118
Views
0
CrossRef citations to date
0
Altmetric
Review

Phytochemicals in Cervical Cancer: An Epigenetic Overview

, , , , , , , & ORCID Icon show all
Pages 941-959 | Received 24 May 2023, Accepted 17 Oct 2023, Published online: 02 Nov 2023

References

  • Sung H , FerlayJ , SiegelRLet al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.71(3), 209–249 (2021).
  • Ferlay J , ColombetM , SoerjomataramIet al. Cancer Today. International Agency for Research on Cancer. Global Cancer Observatory, Lyon, France (2021).
  • American Cancer Society. Cancer Facts&Figures 2023.. American Cancer Society, Atlanta, USA (2023). www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/2023-cancer-facts-figures.html
  • WHO . Institut Català d’Oncologia (ICO), Information Centre on HPV and Cervical Cancer (2022): human papillomavirus and related cancers in Egypt. Summ. Rep. Updat.22 (2022).
  • Chan CK , AimagambetovaG , UkybassovaT , KongrtayK , AzizanA. Human papillomavirus infection and cervical cancer: epidemiology, screening, and vaccination – review of current perspectives. J. Oncol.2019, 1–11 (2019).
  • Lin M , YeM , ZhouJ , WangZP , ZhuX. Recent advances on the molecular mechanism of cervical carcinogenesis based on systems biology technologies. Comput. Struct. Biotechnol. J.17, 241–250 (2019).
  • Wassie M , ArgawZ , TsigeY , AbebeM , KisaS. Survival status and associated factors of death among cervical cancer patients attending at Tikur Anbesa Specialized Hospital, Addis Ababa, Ethiopia: a retrospective cohort study. BMC Cancer19, 1 (2019).
  • Johnson CA , JamesD , MarzanA , CancerAMC. An overview of pathophysiology and management. Semin. Oncol. Nursing Apr.35(2), 166–174 (2019).
  • Castellsagué X . Natural history and epidemiology of HPV infection and cervical cancer. Gynecol. Oncol.1(110), 3 (2008).
  • García-Closas R , CastellsaguéX , BoschX , GonzálezCA. The role of diet and nutrition in cervical carcinogenesis: a review of recent evidence. Int. J. Cancer117(4), 629–637 (2005).
  • Campos NG , SharmaM , ClarkAet al. The health and economic impact of scaling cervical cancer prevention in 50 low- and lower-middle-income countries. Int. J. Gynecol. Obstet.138, 47–56 (2017).
  • Manaf R , IsmailS , CeciliaN. Global burden of cervical cancer: a literature review. Int. J. Public Heal. Clin. Sci.4(2), (2017).
  • LaVigne AW , TriedmanSA , RandallTC , TrimbleEL , ViswanathanAN. Cervical cancer in low- and middle-income countries: addressing barriers to radiotherapy delivery. Gynecol. Oncol. Rep.22, 16–20 (2017).
  • Lelchuk A , MorinN , BainK. Squamous cell carcinoma of cervix origin with rare metastasis to the colon. AME Case Rep.2, 23 (2018).
  • Bhat S , KabekkoduSP , NoronhaA , SatyamoorthyK. Biological implications and therapeutic significance of DNA methylation regulated genes in cervical cancer. Biochimie121, 298–311 (2016).
  • Sharma A , KulkarniV , BhaskaranUet al. Profile of cervical cancer patients attending tertiary care hospitals of Mangalore, Karnataka: a 4 year retrospective study. J. Nat. Sci. Biol. Med.8(1), 125–129 (2017).
  • Alay I , KayaC , KaracaIet al. The effect of being diagnosed with human papillomavirus infection on women’s sexual lives. J. Med. Virol.92(8), 1290–1297 (2020).
  • Boda D , DoceaAO , CalinaDet al. Human papillomavirus: apprehending the link with carcinogenesis and unveiling new research avenues (Review). Int. J. Oncol.52(3), 637–655 (2018).
  • Prati B , MarangoniB , BoccardoE. Human papillomavirus and genome instability: from productive infection to cancer. Clinics (Sao Paulo, Brazil)73(Suppl. 1), e539s (2018).
  • McBride AA , WarburtonA. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathogen.13, 4 (2017).
  • Gupta SM , Mania-PramanikJ. Molecular mechanisms in progression of HPV-associated cervical carcinogenesis. J. Biomed. Sci.26(1), 28 (2019).
