849
Views
0
CrossRef citations to date
0
Altmetric
Review

The Role of RING Finger Proteins in Chromatin Remodeling and Biological Functions

, & ORCID Icon
Pages 1053-1068 | Received 30 Jun 2023, Accepted 25 Oct 2023, Published online: 15 Nov 2023

References

  • Sullivan BA , KarpenGH. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol.11(11), 1076–1083 (2004).
  • Kornberg RD , LorchY. Primary role of the nucleosome. Mol. Cell79(3), 371–375 (2020).
  • Kouzarides T . Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Weake VM , WorkmanJL. Histone ubiquitination: triggering gene activity. Mol. Cell29(6), 653–663 (2008).
  • Zhang X , LiB , RezaeianAHet al. H3 ubiquitination by NEDD4 regulates H3 acetylation and tumorigenesis. Nat. Commun.8, 14799 (2017).
  • Correction to Supporting Information for Chibaya et al. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc. Natl Acad. Sci. USA118(9), (2021).
  • Bhatnagar S , GazinC , ChamberlainLet al. TRIM37 is a new histone H2A ubiquitin ligase and breast cancer oncoprotein. Nature516(7529), 116–120 (2014).
  • Cai C , TangYD , ZhaiJ , ZhengC. The RING finger protein family in health and disease. Signal Transduct. Target. Ther.7(1), 300 (2022).
  • Pavri R , ZhuB , LiGet al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell125(4), 703–717 (2006).
  • So CC , RamachandranS , MartinA. E3 ubiquitin ligases RNF20 and RNF40 are required for double-stranded break (DSB) repair: evidence for monoubiquitination of histone H2B lysine 120 as a novel axis of DSB signaling and repair. Mol. Cell Biol.39(8), (2019).
  • Nishiyama A , YamaguchiL , SharifJet al. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature502(7470), 249–253 (2013).
  • Jackson SP , DurocherD. Regulation of DNA damage responses by ubiquitin and SUMO. Mol. Cell49(5), 795–807 (2013).
  • Schwertman P , Bekker-JensenS , MailandN. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat. Rev. Mol. Cell Biol.17(6), 379–394 (2016).
  • Hyun K , JeonJ , ParkK , KimJ. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med.49(4), e324 (2017).
  • Shvedunova M , AkhtarA. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol.23(5), 329–349 (2022).
  • Wang H , ZhaiL , XuJet al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell22(3), 383–394 (2006).
  • De Napoles M , MermoudJE , WakaoRet al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell7(5), 663–676 (2004).
  • Wang H , WangL , Erdjument-BromageHet al. Role of histone H2A ubiquitination in Polycomb silencing. Nature431(7010), 873–878 (2004).
  • Yamamoto Y , AbeA , EmiN. Clarifying the impact of polycomb complex component disruption in human cancers. Mol. Cancer Res.12(4), 479–484 (2014).
  • Elderkin S , MaertensGN , EndohMet al. A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin. Mol. Cell28(1), 107–120 (2007).
  • Endoh M , EndoTA , ShingaJet al. PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes. Elife6 (2017).
  • Wu X , JohansenJV , HelinK. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell49(6), 1134–1146 (2013).
  • Rona G , RobertiD , YinYet al. PARP1-dependent recruitment of the FBXL10-RNF68-RNF2 ubiquitin ligase to sites of DNA damage controls H2A.Z loading. Elife7 (2018).
  • Cao R , TsukadaY , ZhangY. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell20(6), 845–854 (2005).
  • Buchwald G , VanDer Stoop P , WeichenriederO , PerrakisA , Van LohuizenM , SixmaTK. Structure and E3-ligase activity of the ring–ring complex of polycomb proteins BMI1 and RING1B. EMBO J.25(11), 2465–2474 (2006).
  • Mallette FA , MattiroliF , CuiGet al. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J.31(8), 1865–1878 (2012).
  • Pinato S , ScandiuzziC , ArnaudoN , CitterioE , GaudinoG , PenengoL. RNF168, a new RING finger, MIU-containing protein that modifies chromatin by ubiquitination of histones H2A and H2AX. BMC Mol. Biol.10, 55 (2009).
  • Kalb R , MalleryDL , LarkinC , HuangJT , HiomK. BRCA1 is a histone-H2A-specific ubiquitin ligase. Cell Rep.8(4), 999–1005 (2014).
