233
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Signaling and Crosstalk in Regulation of Gene Expression and Disease Progression

, , ORCID Icon, , , , , & ORCID Icon show all
Pages 723-740 | Received 01 Jul 2023, Accepted 07 Aug 2023, Published online: 04 Sep 2023

References

  • Verdone L , CasertaM , DiMauro E. Role of histone acetylation in the control of gene expression. Biochem. Cell Biol.83(3), 344–353 (2005).
  • Patra SK , DebM , PatraA. Molecular marks for epigenetic identification of developmental and cancer stem cells. Clin. Epigenetics2(1), 27–53 (2011).
  • Kar S , ParbinS , DebMet al. Epigenetic choreography of stem cells: the DNA demethylation episode of development. Cell. Mol. Life Sci.71(6), 1017–1032 (2014).
  • Parbin S , KarS , ShilpiAet al. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J. Histochem. Cytochem.62(1), 11–33 (2014).
  • Loury R , Sassone-CorsiP. Histone phosphorylation: how to proceed. Methods31(1), 40–48 (2003).
  • Ryu HY , HochstrasserM. Histone sumoylation and chromatin dynamics. Nucleic Acids Res.49(11), 6043–6052 (2021).
  • Chen JJ , StermerD , TannyJC. Decoding histone ubiquitylation. Front Cell Dev Biol.10, 968398 (2022).
  • Deb M , KarS , SenguptaDet al. Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell. Mol. Life Sci.71(18), 3439–3463 (2014).
  • Hsieh TF , FischerRL. Biology of chromatin dynamics. Annu. Rev. Plant Biol.56, 327–351 (2005).
  • Roy A , Niharika , ChakrabortyS , MishraJ , SinghSP , PatraSK. Mechanistic aspects of reversible methylation modifications of arginine and lysine of nuclear histones and their roles in human colon cancer. Prog. Mol. Biol. Transl. Sci.197, 261–302 (2023).
  • Santos-Rosa H , SchneiderR , BannisterAJet al. Active genes are tri-methylated at K4 of histone H3. Nature419(6905), 407–411 (2002).
  • Sasidharan Nair V , ElSalhat H , TahaRZ , JohnA , AliBR , ElkordE. DNA methylation and repressive H3K9 and H3K27 trimethylation in the promoter regions of PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and PD-L1 genes in human primary breast cancer. Clin. Epigenetics10, 78 (2018).
  • Vaissière T , SawanC , HercegZ. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat. Res.659(1–2), 40–48 (2008).
  • Foster BM , StolzP , MulhollandCBet al. Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of UHRF1 toward chromatin. Mol. Cell72(4), 739–752.e9 (2018).
  • Rothbart SB , KrajewskiK , NadyNet al. Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat. Struct. Mol. Biol.19(11), 1155–1160 (2012).
  • Otani J , NankumoT , AritaK , InamotoS , AriyoshiM , ShirakawaM. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep.10(11), 1235–1241 (2009).
  • Hashimoto H , VertinoPM , ChengX. Molecular coupling of DNA methylation and histone methylation. Epigenomics2(5), 657–669 (2010).
  • Morselli M , PastorWA , MontaniniBet al. In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. Elife4, e06205 (2015).
  • Stewart KR , VeselovskaL , KimJet al. Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev.29(23), 2449–2462 (2015).
  • Salhab A , NordströmK , GasparoniGet al. A comprehensive analysis of 195 DNA methylomes reveals shared and cell-specific features of partially methylated domains. Genome Biol.19(1), 150 (2018).
  • Smallwood A , EstèvePO , PradhanS , CareyM. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev.21(10), 1169–1178 (2007).
  • Liyanage VR , JarmaszJS , MurugeshanN , DelBigio MR , RastegarM , DavieJR. DNA modifications: function and applications in normal and disease states. Biology (Basel)3(4), 670–723 (2014).
  • Menafra R , StunnenbergHG. MBD2 and MBD3: elusive functions and mechanisms. Front. Genet.5, 428 (2014).
  • Lempiäinen JK , GarciaBA. Characterizing crosstalk in epigenetic signaling to understand disease physiology. Biochem. J.480(1), 57–85 (2023).
  • Laugesen A , HøjfeldtJW , HelinK. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell74(1), 8–18 (2019).
  • Zhang T , CooperS , BrockdorffN. The interplay of histone modifications – writers that read. EMBO Rep.16(11), 1467–1481 (2015).