  • Garbuglia AR , LapaD , SiasC , CapobianchiMR , DelPorto P. The use of both therapeutic and prophylactic vaccines in the therapy of papillomavirus disease. Front. Immunol.11, 188 (2020).
  • Jing Y , WangT , ChenZet al. Phylogeny and polymorphism in the long control regions E6, E7, and L1 of HPV Type 56 in women from southwest China. Mol. Med. Rep.17(5), 7131–7141 (2018).
  • Di-Domenico M , GiovaneG , KouidhiSet al. HPV epigenetic mechanisms related to oropharyngeal and cervix cancers. Cancer Biol. Ther.19(10), 850–857 (2017).
  • Yeo-Teh N , ItoY , JhaS. High-risk human papillomaviral oncogenes E6 and E7 target key cellular pathways to achieve oncogenesis. Int. J. Mol. Sci.19(6), 1706 (2018).
  • Martinez-Zapien D , RuizFX , PoirsonJet al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature529(7587), 541–545 (2016).
  • Ganti K , BroniarczykJ , ManoubiWet al. The human papillomavirus E6 PDZ binding motif: from life cycle to malignancy. Viruses7(7), 3530–3551 (2015).
  • Kranjec C , TomaićV , MassimiP , NicolaidesL , DoorbarJ , BanksL. The high-risk HPV E6 target scribble (hScrib) is required for HPV E6 expression in cervical tumour-derived cell lines. Papillomavirus Res.2, 70–77 (2016).
  • Fischer M , UxaS , StankoC , MaginTM , EngelandK. Human papillomavirus E7 oncoprotein abrogates the p53-p21-DREAM pathway. Sci. Rep.7(1), 2603 (2017).
  • Kgatle MM , SpearmanCW , KallaAA , HairwadziHN. DNA oncogenic virus-induced oxidative stress, genomic damage, and aberrant epigenetic alterations. Oxid. Med. Cell Longev.2017, 1–16 (2017).
  • Pop S , EnciuAM , TarcomnicuIet al. Phytochemicals in cancer prevention: modulating epigenetic alterations of DNA methylation. Phytochem. Rev.18, 1005–1024 (2019).
  • Fang J , ZhangH , JinS. Epigenetics and cervical cancer: from pathogenesis to therapy. Tumour Biol.35, 5083–5093 (2014).
  • Bennett RL , LichtJD. Targeting epigenetics in cancer. Annu. Rev. Pharmacol. Toxicol.58(1), 187–207 (2018).
  • Sen P , GangulyP , GangulyN. Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer. Oncol. Lett.15(1), 11–22 (2018).
  • Stability RW . Stability and flexibility of epigenetic gene regulation in mammalian development. Nature24(447), 7143 (2007).
  • Okano M , BellDW , HaberDA , LiE. DNA methyltransferases Dnmt3a LED. and Dnmt3b are essential for de novo methylation and mammalian development. Cell29(99), 3 (1999).
  • Ooi SK , QiuC , BernsteinEet al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature9(448), 7154 (2007).
  • Arora I , SharmaM , TollefsbolTO. Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. Int. J. Mol. Sci.20(18), 4567 (2019).
  • Sundaram MK , UnniS , SomvanshiPet al. Genistein modulates signaling pathways and targets several epigenetic markers in HeLa cells. Genes10(12), 955 (2019).
  • Nebbioso A , TambaroFP , Dell’AversanaC , AltucciL. Cancer epigenetics: moving forward. PLOS Genet.14, 6 (2018).
  • Yang Q , YangY , ZhouNet al. Epigenetics in ovarian cancer: premise, properties, and perspectives. Mol. Cancer17(1), 1–21 (2018).
  • Shukla S , MeeranSM , KatiyarSK. Epigenetic regulation by selected dietary phytochemicals in cancer chemoprevention. Cancer Lett.355(1), 9–17 (2014).
  • Kaufman-Szymczyk A , MajewskiG , Lubecka-PietruszewskaK , Fabianowska-MajewskaK. The role of sulforaphane in epigenetic mechanisms, including interdependence between histone modification and DNA methylation. Int. J. Mol. Sci.16(12), 29732–29743 (2015).
  • Sanaei M , KavoosiF. Histone deacetylases and histone deacetylase inhibitors: molecular mechanisms of action in various cancers. Adv. Biomed. Res.8, 63 (2019).
  • Fernandes J , AcuñaSM , AokiJI , Floeter-WinterLM , MuxelSM. Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA5(1), 17 (2019).