  • Lorick KL , JensenJP , FangS , OngAM , HatakeyamaS , WeissmanAM. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl Acad. Sci. USA96(20), 11364–11369 (1999).
  • Wu LC , WangZW , TsanJTet al. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet.14(4), 430–440 (1996).
  • Hashizume R , FukudaM , MaedaIet al. The RING heterodimer BRCA1–BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem.276(18), 14537–14540 (2001).
  • Starita LM , ParvinJD. Substrates of the BRCA1-dependent ubiquitin ligase. Cancer Biol. Ther.5(2), 137–141 (2006).
  • Boulton SJ . BRCA1-mediated ubiquitylation. Cell Cycle5(14), 1481–1486 (2006).
  • Barber LJ , BoultonSJ. BRCA1 ubiquitylation of CtIP: just the tIP of the iceberg?DNA Repair (Amst.)5(12), 1499–1504 (2006).
  • Chen A , KleimanFE , ManleyJL , OuchiT , PanZQ. Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase. J. Biol. Chem.277(24), 22085–22092 (2002).
  • Mallery DL , VandenbergCJ , HiomK. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J.21(24), 6755–6762 (2002).
  • Inoue D , AiharaH , SatoTet al. Dzip3 regulates developmental genes in mouse embryonic stem cells by reorganizing 3D chromatin conformation. Sci. Rep.5, 16567 (2015).
  • An JY , KimEA , JiangYet al. UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc. Natl Acad. Sci. USA107(5), 1912–1917 (2010).
  • An JY , KimE , ZakrzewskaAet al. UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells. PLOS ONE7(5), e37414 (2012).
  • Wang X , KangJY , WeiLet al. Correction: PHF7 is a novel histone H2A E3 ligase prior to histone-to-protamine exchange during spermiogenesis. Development147(8), (2020).
  • Zhang Y , MaoD , RoswitWTet al. PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection. Nat. Immunol.16(12), 1215–1227 (2015).
  • Liu Z , OughtredR , WingSS. Characterization of E3Histone, a novel testis ubiquitin protein ligase which ubiquitinates histones. Mol. Cell Biol.25(7), 2819–2831 (2005).
  • Bruhl J , TrautweinJ , SchaferA , LinneU , BouazouneK. The DNA repair protein SHPRH is a nucleosome-stimulated ATPase and a nucleosome-E3 ubiquitin ligase. Epigenetics Chromatin12(1), 52 (2019).
  • Zhu B , ZhengY , PhamADet al. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol. Cell20(4), 601–611 (2005).
  • Oh S , BooK , KimJet al. The chromatin-binding protein PHF6 functions as an E3 ubiquitin ligase of H2BK120 via H2BK12Ac recognition for activation of trophectodermal genes. Nucleic Acids Res.48(16), 9037–9052 (2020).
  • Minsky N , OrenM. The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol. Cell16(4), 631–639 (2004).
  • Wu L , ZeeBM , WangY , GarciaBA , DouY. The RING finger protein MSL2 in the MOF complex is an E3 ubiquitin ligase for H2B K34 and is involved in crosstalk with H3 K4 and K79 methylation. Mol. Cell43(1), 132–144 (2011).
  • Krajewski WA , VassilievOL. Analysis of histone ubiquitylation by MSL1/MSL2 proteins in vitro. Arch. Biochem. Biophys.666, 22–30 (2019).
  • Oya E , NakagawaR , YoshimuraYet al. H3K14 ubiquitylation promotes H3K9 methylation for heterochromatin assembly. EMBO Rep.20(10), e48111 (2019).
  • Kim CR , NodaT , KimHet al. PHF7 modulates BRDT stability and histone-to-protamine exchange during spermiogenesis. Cell Rep.32(4), 107950 (2020).
  • Qin W , WolfP , LiuNet al. DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Res.25(8), 911–929 (2015).
  • Li G , JiT , ChenJet al. CRL4(DCAF8) ubiquitin ligase targets histone H3K79 and promotes H3K9 methylation in the liver. Cell Rep.18(6), 1499–1511 (2017).
  • Groocock LM , NieM , PruddenJet al. RNF4 interacts with both SUMO and nucleosomes to promote the DNA damage response. EMBO Rep.15(5), 601–608 (2014).
  • Fatima A , IrmakD , NoormohammadiAet al. The ubiquitin-conjugating enzyme UBE2K determines neurogenic potential through histone H3 in human embryonic stem cells. Commun. Biol.3(1), 262 (2020).
