589
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Impact and Mechanism of TET3 Overexpression on the Progression of Hepatic Fibrosis

, , , &
Pages 577-591 | Received 21 Apr 2023, Accepted 07 Jul 2023, Published online: 18 Jul 2023

References

  • Roehlen N , CrouchetE , BaumertTF. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells9(4), 875 (2020).
  • Kisseleva T , BrennerD. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol.18(3), 151–166 (2021).
  • Shen WJ , ChenG , WangM , ZhengS. Liver fibrosis in biliary atresia. World J. Pediatr.15(2), 117–123 (2019).
  • Campos-Murguía A , Ruiz-MargáinA , González-RegueiroJA , Macías-RodríguezRU. Clinical assessment and management of liver fibrosis in non-alcoholic fatty liver disease. World J. Gastroenterol.26(39), 5919–5943 (2020).
  • Caligiuri A , GentiliniA , PastoreM , GittoS , MarraF. Cellular and molecular mechanisms underlying liver fibrosis regression. Cells10(10), 2759 (2021).
  • Smith A , BaumgartnerK , BositisC. Cirrhosis: diagnosis and management. Am. Fam. Physician100(12), 759–770 (2019).
  • Hernandez-Gea V , FriedmanSL. Pathogenesis of liver fibrosis. Annu. Rev. Pathol.6, 425–456 (2011).
  • Affo S , YuLX , SchwabeRF. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol.12, 153–186 (2017).
  • Altamirano-Barrera A , Barranco-FragosoB , Mendez-SanchezN. Management strategies for liver fibrosis. Ann. Hepatol.16(1), 48–56 (2017).
  • Schuppan D , Ashfaq-KhanM , YangAT , KimYO. Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol.68-69, 435–451 (2018).
  • Ginès P , KragA , AbraldesJG , SolàE , FabrellasN , KamathPS. Liver cirrhosis. Lancet398(10308), 1359–1376 (2021).
  • Zhang M , Serna-SalasS , DambaT , BorghesanM , DemariaM , MoshageH. Hepatic stellate cell senescence in liver fibrosis: characteristics, mechanisms and perspectives. Mech. Ageing Dev.199, 111572 (2021).
  • Zhang J , LiY , LiuQet al. Sirt6 alleviated liver fibrosis by deacetylating conserved lysine 54 on Smad2 in hepatic stellate cells. Hepatology73(3), 1140–1157 (2021).
  • Chang J , LanT , LiCet al. Activation of Slit2-Robo1 signaling promotes liver fibrosis. J. Hepatol.63(6), 1413–1420 (2015).
  • Xiang D , ZouJ , ZhuXet al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine78, 153294 (2020).
  • Bataller R , BrennerDA. Liver fibrosis. J. Clin. Invest.115(2), 209–218 (2005).
  • Parola M , PinzaniM. Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med.65, 37–55 (2019).
  • Zhu H , ZhaoH , XuSet al. Sennoside A alleviates inflammatory responses by inhibiting the hypermethylation of SOCS1 in CCl4-induced liver fibrosis. Pharmacol. Res.174, 105926 (2021).
  • Fan C , MaY , ChenSet al. Comprehensive analysis of the transcriptome-wide m6A methylation modification difference in liver fibrosis mice by high-throughput m6A sequencing. Front. Cell Dev. Biol.9, 767051 (2021).
  • Xue T , QiuX , LiuHet al. Epigenetic regulation in fibrosis progress. Pharmacol. Res.173, 105910 (2021).
  • Moran-Salvador E , MannJ. Epigenetics and liver fibrosis. Cell. Mol. Gastroenterol. Hepatol.4(1), 125–134 (2017).
  • Chen LL , MorcelleC , ChengZLet al. Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. Nat. Cell Biol.24(3), 353–363 (2022).
  • Wu X , ZhangY. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet.18(9), 517–534 (2017).
  • Shi DQ , AliI , TangJ , YangWC. New insights into 5hmC DNA modification: generation, distribution and function. Front. Genet.8, 100 (2017).
  • Page A , PaoliP , MoranSalvador E , WhiteS , FrenchJ , MannJ. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J. Hepatol.64(3), 661–673 (2016).
  • Tsuchida T , LeeYA , FujiwaraNet al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J. Hepatol.69(2), 385–395 (2018).
  • Zhang L , ZhangZ , LiCet al. S100A11 promotes liver steatosis via FOXO1-mediated autophagy and lipogenesis. Cell. Mol. Gastroenterol. Hepatol.11(3), 697–724 (2021).