  • Oliveto S , MancinoM , ManfriniN , BiffoS. Role of microRNAs in translation regulation and cancer. World J. Biol. Chem.8(1), 45–56 (2017).
  • Michlewski G , CáceresJF. Post-transcriptional control of miRNA biogenesis. RNA (New York, NY)25(1), 1–16 (2019).
  • Pardini B , DeMaria D , FrancavillaA , DiGaetano C , RoncoG , NaccaratiA. MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer18, 1 (2018).
  • Svoronos AA , EngelmanDM , SlackFJ. OncomiR or tumour suppressor? The duplicity of MicroRNAs in cancer.Cancer Res.76(13), 3666–3670 (2016).
  • miRBase: the microRNA database . https://mirbase.org/
  • Kamińska K , NalejskaE , KubiakMet al. Prognostic and predictive epigenetic biomarkers in oncology. Mol. Diagn. Ther.23(1), 83–95 (2019).
  • Durzynska J , LesniewiczK , PorebaE. Human papillomaviruses in epigenetic regulations. Mutat. Res. Mutat. Res.772, 36–50 (2017).
  • Do H , KimW. Roles of oncogenic long non-coding RNAs in cancer development. Genomics Informat.16, 4 (2018).
  • Dong J , SuM , ChangW , ZhangK , WuS , XuT. Long non-coding RNAs on the stage of cervical cancer (Review). Oncol. Rep.38, 1923–1931 (2017).
  • Li B , LiB. The role of lncRNAs in the development of endometrial carcinoma (Review). Oncol. Lett.16, 3424–3429 (2018).
  • Zhang X , MaoL , LiL , HeZ , WangN , SongY. Long noncoding RNA GIHCG functions as an oncogene and serves as a serum diagnostic biomarker for cervical cancer. J. Cancer10(3), 672–681 (2019).
  • Alfaro-Mora Y , HerreraLA , Cáceres-GutiérrezR , Andonegui-ElgueraMA , Dominguez-GómezG , D’iaz-ChávezJ. Role of Epigenetics in Cervical Cancer.Gynaecological Malignancies – Updates and Advances, IntechOpen,London, UK (2019).
  • Cicchini L , WestrichJA , XuTet al. Suppression of antitumour immune responses by human papillomavirus through epigenetic downregulation of CXCL14. mBio7(3), 216–270 (2016).
  • Bashaw AA , LeggattGR , ChandraJ , TuongZK , FrazerIH. Modulation of antigen presenting cell functions during chronic HPV infection. Papillomavirus Res. (Amsterdam, The Netherlands)4, 58–65 (2017).
  • Landoni F , ColomboA , MilaniR , PlacaF , ZanagnoloV , MangioniC. Randomized study between radical surgery and radiotherapy for the treatment of stage IB–IIA cervical cancer: 20-year update. J. Gynecol. Oncol.28, 3 (2017).
  • Shim S-H , LimMC , KimHJet al. Can simple trachelectomy or conization show comparable survival rate compared with radical trachelectomy in IA1 cervical cancer patients with lymphovascular space invasion who wish to save fertility? A systematic review and guideline recommendation. PLOS ONE 13, 1 (2018).
  • Tseng JH , AloisiA , SonodaYet al. Long-term oncologic outcomes of uterine-preserving surgery in young women with stage ib1 cervical cancer. Int. J. Gynecol. Cancer28(7), 1350–1359 (2018).
  • Ventola CL . Cancer Immunotherapy, Part 2: Efficacy, safety, and other clinical considerations. PT42(7), 452–463 (2017).
  • Jordan K , FeyerP , H’OllerU , LinkH , W’OrmannB , JahnF. Supportive treatments for patients with cancer. Deutsches Arzteblatt Int.114(27–28), 481–487 (2017).
  • Goktas SB , GunI , YildizT , SakarMN , CaglayanS. The effect of total hysterectomy on sexual function and depression. Pakistan J. Med. Sci.31(3), 700–705 (2015).
  • Pfaendler KS , TewariKS. Changing paradigms in the systemic treatment of advanced cervical cancer. Am. J. Obstet. Gynecol.214(1), 2 (2016).
  • Cho O , ChunM. Management for locally advanced cervical cancer: new trends and controversial issues. Radiat. Oncol. J.36(4), 254–264 (2018).