  • Kim K , LeeB , KimJet al. Linker Histone H1.2 cooperates with Cul4A and PAF1 to drive H4K31 ubiquitylation-mediated transactivation. Cell Rep.5(6), 1690–1703 (2013).
  • Yan Q , DuttS , XuRet al. BBAP monoubiquitylates histone H4 at lysine 91 and selectively modulates the DNA damage response. Mol. Cell36(1), 110–120 (2009).
  • Yang CS , JividenK , SpencerAet al. Ubiquitin modification by the E3 ligase/ADP-ribosyltransferase Dtx3L/Parp9. Mol. Cell66(4), 503–516 e505 (2017).
  • Gao Z , LeeP , StaffordJM , Von SchimmelmannM , SchaeferA , ReinbergD. An AUTS2–polycomb complex activates gene expression in the CNS. Nature516(7531), 349–354 (2014).
  • Bentley ML , CornJE , DongKC , PhungQ , CheungTK , CochranAG. Recognition of UbcH5c and the nucleosome by the Bmi1/Ring1b ubiquitin ligase complex. EMBO J.30(16), 3285–3297 (2011).
  • McGinty RK , HenriciRC , TanS. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature514(7524), 591–596 (2014).
  • Taherbhoy AM , HuangOW , CochranAG. BMI1-RING1B is an autoinhibited RING E3 ubiquitin ligase. Nat. Commun.6, 7621 (2015).
  • Gil J , PetersG. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat. Rev. Mol. Cell Biol.7(9), 667–677 (2006).
  • Shao Z , RaibleF , MollaaghababaRet al. Stabilization of chromatin structure by PRC1, a polycomb complex. Cell98(1), 37–46 (1999).
  • Plath K , FangJ , Mlynarczyk-EvansSKet al. Role of histone H3 lysine 27 methylation in X inactivation. Science300(5616), 131–135 (2003).
  • Ross K , SedelloAK , ToddGPet al. Polycomb group ring finger 1 cooperates with Runx1 in regulating differentiation and self-renewal of hematopoietic cells. Blood119(18), 4152–4161 (2012).
  • Zhou W , ZhuP , WangJet al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol. Cell29(1), 69–80 (2008).
  • Hu Q , BotuyanMV , ZhaoD , CuiG , MerE , MerG. Mechanisms of BRCA1-BARD1 nucleosome recognition and ubiquitylation. Nature596(7872), 438–443 (2021).
  • Mattiroli F , VissersJH , Van DijkWJet al. RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell150(6), 1182–1195 (2012).
  • Fierz B , ChatterjeeC , McGintyRK , Bar-DaganM , RaleighDP , MuirTW. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat. Chem. Biol.7(2), 113–119 (2011).
  • Minsky N , ShemaE , FieldY , SchusterM , SegalE , OrenM. Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat. Cell Biol.10(4), 483–488 (2008).
  • Machida S , SekineS , NishiyamaY , HorikoshiN , KurumizakaH. Structural and biochemical analyses of monoubiquitinated human histones H2B and H4. Open Biol.6(6), (2016).
  • Shema-Yaacoby E , NikolovM , Haj-YahyaMet al. Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription. Cell Rep.4(3), 601–608 (2013).
  • Densham RM , GarvinAJ , StoneHRet al. Human BRCA1-BARD1 ubiquitin ligase activity counteracts chromatin barriers to DNA resection. Nat. Struct. Mol. Biol.23(7), 647–655 (2016).
  • Densham RM , MorrisJR. The BRCA1 ubiquitin ligase function sets a new trend for remodelling in DNA repair. Nucleus8(2), 116–125 (2017).
  • Lores P , VisvikisO , LunaR , LemichezE , GaconG. The SWI/SNF protein BAF60b is ubiquitinated through a signalling process involving Rac GTPase and the RING finger protein Unkempt. FEBS J.277(6), 1453–1464 (2010).
  • Oliveira DV , KatoA , NakamuraKet al. Histone chaperone FACT regulates homologous recombination by chromatin remodeling through interaction with RNF20. J. Cell Sci.127(Pt 4), 763–772 (2014).
  • Liu S , Trejo-ArellanoMS , QiuY , EklundDM , KohlerC , HennigL. H2A ubiquitination is essential for polycomb repressive complex 1-mediated gene regulation in Marchantia polymorpha.Genome Biol.22(1), 253 (2021).
