116
Views
0
CrossRef citations to date
0
Altmetric
Review

lncRNA TUG1 as Potential Novel Biomarker for Prognosis of Cardiovascular Diseases

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1273-1290 | Received 07 Jul 2023, Accepted 23 Nov 2023, Published online: 13 Dec 2023

References

  • Francula-Zaninovic S , NolaIA. Management of measurable variable cardiovascular disease’ risk factors. Curr. Cardiol. Rev.14(3), 153–163 (2018).
  • Roth GA , MensahGA, JohnsonCOet al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J. Am. Coll. Cardiol.76(25), 2982–3021 (2020).
  • Cao M , LuoH, LiD, WangS, XuanL, SunL. Research advances on circulating long noncoding RNAs as biomarkers of cardiovascular diseases. Int. J. Cardiol.353, 109–117 (2022).
  • Wilhelm M , SchleglJ, HahneHet al. Mass-spectrometry-based draft of the human proteome. Nature509(7502), 582–587 (2014).
  • Kartha RV , SubramanianS. Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Front. Genet.5, 8 (2014).
  • Fang Y , XuY, WangRet al. Recent advances on the roles of lncRNAs in cardiovascular disease. J. Cell. Mol. Med.24(21), 12246–12257 (2020).
  • Fasolo F , DiGregoli K, MaegdefesselL, JohnsonJL. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc. Res.115(12), 1732–1756 (2019).
  • Du L , DuanW, JiangXet al. Cell-free lncRNA expression signatures in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. J. Cell. Mol. Med.22(5), 2838–2845 (2018).
  • Duan W , DuL, JiangXet al. Identification of a serum circulating lncRNA panel for the diagnosis and recurrence prediction of bladder cancer. Oncotarget7(48), 78850–78858 (2016).
  • Wang Z , LiuJ, WangR, WangQ, LiangR, TangJ. Long non-coding RNA taurine upregulated gene 1 (TUG1) downregulation constrains cell proliferation and invasion through regulating cell division cycle 42 (CDC42) expression via miR-498 in esophageal squamous cell carcinoma cells. Med. Sci. Monit.26, e919714 (2020).
  • Thum T , CondorelliG. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ. Res.116(4), 751–762 (2015).
  • Lewandowski JP , DumbovićG, WatsonARet al. The Tug1 lncRNA locus is essential for male fertility. Genome Biol.21(1), 237 (2020).
  • Farzaneh M , GhasemianM, GhaedrahmatiFet al. Functional roles of lncRNA-TUG1 in hepatocellular carcinoma. Life Sci.308, 120974 (2022).
  • Azizidoost S , NasrolahiA, GhaedrahmatiFet al. The pathogenic roles of lncRNA-Taurine upregulated 1 (TUG1) in colorectal cancer. Cancer Cell Int.22(1), 335 (2022).
  • Khalil AM , GuttmanM, HuarteMet al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. PNAS106(28), 11667–11672 (2009).
  • Zhou H , SunL, WanF. Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells. Oncol. Lett.18(5), 4393–4402 (2019).
  • Zilio N , CodlinS, VashishtAAet al. A novel histone deacetylase complex in the control of transcription and genome stability. Mol. Cell. Biol.34(18), 3500–3514 (2014).
  • Sun J , DingC, YangZet al. The long non-coding RNA TUG1 indicates a poor prognosis for colorectal cancer and promotes metastasis by affecting epithelial–mesenchymal transition. J. Transl. Med.14, 42 (2016).
  • Da M , ZhuangJ, ZhouY, QiQ, HanS. Role of long noncoding RNA taurine-upregulated gene 1 in cancers. Mol. Med.27(1), 51 (2021).
  • Huang MD , ChenWM, QiFZet al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol. Cancer14, 165 (2015).
  • Zhang EB , YinDD, SunMet al. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis.5(5), e1243 (2014).
  • Chen C , ChengG, YangX, LiC, ShiR, ZhaoN. Tanshinol suppresses endothelial cells apoptosis in mice with atherosclerosis via lncRNA TUG1 up-regulating the expression of miR-26a. Am. J. Transl. Res.8(7), 2981–2991 (2016).