  • Mishra GA , PimpleSA , ShastriSS. An overview of prevention and early detection of cervical cancers. Indian J. Med. Paediatr. Oncol.32(3), 125–132 (2011).
  • Baylin SB , JonesPA. Epigenetic determinants of cancer. Cold Spring Harbor Persp.Biol.8, 9 (2016).
  • Suraweera A , O’ByrneKJ , RichardDJ. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Front. Oncol.8, 92 (2018).
  • Martin SL , RoystonKJ , TollefsbolTO. The Role of Non-Coding RNAs and Isothiocyanates in Cancer. Mol. Nutr. Food Res.62, 18 (2018).
  • Ribeiro ML , Reyes-GarauD , ArmengolM , Fernández-SerranoM , RouéG. Recent advances in the targeting of epigenetic regulators in B-cell non-Hodgkin lymphoma. Front. Genet.10, 986 (2019).
  • Kronfol MM , DozmorovMG , HuangR , SlattumPW , McClayJL. The role of epigenomics in personalized medicine. Expert Rev. Prec. Med. Drug Dev.2(1), 33–45 (2017).
  • Greenwell M , RahmanPK. Medicinal plants: their use in anticancer treatment. Int. J. Pharmaceut. Sci. Res.6(10), 4103–4112 (2015).
  • Barbieri R , CoppoE , MarcheseAet al. Phytochemicals for human disease: an update on plant-derived compounds antibacterial activity. Microbiol. Res.196, 44–68 (2017).
  • Karimi A , MajlesiM , Rafieian-KopaeiM. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol.4(1), 27–30 (2015).
  • Kapinova A , KubatkaP , GolubnitschajaOet al. Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ. Health Prev. Med.23(1), 36 (2018).
  • Sharma SB , GuptaR. Drug development from natural resource: a systematic approach. Mini Rev. Med. Chem.1(15), 1 (2015).
  • Anwar-Mohamed A , El-KadiAOS. Sulforaphane induces CYP1A1 mRNA, protein, and catalytic activity levels via an AhR-dependent pathway in murine hepatoma Hepa 1c1c7 and human HepG2 cells. Cancer Lett.8(275), 1 (2009).
  • Khan A , SundaramMK , HamzaAet al. Sulforaphane reverses the expression of various tumour suppressor genes by targeting DNMT3B and HDAC1 in human cervical cancer cells. Evidence-Based Complement. Altern. Med.2015, 412149 (2015).
  • Su X , JiangX , MengL , DongX , ShenY , XinY. Anticancer activity of sulforaphane: the epigenetic mechanisms and the Nrf2 signaling pathway. Oxid. Med. Cell Longev.2018, 1–10 (2018).
  • Zaman MS , ChauhanN , YallapuMMet al. Curcumin nanoformulation for cervical cancer treatment. Sci. Rep.6, 20051 (2016).
  • Thakur VS , DebG , BabcookMAet al. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J.16, 151–163 (2014).
  • Kumar D , BasuS , ParijaLet al. Curcumin and ellagic acid synergistically induce ROS generation, DNA damage, p53 accumulation and apoptosis in HeLa cervical carcinoma cells. Biomed. Pharmacother.81, 31–37 (2016).
  • Kim E , BissonWH , L’OhrCVet al. Histone and non-histone targets of dietary deacetylase inhibitors. Curr. Topics Med. Chem.16(7), 714–731 (2016).
  • Guo H , ZhangD , FuQ. Inhibition of cervical cancer by promoting IGFBP7 expression using ellagic acid from pomegranate peel. Med. Sci. Monit.22, 4881–4886 (2016).
  • Tuli HS , TuorkeyMJ , ThakralFet al. Molecular mechanisms of action of genistein in cancer: recent advances. Front. Pharmacol.10, 1336 (2019).
  • Abotaleb M , SamuelSM , VargheseEet al. Flavonoids in cancer and apoptosis. Cancers28, 11 (2018).
  • Farhan M , UllahMF , FaisalMet al. Differential methylation and acetylation as the epigenetic basis of resveratrol’s anticancer activity. Medicines (Basel, Switzerland)6(1), 24 (2019).
  • Yu X , LiuY , WangY , MaoX , ZhangY , XiaJ. Baicalein induces cervical cancer apoptosis through the NF-κB signaling pathway. Mol. Med. Rep.17(4), 5088–5094 (2018).