  • Blackledge NP , FarcasAM , KondoTet al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell157(6), 1445–1459 (2014).
  • Jacquet K , Fradet-TurcotteA , AvvakumovNet al. The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol. Cell62(3), 409–421 (2016).
  • Lu LY , WuJ , YeL , GavrilinaGB , SaundersTL , YuX. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev. Cell18(3), 371–384 (2010).
  • Cao R , WangL , WangHet al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science298(5595), 1039–1043 (2002).
  • Kuzmichev A , NishiokaK , Erdjument-BromageH , TempstP , ReinbergD. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev.16(22), 2893–2905 (2002).
  • Kim J , GuermahM , McGintyRKet al. RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell137(3), 459–471 (2009).
  • Hwang WW , VenkatasubrahmanyamS , IanculescuAG , TongA , BooneC , MadhaniHD. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol. Cell11(1), 261–266 (2003).
  • Feng Q , WangH , NgHHet al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol.12(12), 1052–1058 (2002).
  • McGinty RK , KimJ , ChatterjeeC , RoederRG , MuirTW. Chemically ubiquitylated histone H2B stimulates hDot1L-mediated intranucleosomal methylation. Nature453(7196), 812–816 (2008).
  • Ng HH , XuRM , ZhangY , StruhlK. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem.277(38), 34655–34657 (2002).
  • Worden EJ , HoffmannNA , HicksCW , WolbergerC. Mechanism of cross-talk between H2B ubiquitination and H3 methylation by Dot1L. Cell176(6), 1490–1501 e1412 (2019).
  • Jang S , KangC , YangHSet al. Structural basis of recognition and destabilization of the histone H2B ubiquitinated nucleosome by the DOT1L histone H3 Lys79 methyltransferase. Genes Dev.33(11–12), 620–625 (2019).
  • Yao T , JingW , HuZet al. Structural basis of the crosstalk between histone H2B monoubiquitination and H3 lysine 79 methylation on nucleosome. Cell Res.29(4), 330–333 (2019).
  • Anderson CJ , BairdMR , HsuAet al. Structural basis for recognition of ubiquitylated nucleosome by Dot1L methyltransferase. Cell Rep.26(7), 1681–1690 e1685 (2019).
  • Hashimoto H , HortonJR , ZhangX , BostickM , JacobsenSE , ChengX. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature455(7214), 826–829 (2008).
  • Arita K , AriyoshiM , TochioH , NakamuraY , ShirakawaM. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature455(7214), 818–821 (2008).
  • Sharif J , MutoM , TakebayashiSet al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature450(7171), 908–912 (2007).
  • Bostick M , KimJK , EstevePO , ClarkA , PradhanS , JacobsenSE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science317(5845), 1760–1764 (2007).
  • Karagianni P , AmazitL , QinJ , WongJ. ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol. Cell Biol.28(2), 705–717 (2008).
  • Wu W , NishikawaH , FukudaTet al. Interaction of BARD1 and HP1 Is required for BRCA1 retention at sites of DNA damage. Cancer Res.75(7), 1311–1321 (2015).
  • Ikura T , TashiroS , KakinoAet al. DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol. Cell Biol.27(20), 7028–7040 (2007).
  • Zeng S , WangY , ZhangT , BaiL , WangY , DuanC. E3 ligase UHRF2 stabilizes the acetyltransferase TIP60 and regulates H3K9ac and H3K14ac via RING finger domain. Protein Cell8(3), 202–218 (2017).
  • Henry KW , WyceA , LoWSet al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev.17(21), 2648–2663 (2003).
  • Kao CF , HillyerC , TsukudaT , HenryK , BergerS , OsleyMA. Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev.18(2), 184–195 (2004).
  • Lehmann L , FerrariR , VashishtAA , WohlschlegelJA , KurdistaniSK , CareyM. Polycomb repressive complex 1 (PRC1) disassembles RNA polymerase II preinitiation complexes. J. Biol. Chem.287(43), 35784–35794 (2012).
  • Black JC , ChoiJE , LombardoSR , CareyM. A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol. Cell23(6), 809–818 (2006).
  • Zhu P , ZhouW , WangJet al. A histone H2A deubiquitinase complex coordinating histone acetylation and H1 dissociation in transcriptional regulation. Mol. Cell27(4), 609–621 (2007).