  • Molina-Serrano D , SchizaV , KirmizisA. Crosstalk among epigenetic modifications: lessons from histone arginine methylation. Biochem. Soc. Trans.41(3), 751–759 (2013).
  • Sugeedha J , GautamJ , TyagiS. SET1/MLL family of proteins: functions beyond histone methylation. Epigenetics.16(5), 469–487 (2021).
  • Wu L , LeeSY , ZhouBet al. ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes. Mol Cell.49(6), 1108–1120 (2013).
  • Bian C , XuC , RuanJet al. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J.30(14), 2829–2842 (2011).
  • Wu F , LiX , LoosoMet al. Spurious transcription causing innate immune responses is prevented by 5-hydroxymethylcytosine. Nat Genet.55(1), 100–111 (2023).
  • Zhao W , XuY , WangYet al. Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation. Sci. Rep.11(1), 15912 (2021).
  • Fischle W . Talk is cheap – cross-talk in establishment, maintenance, and readout of chromatin modifications. Genes Dev.22(24), 3375–3382 (2008).
  • Lee JS , SmithE , ShilatifardA. The language of histone crosstalk. Cell42(5), 682–685 (2010).
  • Taubert S , GorriniC , FrankSRet al. E2F-dependent histone acetylation and recruitment of the Tip60 acetyltransferase complex to chromatin in late G1. Mol Cell Biol.24(10), 4546–4556 (2004).
  • Li X . Epigenetics and cell cycle regulation in cystogenesis. Cell. Signal.68, 109509 (2020).
  • Ma Y , KanakousakiK , ButtittaL. How the cell cycle impacts chromatin architecture and influences cell fate. Front. Genet.6, 19 (2015).
  • Bou Kheir T , LundAH. Epigenetic dynamics across the cell cycle. Essays Biochem.48(1), 107–120 (2010).
  • Loyola A , TagamiH , BonaldiTet al. The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep.10(7), 769–775 (2009).
  • Torrisani J , UnterbergerA , TendulkarSR , ShikimiK , SzyfM. AUF1 cell cycle variations define genomic DNA methylation by regulation of DNMT1 mRNA stability. Molecular and cellular biology27(1), 395–410 (2007).
  • Mancini M , MagnaniE , MacchiF , BonapaceIM. The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res.49(11), 6053–6068 (2021).
  • Budhavarapu VN , ChavezM , TylerJK. How is epigenetic information maintained through DNA replication?Epigenetics Chromatin6(1), 32 (2013).
  • Probst AV , DunleavyE , AlmouzniG. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol.10(3), 192–206 (2009).
  • Allis CD , JenuweinT , ReinbergD. Epigenetics- Overview and concepts. Epigenetics.AllisCD, JenuweinT, ReinbergD ( Eds). Epigenetics Cold Spring Harbor Laboratory Press, 1, 23–61 (2007).
  • Wang J , JiaST , JiaS. New insights into the regulation of heterochromatin. Trends Genet.32(5), 284–294 (2016).
  • Cutter DiPiazza AR , TanejaN , DhakshnamoorthyJ , WheelerD , HollaS , GrewalSIS. Spreading and epigenetic inheritance of heterochromatin require a critical density of histone H3 lysine 9 tri-methylation. Proc. Natl Acad. Sci. USA118(22), e2100699118 (2021).
  • Soni DK , BiswasR. Role of non-coding RNAs in post-transcriptional regulation of lung diseases. Front. Genet.12, 767348 (2021).
  • Kaikkonen MU , LamMT , GlassCK. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc. Res.90(3), 430–440 (2011).
  • Butler AA , WebbWM , LubinFD. Regulatory RNAs and control of epigenetic mechanisms: expectations for cognition and cognitive dysfunction. Epigenomics8(1), 135–151 (2016).
  • Krol J , LoedigeI , FilipowiczW. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet.11(9), 597–610 (2010).
  • Ha M , KimVN. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol.15(8), 509–524 (2014).
  • Sengupta D , DebM , KarSet al. Dissecting miRNA facilitated physiology and function in human breast cancer for therapeutic intervention. Semin. Cancer Biol.72, 46–64 (2021).
  • Saviana M , LeP , MicaloLet al. Crosstalk between miRNAs and DNA methylation in cancer. Genes14(5), 1075 (2023).