  • Clemente-Soto AF , Salas-VidalE , Milan-PachecoC , Sánchez-CarranzaJN , Peralta-ZaragozaO , González-MayaL. Quercetin induces G2 phase arrest and apoptosis with the activation of p53 in an E6 expression-independent manner in HPV-positive human cervical cancer-derived cells. Mol. Med. Reports1(19), 3 (2019).
  • Sundaram MK , HussainA , HaqueS , RainaR , AfrozeN. Quercetin modifies 5′CpG promoter methylation and reactivates various tumour suppressor genes by modulating epigenetic marks in human cervical cancer cells. J. Cell. Biochem.120(10), 18357–18369 (2019).
  • Palliyaguru DL , YuanJM , KenslerTW , FaheyJW. Isothiocyanates: translating the power of plants to people. Mol. Nutr. Food Res.62, 18 (2018).
  • Mokhtari RB , NargesBaluch N , HomayouniTSet al. The role of sulforaphane in cancer chemoprevention and health benefits: a mini-review. J. Cell Comm. Signal.12(1), 91–101 (2018).
  • Jiang X , LiuY , MaLet al. Chemopreventive activity of sulforaphane. Drug design. Dev. Ther.12, 2905–2913 (2018).
  • Cheng YM , TsaiCC , HsuYC. Sulforaphane, a dietary isothiocyanate, induces G2/M arrest in cervical cancer cells through CyclinB1 downregulation and GADD45β/CDC2 association. Int. J. Mol. Sci.17, 9 (2016).
  • Sharma C , SadriehL , PriyaniA , AhmedM , HassanAH , HussainA. Anti-carcinogenic effects of sulforaphane in association with its apoptosis-inducing and anti-inflammatory properties in human cervical cancer cells. Cancer Epidemiol.1(35), 3 (2011).
  • Park SY , KimGY , BaeSJ , YooYH , ChoiYH. Induction of apoptosis by isothiocyanate sulforaphane in human cervical carcinoma HeLa and hepatocarcinoma HepG2 cells through activation of caspase-3. Oncol. Reports1(18), 1 (2007).
  • Schnekenburger M , DiederichM. Nutritional epigenetic regulators in the field of cancer. Epigenetic Cancer Ther.2015, 393–425 (2015).
  • Wang S , WangY , LiuX , YangY , WuS , SfnLY. SFN enhanced the radiosensitivity of cervical cancer cells via activating LATS2 and blocking Rad51/MDC1 recruitment to DNA damage site. Cancers8, 14 (2022).
  • Woodward KA , DraijerR , ThijssenDHJ , LowDA. Polyphenols and microvascular function in humans: a systematic review. Curr. Pharm. Des.24(2), 203–226 (2018).
  • Sundaram MK , AnsariMZ , AlMutery Aet al. Genistein induces alterations of epigenetic modulatory signatures in human cervical cancer cells. Anticancer Agents Med. Chem.2018(18), 412–421 (2018).
  • Hassan FU , RehmanMS , KhanMSet al. Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects. Front. Genet.4, 10 (2019).
  • Lewinska A , AdamczykJ , PajakJet al. Curcumin-mediated decrease in the expression of nucleolar organizer regions in cervical cancer (HeLa) cells. Mutat. Res. Toxicol. Environ. Mutagen.771, 43–52 (2014).
  • Khojaste E , AhmadizadehC. Catechin metabolites along with curcumin inhibit proliferation and induce apoptosis in cervical cancer cells by regulating VEGF expression in-vitro. Nutr. Cancer24(74), 3 (2022).
  • Wang T , WuX , SongY , ChengH. Curcumin induces G2/M arrest and triggers autophagy, ROS generation and cell senescence in cervical cancer cells. J. Cancer11, 22 (2020).
  • Zhao X , ZhangR , SongZet al. Curcumin suppressed the proliferation and apoptosis of HPV-positive cervical cancer cells by directly targeting the E6 protein. Phyther. Res. doi: 10.1002/ptr.7868 (2023). ( Epub ahead of print).
  • Ismail T , CalcabriniC , DiazARet al. Ellagitannins in cancer chemoprevention and therapy. Toxins8(5), 151 (2016).
  • Khiewkamrop P , PhunsomboonP , RichertLet al. E catechins. EGCG and EC facilitate apoptosis induction through targeting de novo lipogenesis pathway in HepG2 cells. Cancer Cell Int.18, 46 (2018).
  • Wang Y-Q , LuJ-L , LiangY-R , LiQ-S. Suppressive effects of EGCG on cervical cancer. Molecules23(9), 2334 (2018).
