214 biogenesis. Front. Cell Dev. Biol.9, 691140 (2021).
  • Zhou T , LinK , NieJet al. LncRNA SPINT1-AS1 promotes breast cancer proliferation and metastasis by sponging let-7a/b/i-5p. Pathol. Res. Pract.217, 153268 (2021).
  • Wang H , YangB , CaiXet al. Hepatocellular carcinoma risk variant modulates lncRNA HLA-DQB1-AS1 expression via a long-range enhancer-promoter interaction. Carcinogenesis42(11), 1347–1356 (2021).
  • Zhou T , LinK , NieJet al. LncRNA SPINT1-AS1 promotes breast cancer proliferation and metastasis by sponging let-7a/b/i-5p. Pathol. Res. Pract.217, 153268 (2021).
  • Fratangelo F , CamerlingoR , CarrieroMVet al. Effect of ABT-888 on the apoptosis, motility and invasiveness of BRAFi-resistant melanoma cells. Int. J. Oncol.53(3), 1149–1159 (2018).
  • Zhao D , AmriaS , HossainAet al. Enhancement of HLA class II-restricted CD4+ T cell recognition of human melanoma cells following treatment with bryostatin-1. Cell. Immunol.271(2), 392–400 (2011).
  • Gonzalez R , EbbinghausS , HenthornTK , MillerD , KraftAS. Treatment of patients with metastatic melanoma with bryostatin-1–a phase II study. Melanoma Res.9(6), 599–606 (1999).
  • Bedikian AY , PlagerC , StewartJRet al. Phase II evaluation of bryostatin-1 in metastatic melanoma. Melanoma Res.11(2), 183–188 (2001).
  • Duong E , FessendenTB , LutzEet al. Type I interferon activates MHC class I-dressed CD11b+ conventional dendritic cells to promote protective anti-tumor CD8+ T cell immunity. Immunity55(2), 308–323 (2022).
  • Park J , HsuehP-C , LiZ , HoP-C. Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity. Immunity56(1), 32–42 (2023).
  • Wang X , LiuY , XueCet al. A protein-based cGAS-STING nanoagonist enhances T cell-mediated anti-tumor immune responses. Nat. Commun.13(1), 5685 (2022).
  • Rossi F , FredericksN , SnowdenA , AllegrezzaMJ , Moreno-NievesUY. Next generation natural killer cells for cancer immunotherapy. Front. Immunol.13, 886429 (2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.