  • Yao Q , ChenY , ZhouX. The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol.51, 11–17 (2019).
  • Hillyar CR , KanabarSS , RallisKS , VargheseJS. Complex cross-talk between EZH2 and miRNAs confers hallmark characteristics and shapes the tumor microenvironment. Epigenomics14(11), 699–709 (2022).
  • Liu X , ChenX , YuXet al. Regulation of microRNAs by epigenetics and their interplay involved in cancer. J. Exp. Clin. Cancer Res.32(1), 96 (2013).
  • Siomi H , SiomiMC. On the road to reading the RNA-interference code. Nature457(7228), 396–404 (2009).
  • Brennecke J , AravinAA , StarkAet al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell128(6), 1089–1103 (2007).
  • Gunawardane LS , SaitoK , NishidaKMet al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science315(5818), 1587–1590 (2007).
  • Zhang Q , ZhuY , CaoXet al. The epigenetic regulatory mechanism of PIWI/piRNAs in human cancers. Mol Cancer.22(1), 45 (2023).
  • Dong J , WangX , CaoCet al. UHRF1 suppresses retrotransposons and cooperates with PRMT5 and PIWI proteins in male germ cells. Nat. Commun.10(1), 4705 (2019).
  • Pezic D , ManakovSA , SachidanandamR , AravinAA. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev.28(13), 1410–1428 (2014).
  • Birmingham A , AndersonEM , ReynoldsAet al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets [ published correction appears in Nat. Methods 2007 Jun; 4(6): 533]. Nat. Methods3(3), 199–204 (2006).
  • Dueva R , AkopyanK , PederivaCet al. Neutralization of the positive charges on histone tails by RNA promotes an open chromatin structure. Cell Chem. Biol.26(10), 1436–1449.e5 (2019).
  • Yap KL , LiS , Muñoz-CabelloAMet al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell38(5), 662–674 (2010).
  • Rosa S , DuncanS , DeanC. Mutually exclusive sense–antisense transcription at FLC facilitates environmentally induced gene repression. Nat. Commun.7, 13031 (2016).
  • Csorba T , QuestaJI , SunQ , DeanC. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc. Natl Acad. Sci. USA111(45), 16160–16165 (2014).
  • Schmitz KM , MayerC , PostepskaA , GrummtI. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev.24(20), 2264–2269 (2010).
  • Statello L , GuoCJ , ChenLL , HuarteM. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol.22(2), 96–118 (2021).
  • Ohzeki J , LarionovV , EarnshawWC , MasumotoH. De novo formation and epigenetic maintenance of centromere chromatin. Curr. Opin. Cell Biol.58, 15–25 (2019).
  • Allshire RC , KarpenGH. Epigenetic regulation of centromeric chromatin: old dogs, new tricks?Nat. Rev. Genet.9(12), 923–937 (2008).
  • Nagpal H , FierzB. The elusive structure of centro-chromatin: molecular order or dynamic heterogenetity?J. Mol. Biol.433(6), 166676 (2021).
  • Bergmann JH , MartinsNM , LarionovV , MasumotoH , EarnshawWC. HACking the centromere chromatin code: insights from human artificial chromosomes. Chromosome Res.20(5), 505–519 (2012).
  • Allshire RC , MadhaniHD. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol.19(4), 229–244 (2018).
  • Richards EJ , ElginSC. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell108(4), 489–500 (2002).
  • Saksouk N , SimboeckE , DéjardinJ. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin8, 3 (2015).
  • Achrem M , SzućkoI , KalinkaA. The epigenetic regulation of centromeres and telomeres in plants and animals. Comp. Cytogenet.14(2), 265–311 (2020).
  • Black BE , ClevelandDW. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell144(4), 471–479 (2011).
  • Westhorpe FG , StraightAF. The centromere: epigenetic control of chromosome segregation during mitosis. Cold Spring Harb. Perspect. Biol.7(1), a015818 (2014).
  • Ohzeki J , BergmannJH , KouprinaNet al. Breaking the HAC barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO J.31(10), 2391–2402 (2012).
  • Carroll CW , StraightAF. Centromere formation: from epigenetics to self-assembly. Trends Cell Biol.16(2), 70–78 (2006).
  • Hoffmann S , IzquierdoHM , GambaRet al. A genetic memory initiates the epigenetic loop necessary to preserve centromere position. EMBO J.39(20), e105505 (2020).