  • Alshatwi AA , PeriasamyVS , AthinarayananJ , ElangoR. Synergistic anticancer activity of dietary tea polyphenols and bleomycin hydrochloride in human cervical cancer cell: caspase-dependent and independent apoptotic pathways. Chem. Biol. Interact.247, 1–10 (2016).
  • Qiao Y , CaoJ , XieL , ShiX. Cell growth inhibition and gene expression regulation by (-)-epigallocatechin-3-gallate in human cervical cancer cells. Arch. Pharmacal Res.32, 1309–1315 (2009).
  • Asif Siddiqui F , NaimM , IslamN. Apoptotic effect of green tea polyphenol (EGCG) on cervical carcinoma cells. Diagn. Cytopathol.39(7), 482–488 (2011).
  • Montgomery M , SrinivasanA. Epigenetic gene regulation by dietary compounds in cancer prevention. Adv. Nutr.10(6), 1012–1028 (2019).
  • Sundaram MK , HaqueS , SomvanshiP , BhardwajT , HussainA. Epigallocatechin gallate inhibits HeLa cells by modulation of epigenetics and signaling pathways. 3 Biotech.10(11), 484 (2020).
  • Zhu Y , HuangY , LiuMet al. Epigallocatechin gallate inhibits cell growth and regulates miRNA expression in cervical carcinoma cell lines infected with different high-risk human papillomavirus subtypes. Exp. Ther. Med.1(17), 3 (2019).
  • Kř\’\ižová L , DadákováK , KašparovskáJ , KašparovskýT. Isoflavones. Molecules (Basel, Switzerland)24(6), 1076 (2019).
  • Hajialyani M , FarzaeiMH , EcheverríaJet al. Hesperidin as a neuroprotective agent: a review of animal and clinical evidence. Molecules (Basel, Switzerland)24(3), 648 (2019).
  • Panche AN , DiwanAD , ChandraSR. Flavonoids: an overview. J. Nutr. Sci.5, e47 (2016).
  • Cirmi S , FerlazzoN , LombardoGEet al. Chemopreventive agents and inhibitors of cancer hallmarks: may citrus offer new perspectives?. Nutrients8(11), 698 (2016).
  • Pandey P , KhanF , MauryaP. Targeting Jab1 using hesperidin (dietary phytocompound) for inducing apoptosis in HeLa cervical cancer cells. J. Food Biochem.45, 7 (2021).
  • Abu-Amero KK , KondkarAA , ChalamKV. Resveratrol and ophthalmic diseases. Nutrients8(4), 200 (2016).
  • Salehi B , MishraAP , NigamMet al. Resveratrol: a double-edged sword in health benefits. Biomedicines6(3), 91 (2018).
  • Resveratrol RG . Multiple activities on the biological functionality of the cell. Nutraceuticals1, 453–464 (2016).
  • Ko JH , SethiG , UmJYet al. The role of resveratrol in cancer therapy. Int. J. Mol. Sci.18(12), 2589 (2017).
  • Saghafi T , TaheriRA , ParkkilaS , EmamehRZ. Phytochemicals as modulators of long non-coding RNAs and inhibitors of cancer-related carbonic anhydrases. Int. J. Mol. Sci.20(12), 2939 (2019).
  • Zhang P , LiH , YangBet al. Biological significance and therapeutic implication of resveratrol-inhibited Wnt, Notch and STAT3 signaling in cervical cancer cells. Genes Cancer5, 5–6 (2014).
  • Saenglee S , JogloyS , PatanothaiA , LeidM , SenawongT. Cytotoxic effects of peanut phenolics possessing histone deacetylase inhibitory activity in breast and cervical cancer cell lines. Pharmacol. Reports68, 1102–1110 (2016).
  • Liu Z , LiY , SheGet al. Resveratrol induces cervical cancer HeLa cell apoptosis through the activation and nuclear translocation promotion of FOXO3a. Die. Pharm. Int. J. Pharm. Sci.1(75), 6 (2020).
  • Jiang B , TianQ , ShuC , ZhaoJ , XueM , ZhuS. Resveratrol enhances the anti-cancer effects of cis-platinum on human cervical cancer cell lines by activating the SIRT3 relative anti-oxidative pathway. Front. Pharmacol.5, 13 (2022).
  • Li L , QiuRL , LinYet al. Resveratrol suppresses human cervical carcinoma cell proliferation and elevates apoptosis via the mitochondrial and p53 signaling pathways. Oncol. Lett.1(15), 6 (2018).
