635
Views
0
CrossRef citations to date
0
Altmetric
Review

Clinically Informative Micrornas for SARS-CoV-2 Infection

ORCID Icon, ORCID Icon & ORCID Icon
Pages 705-716 | Received 23 May 2023, Accepted 07 Aug 2023, Published online: 04 Sep 2023

References

  • Trobaugh DW , KlimstraWB. MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol. Med.23(1), 80–93 (2017).
  • Mukherjee M , GoswamiS. Global cataloguing of variations in untranslated regions of viral genome and prediction of key host RNA binding protein-microRNA interactions modulating genome stability in SARS-CoV-2. PLOS ONE15(8), e0237559 (2020).
  • Lai FW , StephensonKB , MahonyJet al. Human coronavirus OC43 nucleocapsid protein binds microRNA 9 and potentiates NF-κB activation. J. Virol.88(1), 54–65 (2014).
  • Das G , MukherjeeN , GhoshS. Neurological insights of COVID-19 pandemic. ACS Chem. Neurosci.11(9), 1206–1209 (2020).
  • Keikha R , Hashemi-ShahriSM , JebaliA. The relative expression of miR-31, miR-29, miR-126, and miR-17 and their mRNA targets in the serum of COVID-19 patients with different grades during hospitalization. Eur. J. Med. Res.26(1), 75 (2021).
  • Jafarinejad-Farsangi S , JaziMM , RostamzadehFet al. High affinity of host human microRNAs to SARS-CoV-2 genome: an in silico analysis. Noncoding RNA Res.5(4), 222–231 (2020).
  • Farr R , RootesC , RowntreeLet al. Altered microRNA expression in COVID-19 patients enables identification of SARS-CoV-2 infection. PLOS Pathog.17(7), e1009759 (2021).
  • Chen X-J , HuaX-Y , JiangZ-R. ANMDA: anti-noise based computational model for predicting potential miRNA–disease associations. BMC Bioinformatics22(1), 358 (2021).
  • Sheinerman KS , ToledoJB , TsivinskyVGet al. Circulating brain-enriched microRNAs as novel biomarkers for detection and differentiation of neurodegenerative diseases. Alzheimers Res. Ther.9(1), 89 (2017).
  • Yang F , ZhouFL. Identification of a four-miRNA signature predicts the prognosis of papillary thyroid cancer. World J. Clin. Cases11(1), 92 (2023).
  • Karadag A , OzenA , OzkurtMet al. Identification of miRNA signatures and their therapeutic potentials in prostate cancer. Mol. Biol. Rep.48, 5531–5539 (2021).
  • Han G , KuangZ , DengL. MSCNE: predict miRNA–disease associations using neural network based on multi-source biological information. IEEE/ACM Trans. Comput. Biol. Bioinform.19(5), 2926–2937 (2021).
  • Liu Y , LuoJ , WuH. miRNA–disease associations prediction based on neural tensor decomposition. In: Intelligent Computing Theories and Application: 17th International Conference, ICIC 2021, Proceedings, Part III 17.Shenzhen, China, 312–323 (2021).
  • Ni RK , GaoZ , JiCM. ICNNMDA: an improved convolutional neural network for predicting miRNA-disease associations. In: Intelligent Computing Theories and Application: 17th International Conference, ICIC 2021, Proceedings, Part III 17.Shenzhen, China, 445–457 (2021).
  • Zhu CC , WangCC , ZhaoYet al. Identification of miRNA–disease associations via multiple information integration with Bayesian ranking. Brief. Bioinform.22(6), bbab302 (2021).
  • Lee RC , FeinbaumRL , AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75(5), 843–854 (1993).
  • Pfeffer S , ZavolanM , GrässerFAet al. Identification of virus-encoded microRNAs. Science304(5671), 734–736 (2004).
  • Watanabe Y , KishiA , YachieNet al. Computational analysis of microRNA-mediated antiviral defense in humans. FEBS Lett.581(24), 4603–4610 (2007).
  • Guterres A , deAzeredo Lima CH , MirandaRL , GadelhaMR. What is the potential function of microRNAs as biomarkers and therapeutic targets in COVID-19?Infect. Genet. Evol.85, 104417 (2020).
  • Sætrom P , HealeBS , SnøveOJret al. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res.35(7), 2333–2342 (2007).
  • Hardin LT , XiaoN. miRNAs: The key regulator of COVID-19 disease. Int. J. Cell B.2022, 1645366 (2022).
  • Bertolazzi G , CipollinaC , BenosPVet al. miR-1207-5p can contribute to dysregulation of inflammatory response in COVID-19 via targeting SARS-CoV-2 RNA. Front. Cell. Infect. Microbiol.10, 586592 (2020).