  • Dvash T , FanG. Epigenetics of X chromosome inactivation. Handbook of Epigenetics.Academic Press, 341–351 (2011).
  • Galupa R , HeardE. X-chromosome inactivation: a crossroads between chromosome architecture and gene regulation. Annu. Rev. Genet.52, 535–566 (2018).
  • Lu Z , CarterAC , ChangHY. Mechanistic insights in X-chromosome inactivation. Philos. Trans. R. Soc. Lond. B Biol. Sci.372(1733), 20160356 (2017).
  • Fang H , DistecheCM , BerletchJB. X inactivation and escape: epigenetic and structural features. Front Cell Dev Biol.7, 219 (2019).
  • Żylicz JJ , BousardA , ŽumerKet al. The implication of early chromatin changes in X chromosome inactivation. Cell176(1–2), 182–197.e23 (2019).
  • McHugh CA , ChenCK , ChowAet al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature521(7551), 232–236 (2015).
  • Kalantry S , MillsKC , YeeD , OtteAP , PanningB , MagnusonT. The Polycomb group protein Eed protects the inactive X-chromosome from differentiation-induced reactivation. Nat. Cell Biol.8(2), 195–202 (2006).
  • Sarma K , LevasseurP , AristarkhovA , LeeJT. Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc. Natl Acad. Sci. USA107(51), 22196–22201 (2010).
  • Pintacuda G , WeiG , RoustanCet al. hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish Polycomb-mediated chromosomal silencing. Mol. Cell68(5), 955–969.e10 (2017).
  • Jeon Y , LeeJT. YY1 tethers Xist RNA to the inactive X nucleation center. Cell146(1), 119–133 (2011).
  • Hasegawa Y , BrockdorffN , KawanoS , TsutuiK , TsutuiK , NakagawaS. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell.19(3), 469–476 (2010).
  • Gdula MR , NesterovaTB , PintacudaGet al. The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat. Commun.10(1), 30 (2019).
  • Ryan VH , DignonGL , ZerzeGHet al. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell69(3), 465–479.e7 (2018).
  • Lange UC , VerdiktR , Ait-AmmarA , Van LintC. Epigenetic crosstalk in chronic infection with HIV-1. Semin. Immunopathol.42(2), 187–200 (2020).
  • Hussain T , SahaD , PurohitGet al. Transcription regulation of CDKN1A (p21/CIP1/WAF1) by TRF2 is epigenetically controlled through the REST repressor complex. Sci. Rep.7(1), 11541 (2017).
  • Xu J , WangZ , LuWet al. EZH2 promotes gastric cancer cells proliferation by repressing p21 expression. Pathol. Res. Pract.215(6), 152374 (2019).
  • Kang N , EcclestonM , ClermontPLet al. EZH2 inhibition: a promising strategy to prevent cancer immune editing. Epigenomics12(16), 1457–1476 (2020).
  • Yang CC , LaBaffA , WeiYet al. Phosphorylation of EZH2 at T416 by CDK2 contributes to the malignancy of triple negative breast cancers. Am. J. Transl. Res.7(6), 1009–1020 (2015).
  • Nie L , WeiY , ZhangFet al. CDK2-mediated site-specific phosphorylation of EZH2 drives and maintains triple-negative breast cancer [ published correction appears in Nat. Commun. 2020 Jan 29; 11(1): 673]. Nat. Commun.10(1), 5114 (2019).
  • Sengupta D , DebM , RathSKet al. DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop. Exp. Cell Res.346(2), 176–187 (2016).
  • Matsumura Y , NakakiR , InagakiTet al. H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation. Mol. Cell60(4), 584–596 (2015).
  • Liu X , WangC , LiuWet al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature537(7621), 558–562 (2016).
  • Prickaerts P , AdriaensME , BeuckenTVDet al. Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3K27me3. Epigenetics Chromatin9, 46 (2016).
  • Pradhan N , ParbinS , KarSet al. Epigenetic silencing of genes enhanced by collective role of reactive oxygen species and MAPK signaling downstream ERK/Snail axis: ectopic application of hydrogen peroxide repress CDH1 gene by enhanced DNA methyltransferase activity in human breast cancer. Biochim. Biophys. Acta Mol. Basis Dis.1865(6), 1651–1665 (2019).