  • Jackson SP , BartekJ. The DNA-damage response in human biology and disease. Nature461(7267), 1071–1078 (2009).
  • Aymard F , BuglerB , SchmidtCKet al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol.21(4), 366–374 (2014).
  • Ismail IH , AndrinC , McDonaldD , HendzelMJ. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J. Cell Biol.191(1), 45–60 (2010).
  • Chitale S , RichlyH. Nuclear organization of nucleotide excision repair is mediated by RING1B dependent H2A-ubiquitylation. Oncotarget8(19), 30870–30887 (2017).
  • Doil C , MailandN , Bekker-JensenSet al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell136(3), 435–446 (2009).
  • Thorslund T , RipplingerA , HoffmannSet al. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature527(7578), 389–393 (2015).
  • Moyal L , LerenthalY , Gana-WeiszMet al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol. Cell41(5), 529–542 (2011).
  • Huyen Y , ZgheibO , DitullioRAJret al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature432(7015), 406–411 (2004).
  • Wakeman TP , WangQ , FengJ , WangXF. Bat3 facilitates H3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1 foci at G1/G2 cell-cycle phases. EMBO J.31(9), 2169–2181 (2012).
  • Kari V , ShchebetA , NeumannH , JohnsenSA. The H2B ubiquitin ligase RNF40 cooperates with SUPT16H to induce dynamic changes in chromatin structure during DNA double-strand break repair. Cell Cycle10(20), 3495–3504 (2011).
  • Nakamura K , KatoA , KobayashiJet al. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol. Cell41(5), 515–528 (2011).
  • Giannattasio M , LazzaroF , PlevaniP , Muzi-FalconiM. The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J. Biol. Chem.280(11), 9879–9886 (2005).
  • Johnson RE , HendersonST , PetesTD , PrakashS , BankmannM , PrakashL. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol. Cell Biol.12(9), 3807–3818 (1992).
  • Elserafy M , AbugableAA , AtteyaR , El-KhamisySF. Rad5, HLTF, and SHPRH: a fresh view of an old story. Trends Genet.34(8), 574–577 (2018).
  • Ortiz-Bazan MA , Gallo-FernandezM , SaugarI , Jimenez-MartinA , VazquezMV , TerceroJA. Rad5 plays a major role in the cellular response to DNA damage during chromosome replication. Cell Rep.9(2), 460–468 (2014).
  • Moldovan GL , D’andreaAD. DNA damage discrimination at stalled replication forks by the Rad5 homologs HLTF and SHPRH. Mol. Cell42(2), 141–143 (2011).
  • Miller AK , MaoG , KnicelyBGet al. Rad5 and its human homologs, HLTF and SHPRH, are novel interactors of mismatch repair. Front. Cell Dev. Biol.10, 843121 (2022).
  • Motegi A , LiawHJ , LeeKYet al. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc. Natl Acad. Sci. USA105(34), 12411–12416 (2008).
  • Bruhl J , TrautweinJ , SchaferA , LinneU , BouazouneK. The DNA repair protein SHPRH is a nucleosome-stimulated ATPase and a nucleosome-E3 ubiquitin ligase. Epigenetics Chromatin12(1), 52 (2019).
  • Krijger PH , LeeKY , WitNet al. HLTF and SHPRH are not essential for PCNA polyubiquitination, survival and somatic hypermutation: existence of an alternative E3 ligase. DNA Repair (Amst.)10(4), 438–444 (2011).
  • Rizo A , OlthofS , HanL , VellengaE , DeHaan G , SchuringaJJ. Repression of BMI1 in normal and leukemic human CD34(+) cells impairs self-renewal and induces apoptosis. Blood114(8), 1498–1505 (2009).
  • Vaughan RM , KupaiA , RothbartSB. Chromatin regulation through ubiquitin and ubiquitin-like histone modifications. Trends Biochem. Sci.46(4), 258–269 (2021).
  • Reardon ES , ShuklaV , XiSet al. UHRF1 Is a novel druggable epigenetic target in malignant pleural mesothelioma. J. Thorac. Oncol.16(1), 89–103 (2021).
  • Zhang PF , GaoC , HuangXYet al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol. Cancer19(1), 110 (2020).
  • Cortez JT , MontautiE , ShifrutEet al. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature582(7812), 416–420 (2020).