  • Duan W , NianL, QiaoJ, LiuNN. LncRNA TUG1 aggravates the progression of cervical cancer by binding PUM2. Eur. Rev. Med. Pharmacol. Sci.23(19), 8211–8218 (2019).
  • Xu Y , DengW, ZhangW. Retracted: Long non-coding RNA TUG1 protects renal tubular epithelial cells against injury induced by lipopolysaccharide via regulating microRNA-223. Biomed. Pharmacother.104, 509–519 (2018).
  • Yin Q , ShenX, CuiX, JuS. Elevated serum lncRNA TUG1 levels are a potential diagnostic biomarker of multiple myeloma. Exp. Hematol.79, 47–55 (2019).
  • Sheng K , LiY. LncRNA TUG1 promotes the development of osteosarcoma through RUNX2. Exp. Ther. Med.18(4), 3002–3008 (2019).
  • Salazar-Torres FJ , Medina-PerezM, MeloZ, Mendoza-CerpaC, EchavarriaR. Urinary expression of long non-coding RNA TUG1 in non-diabetic patients with glomerulonephritides. Biomed. Rep.14(1), 17 (2021).
  • Szeto CC , SoH, PoonPYet al. Urinary long non-coding RNA levels as biomarkers of lupus nephritis. Int. J. Mol. Sci.24(14), 11813 (2023).
  • Sarfi M , AbbastabarM, KhaliliE. Increased expression of urinary exosomal LnCRNA TUG-1 in early bladder cancer. Gene Rep.22, 101010 (2021).
  • Ma W , ZhangW, CuiBet al. Functional delivery of lncRNA TUG1 by endothelial progenitor cells derived extracellular vesicles confers anti-inflammatory macrophage polarization in sepsis via impairing miR-9-5p-targeted SIRT1 inhibition. Cell Death Dis.12(11), 1056 (2021).
  • Yang D , YuJ, LiuHBet al. The long non-coding RNA TUG1-miR-9a-5p axis contributes to ischemic injuries by promoting cardiomyocyte apoptosis via targeting KLF5. Cell Death Dis.10(12), 908 (2019).
  • Gimbel AT , KoziarekS, TheodorouKet al. Aging-regulated TUG1 is dispensable for endothelial cell function. PLOS ONE17(9), e0265160 (2022).
  • Neri M , RiezzoI, PascaleN, PomaraC, TurillazziE. Ischemia/reperfusion injury following acute myocardial infarction: a critical issue for clinicians and forensic pathologists. Mediators Inflamm.2017, 7018393 (2017).
  • Frank A , BonneyM, BonneyS, WeitzelL, KoeppenM, EckleT. Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin. Cardiothorac. Vasc. Anesth.16(3), 123–132 (2012).
  • Hausenloy DJ , YellonDM. Myocardial ischemia–reperfusion injury: a neglected therapeutic target. J. Clin. Investig.123(1), 92–100 (2013).
  • Buja LM . Myocardial ischemia and reperfusion injury. Cardiovasc. Pathol.14(4), 170–175 (2005).
  • Verma S , FedakPW, WeiselRDet al. Fundamentals of reperfusion injury for the clinical cardiologist. Circulation105(20), 2332–2336 (2002).
  • Li B , WuY. LncRNA TUG1 overexpression promotes apoptosis of cardiomyocytes and predicts poor prognosis of myocardial infarction. J. Clin. Pharm.45(6), 1452–1456 (2020).
  • Ferrari R , CeconiC, CurelloSet al. Role of oxygen free radicals in ischemic and reperfused myocardium. Am. J. Clin. Nutr.53(Suppl. 1), 215S–222S (1991).
  • Zhao ZQ . Oxidative stress-elicited myocardial apoptosis during reperfusion. Curr. Opin. Pharmacol.4(2), 159–165 (2004).
  • Saini HK , MachackovaJ, DhallaNS. Role of reactive oxygen species in ischemic preconditioning of subcellular organelles in the heart. Antioxid. Redox Signal.6(2), 393–404 (2004).
  • Su Q , LiuY, LvXW, DaiRX, YangXH, KongBH. LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am. J. Physiol. Heart Circ. Physiol.318(2), H332–H344 (2020).