  • Sardar R , SatishD , BirlaSet al. Integrative analyses of SARS-CoV-2 genomes from different geographical locations reveal unique features potentially consequential to host–virus interaction, pathogenesis and clues for novel therapies. Heliyon6(9), e04658 (2020).
  • Jamal M , BangashHI , HabibaMet al. Immune dysregulation and system pathology in COVID-19. Virulence12(1), 918–936 (2021).
  • Gasparello J , FinottiA , GambariR. Tackling the COVID-19 ‘cytokine storm’ with microRNA mimics directly targeting the 3′ UTR of pro-inflammatory mRNAs. Med. Hypotheses146, 110415 (2021).
  • Hu J , StojanovićJ , YasaminehSet al. The potential use of microRNAs as a therapeutic strategy for SARS-CoV-2 infection. Arch. Virol.166(10), 2649–2672 (2021).
  • Arisan ED , DartA , GrantGHet al. The prediction of miRNAs in SARS-CoV-2 genomes: hsa-miR databases identify 7 key miRs linked to host responses and virus pathogenicity-related KEGG pathways significant for comorbidities. Viruses12(6), 614 (2020).
  • Su YC , HuangYF , WuYWet al. MicroRNA-155 inhibits dengue virus replication by inducing heme oxygenase-1-mediated antiviral interferon responses. FASEB J.34(6), 7283–7294 (2020).
  • Van Der Made CI , SimonsA , Schuurs-HoeijmakersJet al. Presence of genetic variants among young men with severe COVID-19. JAMA324(7), 663–673 (2020).
  • Pierce JB , SimionV , IcliBet al. Computational analysis of targeting SARS-CoV-2, viral entry proteins ACE2 and TMPRSS2, and interferon genes by host microRNAs. Genes11(11), 1354 (2020).
  • Centa A , FonsecaAS , daSilva Ferreira SGet al. Deregulated miRNA expression is associated with endothelial dysfunction in post-mortem lung biopsies of COVID-19 patients. Am. J. Physiol. Lung Cell. Mol. Physiol.320(3), L405–L412 (2021).
  • Kim WR , ParkEG , KangKWet al. Expression analyses of microRNAs in hamster lung tissues infected by SARS-CoV-2. Mol. Cells43(11), 953 (2020).
  • Lu D , ChatterjeeS , XiaoKet al. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. J. Mol. Cell. Cardiol.148, 46–49 (2020).
  • Matarese A , GambardellaJ , SarduCet al. miR-98 regulates TMPRSS2 expression in human endothelial cells: key implications for COVID-19. Biomedicines8(11), 462 (2020).
  • Nersisyan S , ShkurnikovM , TurchinovichAet al. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2. PLOS ONE15(7), e0235987 (2020).
  • Chen L , LiuY , WuJet al. Lung adenocarcinoma patients have higher risk of SARS-CoV-2 infection. Aging (Albany NY)13(2), 1620 (2021).
  • Bahrami A , BakheradM. Comparative genomics identifies key genes and miRNAs that may be used as a strategy to control and treatment of COVID-19. Trends Med.20(6), 1–7 (2020).
  • Liu X , ZhuL , LiaoSet al. The porcine microRNA transcriptome response to transmissible gastroenteritis virus infection. PLOS ONE10(3), e0120377 (2015).
  • Mone P , GambardellaJ , WangXet al. miR-24 targets SARS-CoV-2 co-factor neuropilin-1 in human brain microvascular endothelial cells: insights for COVID-19 neurological manifestations. Res. Square3, 192099 (2021).
  • Sardar R , SatishD , BirlaSet al. Comparative analyses of SARS-CoV2 genomes from different geographical locations and other coronavirus family genomes reveals unique features potentially consequential to host-virus interaction and pathogenesis. BioRxiv doi: 10.1101/2020.03.21.001586 (2020) ( Preprint).
  • Haddad H , Al-ZyoudW. miRNA target prediction might explain the reduced transmission of SARS-CoV-2 in Jordan, Middle East. Noncoding RNA Res.5(3), 135–143 (2020).
  • Hosseini Rad SMA , McLellanAD. Implications of SARS-CoV-2 mutations for genomic RNA structure and host microRNA targeting. Int. J. Mol. Sci.21(13), 4807 (2020).
  • Tang H , LuX , QieSet al. Thoughts on detecting tissue distribution of potential COVID-19 receptors. Future Virol.15(8), 489–496 (2020).
  • Chen L , ZhongL. Genomics functional analysis and drug screening of SARS-CoV-2. Genes Dis.7(4), 542–550 (2020).