  • Chen RJ , KuoHC , ChengLHet al. Apoptotic and nonapoptotic activities of pterostilbene against cancer. Int. J. Mol. Sci.18, 19 (2018).
  • Asensi M , MedinaI , OrtegaAet al. Inhibition of cancer growth by resveratrol is related to its low bioavailability. Free Radic. Biol. Med.1(33), 3 (2002).
  • Chatterjee K , AlSharifD , MazzaC , SyarP , AlSharif M , FataJE. Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of HPV oncoprotein E6 in cervical cancer cells. Nutrients21, 10 (2018).
  • Shin HJ , HanJM , ChoiYS , JungHJ. Pterostilbene suppresses both cancer cells and cancer stem-like cells in cervical cancer with superior bioavailability to resveratrol. Molecules6, 25 (2020).
  • Kim YJ , KimHJ , LeeJY , KimDH , KangMS , ParkW. Anti-inflammatory effect of baicalein on polyinosinic-polycytidylic acid-induced RAW 264.7 mouse macrophages. Viruses10(5), 224 (2018).
  • Liao C-Y , LeeC-C , TsaiCet al. Novel investigations of flavonoids as chemopreventive agents for hepatocellular carcinoma. Biomed. Res. Int.2015(4), 1–26 (2015).
  • Yu X , YangY , LiYet al. Baicalein inhibits cervical cancer progression via downregulating long noncoding RNA BDLNR and its downstream PI3 K/Akt pathway. Int. J. Biochem. Cell Biol.94, 107–118 (2018).
  • Yang J , NieJ , MaXet al. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol. Cancer18, 26 (2019).
  • Lei H , ShiJ , TengYet al. Baicalein modulates the radiosensitivity of cervical cancer cells in vitro via miR-183 and the JAK2/STAT3 signaling pathway. Adv. Clin. Exp. Med.30(7), 727–736 (2021).
  • Wu X , YangZ , DangH , PengH , DaiZ. Baicalein inhibits the proliferation of cervical cancer cells through the GSK3β-dependent pathway. Oncol. Res. Featur. Preclin. Clin. Cancer Ther.7(26), 4 (2018).
  • Xia X , XiaJ , YangHet al. Baicalein blocked cervical carcinoma cell proliferation by targeting CCND1 via Wnt/β-catenin signaling pathway. Artif. Cell, Nanomed. Biotechnol.4(47), 1 (2019).
  • Yu X , LuK , XiaJ , MaoX. Baicalein induces HeLa cell growth inhibition by down-regulation of matrix metalloproteinases and activating extracellular signal-regulated kinase. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi: Chinese J. Cell Mol. Immunol.1(30), 8 (2014).
  • David AVA , ArulmoliR , ParasuramanS. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmaco. Rev.10(20), 84–89 (2016).
  • Shafabakhsh R , AsemiZ. Quercetin: a natural compound for ovarian cancer treatment. J. Ovarian Res.12, 55 (2019).
  • Hashemzaei M , FarAD , YariAet al. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep.38(2), 819–828 (2017).
  • Alvarez MC , MasoV , TorelloCOet al. The polyphenol quercetin induces cell death in leukemia by targeting epigenetic regulators of pro-apoptotic genes. Clin. Epigenet10, 139 (2018).
  • Fernández-Palanca P , FondevilaF , Méndez-BlancoC , TuñónMJ , González-GallegoJ , MaurizJL. Antitumor effects of quercetin in hepatocarcinoma in vitro and in vivo models: a systematic review. Nutrients11, 12 (2019).
  • He C , LuX , LiJet al. The effect of quercetin on cervical cancer cells as determined by inducing tumor endoplasmic reticulum stress and apoptosis and its mechanism of action. Am. J. Transl. Res.13, 5 (2021).
  • Murata M , KomatsuS , MiyamotoEet al. Quercetin up-regulates the expression of tumor-suppressive microRNAs in human cervical cancer. Biosci. Microbiota, Food Heal.42(1), 87–93 (2023).
  • Chan CW , DeadmanBJ , Manley-HarrisM , WilkinsAL , AlberDG , HarryE. Analysis of the flavonoid component of bioactive New Zealand mānuka (Leptospermum scoparium) honey and the isolation, characterisation and synthesis of an unusual pyrrole. Food Chem.141(3), 1772–1781 (2013).