  • Tsitsipatis D , GopalK , SteinbrennerH , KlotzLO. FOXO1 cysteine-612 mediates stimulatory effects of the coregulators CBP and PGC1alpha on FOXO1 basal transcriptional activity. Free Radic. Biol. Med.118, 98–107 (2018).
  • Fabregat A , SidiropoulosK , ViteriGet al. Reactome diagram viewer: data structures and strategies to boost performance. Bioinformatics34(7), 1208–1214 (2018).
  • Liang Y , CaoD , LiY , LiuZ , WuJ. MicroRNA-302a is involved in folate deficiency-induced apoptosis through the AKT-FOXO1–Bim pathway in mouse embryonic stem cells. Nutr. Metab. (Lond.)17(1), 103 (2020).
  • Cordero-Espinoza L , HuchM. The balancing act of the liver: tissue regeneration versus fibrosis. J. Clin. Invest.128(1), 85–96 (2018).
  • Gäbele E , DostertK , HofmannCet al. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J. Hepatol.55(6), 1391–1399 (2011).
  • Tsuchida T , FriedmanSL. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol.14(7), 397–411 (2017).
  • Pastore M , CaligiuriA , RaggiCet al. Macrophage MerTK promotes profibrogenic cross-talk with hepatic stellate cells via soluble mediators. JHEP Rep.4(4), 100444 (2022).
  • Lee SW , KimSM , HurWet al. Tenofovir disoproxil fumarate directly ameliorates liver fibrosis by inducing hepatic stellate cell apoptosis via downregulation of PI3K/Akt/mTOR signaling pathway. PLOS ONE16(12), e0261067 (2021).
  • Mederacke I , HsuCC , TroegerJSet al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat. Commun.4, 2823 (2013).
  • Rippe RA , BrennerDA. From quiescence to activation: gene regulation in hepatic stellate cells. Gastroenterology127(4), 1260–1262 (2004).
  • Li Y , WuB , SunR , ZhaoM , LiN. miR-93-5p knockdown repressed hepatocellular carcinoma progression via increasing ERBB4 and TETs-dependent DNA demethylation. Autoimmunity54(8), 547–560 (2021).
  • Wu H , ChenG , WangJ , DengM , YuanF , GongJ. TIM-4 interference in Kupffer cells against CCL4-induced liver fibrosis by mediating Akt1/Mitophagy signalling pathway. Cell Prolif.53(1), e12731 (2020).
  • Yanguas SC , CogliatiB , WillebrordsJet al. Experimental models of liver fibrosis. Arch. Toxicol.90(5), 1025–1048 (2016).
  • Huang YH , CaiK , XuPPet al. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct. Target. Ther.6(1), 10 (2021).
  • Jia D , AugertA , KimDWet al. CREBBP loss drives small cell lung cancer and increases sensitivity to HDAC inhibition. Cancer Discov.8(11), 1422–1437 (2018).
  • Dutta R , TiuB , SakamotoKM. CBP/p300 acetyltransferase activity in hematologic malignancies. Mol. Genet. Metab.119(1–2), 37–43 (2016).
  • He ZX , WeiBF , ZhangX , GongYP , MaLY , ZhaoW. Current development of CBP/p300 inhibitors in the last decade. Eur. J. Med. Chem.209, 112861 (2021).
  • Zhang W , BertheletJ , MichailCet al. Human CREBBP acetyltransferase is impaired by etoposide quinone, an oxidative and leukemogenic metabolite of the anticancer drug etoposide through modification of redox-sensitive zinc-finger cysteine residues. Free Radic. Biol. Med.162, 27–37 (2021).
  • Matsuzaki H , DaitokuH , HattaM , AoyamaH , YoshimochiK , FukamizuA. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc. Natl Acad. Sci. USA102(32), 11278–11283 (2005).
  • Tang Q , ChenH , MaiZet al. Bim- and Bax-mediated mitochondrial pathway dominates abivertinib-induced apoptosis and ferroptosis. Free Radic. Biol. Med.180, 198–209 (2022).
  • Azam S , KimIS , ChoiDK. α-Synuclein upregulates BIM-mediated apoptosis by negatively regulating endogenous GCN5. Aging (Albany NY)14(20), 8292–8301 (2022).
  • Jiang J , HuangZ , ChenXet al. Trifluoperazine activates FOXO1-related signals to inhibit tumor growth in hepatocellular carcinoma. DNA Cell Biol.36(10), 813–821 (2017).
  • Sun WL , HeLY , LiangLet al. Ambra1 regulates apoptosis and chemosensitivity in breast cancer cells through the Akt–FoxO1–Bim pathway. Apoptosis27(5–6), 329–341 (2022).