  • Damavandi Z , TorkashvandS, VaseiM, SoltaniBM, TavallaeiM, MowlaSJ. Aberrant expression of breast development-related microRNAs, miR-22, miR-132, and miR-212, in breast tumor tissues. J. Breast Cancer.19(2), 148–155 (2016).
  • Anversa P , ChengW, LiuY, LeriA, RedaelliG, KajsturaJ. Apoptosis and myocardial infarction. Basic Res. Cardiol.93, 8–12 (1998).
  • Zidar N , Dolenc-StrazarZ, JerucJ, StajerD. Immunohistochemical expression of activated caspase-3 in human myocardial infarction. Virchows Arch.448(1), 75–79 (2006).
  • Fu D , GaoT, LiuMet al. LncRNA TUG1 aggravates cardiomyocyte apoptosis and myocardial ischemia/reperfusion injury. Histol. Histopathol.36(12), 1261–1272 (2021).
  • Zeng Y , ZhaoY, DaiSet al. Impact of lactate dehydrogenase on prognosis of patients undergoing cardiac surgery. BMC Cardiovasc. Disord.22(1), 404 (2022).
  • Macdonald RP , SimpsonJR, NossalE. Serum lactic dehydrogenase; a diagnostic aid in myocardial infarction. JAMA165(1), 35–40 (1957).
  • Li R , YanG, LiQet al. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H2O2)-induced apoptosis through targeting the mitochondria apoptotic pathway. PLOS ONE7(9), e44907 (2012).
  • Chidawanyika T , SupattaponeS. Hydrogen peroxide-induced cell death in mammalian cells. J. Cell. Signal.2(3), 206–211 (2021).
  • Tian Z , ZhangY, LyuX. Promoting roles of KLF5 in myocardial infarction in mice involving microRNA-27a suppression and the following GFPT2/TGF-β/Smad2/3 axis activation. Cell Cycle20(9), 874–893 (2021).
  • Abdelaleem OO , ShakerOG, MohamedMMet al. Differential expression of serum TUG1, LINC00657, miR-9, and miR-106a in diabetic patients with and without ischemic stroke. Front. Mol. Biosci.8, 758742 (2021).
  • Zheng J , PengB, ZhangY, AiF, HuX. MiR-9 knockdown inhibits hypoxia-induced cardiomyocyte apoptosis by targeting Yap1. Life Sci.219, 129–135 (2019).
  • Wu Z , ZhaoS, LiC, LiuC. LncRNA TUG1 serves an important role in hypoxia-induced myocardial cell injury by regulating the miR-145-5p-Binp3 axis. Mol. Med. Rep.17(2), 2422–2430 (2018).
  • Fischle W , KiermerV, DequiedtF, VerdinE. The emerging role of class II histone deacetylases. Biochem. Cell Biol.79(3), 337–348 (2001).
  • Zhang L , WangH, ZhaoYet al. Myocyte-specific overexpressing HDAC4 promotes myocardial ischemia/reperfusion injury. Mol. Med.24(1), 37 (2018).
  • Li D , ZhouJ, YangB, YuY. MicroRNA-340-5p inhibits hypoxia/reoxygenation-induced apoptosis and oxidative stress in cardiomyocytes by regulating the Act1/NF-κB pathway. J. Cell. Biochem.120(9), 14618–14627 (2019).
  • Wu X , LiuY, MoS, WeiW, YeZ, SuQ. LncRNA TUG1 competitively binds to miR-340 to accelerate myocardial ischemia–reperfusion injury. FASEB J.35(1), e21163 (2021).
  • Yang M , KongDY, ChenJC. Inhibition of miR-148b ameliorates myocardial ischemia/reperfusion injury via regulation of Wnt/β-catenin signaling pathway. J. Cell. Physiol.234(10), 17757–17766 (2019).
  • Hu S , CaoS, LiuJ. Role of angiopoietin-2 in the cardioprotective effect of fibroblast growth factor 21 on ischemia/reperfusion-induced injury in H9c2 cardiomyocytes. Exp. Ther. Med.14(1), 771–779 (2017).