  • Liu Z , WangJ , XuYet al. Implications of the virus-encoded miRNA and host miRNA in the pathogenicity of SARS-CoV-2. arXiv doi: 10.48550/arXiv.2004.04874 (2020) ( Preprint).
  • Demirci MDS , AdanA. Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection. PeerJ8, e9369 (2000).
  • Garg A , SeeligerB , DerdaAAet al. Circulating cardiovascular microRNAs in critically ill COVID-19 patients. Eur. J. Heart Fail.23(3), 468–475 (2021).
  • Zhao Q , WangQ , ZhaoBet al. Identification of a SARS-CoV-2 virus-encoded small non-coding RNA in association with the neurological disorders in COVID-19 patients. Signal Transduct. Target. Ther.7(1), 107 (2022).
  • Li W , YangS , XuPet al. SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EbioMedicine76, 103861 (2022).
  • Yang S , TongY , ChenL , YuW. Human identical sequences, hyaluronan, and hymecromone – the new mechanism and management of COVID-19. Mol. Biomed.3(1), 15 (2022).
  • Chen YM , ZhengY , YuYet al. Blood molecular markers associated with COVID-19 immunopathology and multi-organ damage. EMBO J.39(24), e105896 (2020).
  • Bruscella P , BottiniS , BaudessonCet al. Viruses and miRNAs: more friends than foes. Front. Microbiol.8, 824 (2017).
  • Hoffmann M , Kleine-WeberH , SchroederSet al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell181(2), 271–280 (2020).
  • Zhang S , AmahongK , SunXet al. The miRNA: a small but powerful RNA for COVID-19. Brief. Bioinform.22(2), 1137–1149 (2021).
  • Turjya RR , KhanMAAK , IslamABMMK. Perversely expressed long noncoding RNAs can alter host response and viral proliferation in SARS-CoV-2 infection. Future Virol.15(9), 577–593 (2020).
  • Widiasta A , SribudianiY , NugrahaprajaHet al. Potential role of ACE2-related microRNAs in COVID-19-associated nephropathy. Noncoding RNA Res.5(4), 153–166 (2020).
  • Mohammad S , AzizR , AlMahri Set al. Obesity and COVID-19: what makes obese host so vulnerable? Immun. Ageing 18(1), 1–10 (2021).
  • Drucker DJ . Diabetes, obesity, metabolism and SARS-CoV-2 infection: the end of the beginning. Cell Metab.33(3), 479–498 (2021).
  • Roganović J . Downregulation of microRNA-146a in diabetes, obesity and hypertension may contribute to severe COVID-19. Med. Hypotheses146, 110448 (2021).
  • Zhou YH , LiH , QinYYet al. Predictive factors of progression to severe COVID-19. Open Med.15(1), 805–814 (2020).
  • Mirzaei R , MahdaviF , BadrzadehFet al. The emerging role of microRNAs in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Int. Immunopharmacol.90, 107204 (2021).
  • Sabbatinelli J , GiulianiA , MatacchioneGet al. Decreased serum levels of the inflammaging marker miR-146a are associated with clinical non-response to tocilizumab in COVID-19 patients. Mech. Ageing Dev.193, 111413 (2021).
  • Alivernini S , GremeseE , McSharryCet al. MicroRNA-155 at the critical interface of innate and adaptive immunity in arthritis. Front. Immunol.8, 1932 (2018).
  • Drury R , O’ConnorD , PollardA. The clinical application of microRNAs in infectious disease. Front. Immunol.8, 1182 (2017).
  • Soni DK , Cabrera-LuqueJ , KarSet al. Suppression of miR-155 attenuates lung cytokine storm induced by SARS-CoV-2 infection in human ACE2-transgenic mice. BioRxiv doi: 10.1101/2020.12.17.423130 (2020) ( Preprint).
  • Kumar A , AroraA , SharmaPet al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab. Syndr.14(4), 535–545 (2020).
  • Fulzele S , SahayB , YusufuIet al. COVID-19 virulence in aged patients might be impacted by the host cellular microRNAs abundance/profile. Aging Dis.11(3), 509 (2020).
  • Mishra PK , TandonR , ByrareddySN. Diabetes and COVID-19 risk: an miRNA perspective. Am. J. Physiol. Heart Circ. Physiol.319(3), H604–H609 (2020).
  • Tang H , GaoY , LiZet al. The noncoding and coding transcriptional landscape of the peripheral immune response in patients with COVID-19. Clin. Transl. Med.10(6), e200 (2020).
  • Khan M , SanyM , UsRet al. Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Front. Genet.11, 765 (2020).
  • Lawrence T . The nuclear factor B pathway in inflammation. Cold Spring Harb. Perspect. Biol.1(6), a001651 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.