  • Woźniak M , MrówczyńskaL , Kwaśniewska-SipP , WaśkiewiczA , NowakP , RatajczakI. Effect of the solvent on propolis phenolic profile and its antifungal, antioxidant, and in vitro cytoprotective activity in human erythrocytes under oxidative stress. Molecules17, 25 (2020).
  • Batra P , SharmaAK. Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech.3(6), 439–459 (2013).
  • Pal-Bhadra M , RamaiahMJ , ReddyTLet al. Plant HDAC inhibitor chrysin arrest cell growth and induce p21 WAF1 by altering chromatin of STAT response element in A375 cells. BMC Cancer12, 1–7 (2012).
  • Pawar JS , MustafaS , ChrysinGI. Chrysin and capsaicin induces premature senescence and apoptosis via mitochondrial dysfunction and p53 elevation in cervical cancer cells. Saudi J. Biol. Sci.1(29), 5 (2022).
  • Laishram S , MoirangthemDS , BorahJCet al. Chrysin rich Scutellaria discolor Colebr. induces cervical cancer cell death via the induction of cell cycle arrest and caspase-dependent apoptosis. Life Sci.15(143), 105–113 (2015).
  • Raina R , AfrozeN , SundaramMKet al. Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways. Eur. Rev. Med. Pharmacol. Sci.1(25), 5 (2021).
  • Yu Y , ZickS , LiX , ZouP , WrightB , SunD. Examination of the pharmacokinetics of active ingredients of ginger in humans. AAPS J.13, 417–426 (2011).
  • Wang W , LiCY , WenXD , LiP , WiL-W. Simultaneous determination of 6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol in rat plasma by liquid chromatography–mass spectrometry: application to pharmacokinetics. J. Chromatogr. B.15(877), 671–679 (2009).
  • Oyagbemi AA , SabaAB , AzeezOI. Molecular targets of [6]-gingerol: Its potential roles in cancer chemoprevention. Biofactors36(3), 169–178 (2010).
  • Rastogi N , DuggalS , SinghSKet al. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-gingerol in cervical cancer cells. Oncotarget12, 6 (2015).
  • Liu Y , WhelanRJ , PattnaikBRet al. Terpenoids from Zingiber officinale (ginger) induce apoptosis in endometrial cancer cells through the activation of p53. PLOS ONE31, 7 (2012).
  • Rastogi N , GaraRK , TrivediRet al. (6)-Gingerolinduced myeloid leukemia cell death is initiated by reactive oxygen species and activation of miR-27b expression. Free Radic. Biol. Med.1(68), 288–301 (2014).
  • Lv C , HongY , MiaoLet al. Wentilactone A as a novel potential antitumor agent induces apoptosis and G2/M arrest of human lung carcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the Ras/Raf/ERK/p53-p21 pathway. Cell Death Dis.4, 12 (2013).
  • Zhang F , ZhangJG , QuJ , ZhangQ , PrasadC , WeiZ-J. Assessment of anti-cancerous potential of 6-gingerol (Tongling white ginger) and its synergy with drugs on human cervical adenocarcinoma cells. Food Chem. Toxicol.1(109), 910–922 (2017).
  • Ahmed SH , GondaT , HunyadiA. Medicinal chemistry inspired by ginger: exploring the chemical space around 6-gingerol. RSC Adv.11(43), 26687–26699 (2021).
  • Liu Q , PengYB , QiLWet al. The cytotoxicity mechanism of 6-shogaol-treated HeLa human cervical cancer cells revealed by label-free shotgun proteomics and bioinformatics analysis. Evid. Based Complement. Altern. Med.1, 2012 (2012).
  • Pei XD , HeZL , YaoHLet al. 6-Shogaol from ginger shows anti-tumor effect in cervical carcinoma via PI3K/Akt/mTOR pathway. Eur. J. Nutr.1, 1–3 (2021).
  • Wei QY , HeKM , ChenJL , XuYM , LauA. Phytofabrication of nanoparticles as novel drugs for anticancer applications. Molecules (Basel, Switzerland)24(23), 4246 (2019).
  • Altemimi A , LakhssassiN , BaharloueiA , WatsonDG , LightfootDA. Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants (Basel, Switzerland)6(4), 42 (2017).
  • Bode AM , DongZ. Toxic phytochemicals and their potential risks for human cancer. Cancer Prev. Res. (Philadelphia, PA)8(1), 1–8 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.