  • Deb M , SenguptaD , RathSKet al. Clusterin gene is predominantly regulated by histone modifications in human colon cancer and ectopic expression of the nuclear isoform induces cell death. Biochim. Biophys. Acta1852(8), 1630–1645 (2015).
  • Manna S , KirtanaR , RoyA , BaralT , PatraSK. Mechanisms of Hedgehog, calcium and retinoic acid signalling pathway inhibitors: plausible modes of action along the MLL–EZH2–p53 axis in cellular growth control. Arch. Biochem. Biophys.742, 109600 (2023).
  • Lima-Fernandes E , MurisonA , daSilva Medina Tet al. Targeting bivalency de-represses Indian Hedgehog and inhibits self-renewal of colorectal cancer-initiating cells. Nat. Commun.10(1), 1436 (2019).
  • Al-Hasani K , MathiyalaganP , El-OstaA. Epigenetics, cardiovascular disease, and cellular reprogramming. J. Mol. Cell. Cardiol.128, 129–133 (2019).
  • Shi Y , ZhangH , HuangSet al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct. Target. Ther.7(1), 200 (2022).
  • Williams SM , Golden-MasonL , FergusonBSet al. Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J. Mol. Cell. Cardiol.67, 112–125 (2014).
  • Lan C , ChenC , QuSet al. Inhibition of DYRK1A, via histone modification, promotes cardiomyocyte cell cycle activation and cardiac repair after myocardial infarction. EBioMedicine82, 104139 (2022).
  • Jiang Y , XiangC , ZhongFet al. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics11(1), 361–378 (2021).
  • Daneshpajooh M , BacosK , BysaniMet al. HDAC7 is overexpressed in human diabetic islets and impairs insulin secretion in rat islets and clonal beta cells. Diabetologia60(1), 116–125 (2017).
  • Zullo A , SommeseL , NicolettiG , DonatelliF , ManciniFP , NapoliC. Epigenetics and type 1 diabetes: mechanisms and translational applications. Transl. Res.185, 85–93 (2017).
  • Zhang X , LiuL , YuanX , WeiY , WeiX. JMJD3 in the regulation of human diseases. Protein Cell10(12), 864–882 (2019).
  • Berson A , NativioR , BergerSL , BoniniNM. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci.41(9), 587–598 (2018).
  • Ghosh P , SaadatA. Neurodegeneration, and epigenetics: a review. Neurologia (Engl. Ed.)38(6), e62–e68 (2023).
  • Peña CJ , BagotRC , LabontéB , NestlerEJ. Epigenetic signaling in psychiatric disorders. J. Mol. Biol.426(20), 3389–3412 (2014).
  • Kwon M , ParkK , HyunKet al. H2B ubiquitylation enhances H3K4 methylation activities of human KMT2 family complexes. Nucleic Acids Res.48(10), 5442–5456 (2020).
  • Duan YC , ZhangSJ , ShiXJet al. Research progress of dual inhibitors targeting crosstalk between histone epigenetic modulators for cancer therapy. Eur. J. Med. Chem.222, 113588 (2021).
  • Garcia-Martinez L , ZhangY , NakataY , ChanHL , MoreyL. Epigenetic mechanisms in breast cancer therapy and resistance. Nat. Commun.12(1), 1786 (2021).
  • Stillman B . Histone modifications: insights into their influence on gene expression. Cell175(1), 6–9 (2018).
  • Lepack AE , WernerCT , StewartAFet al. Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science368(6487), 197–201 (2020).
  • Farrelly LA , ThompsonRE , ZhaoSet al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature567(7749), 535–539 (2019).
  • Patra SK . Emerging histone glutamine modifications mediated gene expression in cell differentiation and the VTA reward pathway. Gene768, 145323 (2021).
  • Patra SK , SzyfM. Epigenetic perspectives of COVID-19: virus infection to disease progression and therapeutic control. Biochim Biophys Acta Mol Basis Dis.1868(12), 166527 (2022).
  • Chlamydas S , PapavassiliouAG , PiperiC. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics16(3), 263–270 (2021).
  • Zhang Y , ChenY , LiYet al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-I. Proc. Natl Acad. Sci. USA118(23), e2024202118 (2021).
  • Kee J , ThudiumS , RennerDMet al. SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature610(7931), 381–388 (2022).
  • Flower TG , BuffaloCZ , HooyRM , AllaireM , RenX , HurleyJH. Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein. Proc. Natl Acad. Sci. USA118(2), e2021785118 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.