  • Mayorga ME , PennMS. MiR-145 is differentially regulated by TGF-β1 and ischaemia and targets Disabled-2 expression and wnt/β-catenin activity. J. Cell. Mol. Med.16(5), 1106–1113 (2012).
  • Wang YS , LiSH, GuoJet al. Role of miR-145 in cardiac myofibroblast differentiation. J. Mol. Cell. Cardiol.66, 94–105 (2014).
  • Yuan M , ZhangL, YouFet al. MiR-145-5p regulates hypoxia-induced inflammatory response and apoptosis in cardiomyocytes by targeting CD40. Mol. Cell. Biochem.431(1–2), 123–131 (2017).
  • Bruick RK . Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. PNAS97(16), 9082–9087 (2000).
  • Jiang N , XiaJ, JiangB, XuY, LiY. Retracted: TUG1 alleviates hypoxia injury by targeting miR-124 in H9c2 cells. Biomed. Pharmacother.103, 1669–1677 (2018).
  • Devaux Y , DankiewiczJ, Salgado-SomozaAet al. Association of circulating microRNA-124-3p levels with outcomes after out-of-hospital cardiac arrest: a substudy of a randomized clinical trial. JAMA Cardiol.1(3), 305–313 (2016).
  • Ma W , ZhangX, LiuY. MiR-124 promotes apoptosis and inhibits the proliferation of vessel endothelial cells through P38/MAPK and PI3K/AKT pathways, making it a potential mechanism of vessel endothelial injury in acute myocardial infarction. Exp. Ther. Med.22(6), 1383 (2021).
  • Kim-Kaneyama JR , TakedaN, SasaiAet al. Hic-5 deficiency enhances mechanosensitive apoptosis and modulates vascular remodeling. J. Mol. Cell. Cardiol.50(1), 77–86 (2011).
  • Wang YW , DongHZ, TanYXet al. HIF-1α-regulated lncRNA-TUG1 promotes mitochondrial dysfunction and pyroptosis by directly binding to FUS in myocardial infarction. Cell Death Discov.8(1), 178 (2022).
  • Russo HM , RathkeyJ, Boyd-TresslerA, KatsnelsonMA, AbbottDW, DubyakGR. Active caspase-1 induces plasma membrane pores that precede pyroptotic lysis and are blocked by lanthanides. J. Immunol.197(4), 1353–1367 (2016).
  • Swanson KV , DengM, TingJP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol.19(8), 477–489 (2019).
  • Kanamori H , TakemuraG, GotoKet al. Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am. J. Physiol. Heart Circ. Physiol.300(6), H2261–H2271 (2011).
  • Sciarretta S , YeeD, ShenoyV, NagarajanN, SadoshimaJ. The importance of autophagy in cardioprotection. High Blood Press. Cardiovasc. Prev.21(1), 21–28 (2014).
  • Su Q , LiuY, LvXWet al. Inhibition of lncRNA TUG1 upregulates miR-142-3p to ameliorate myocardial injury during ischemia and reperfusion via targeting HMGB1- and Rac1-induced autophagy. J. Mol. Cell. Cardiol.133, 12–25 (2019).
  • Foglio E , PuddighinuG, GermaniA, RussoMA, LimanaF. HMGB1 inhibits apoptosis following MI and induces autophagy via mTORC1 inhibition. J. Cell. Physiol.232(5), 1135–1143 (2017).
  • Wei YM , LiX, XuMet al. Enhancement of autophagy by simvastatin through inhibition of Rac1-mTOR signaling pathway in coronary arterial myocytes. Cell. Physiol. Biochem.31(6), 925–937 (2013).
  • Falk E . Pathogenesis of atherosclerosis. J. Am. Coll. Cardiol.47(Suppl. 8), C7–12 (2006).
  • Li FP , LinDQ, GaoLY. LncRNA TUG1 promotes proliferation of vascular smooth muscle cell and atherosclerosis through regulating miRNA-21/PTEN axis. Eur. Rev. Med. Pharmacol. Sci.22(21), 7439–7447 (2018).
  • Shi Z , ZhuQ, FanJ. LncRNA TUG1 promotes atherosclerosis progression by targeting miR-382-5p. Int. J. Clin. Exp. Pathol.14(9), 972–979 (2021).
  • You G , LongX, SongFet al. Metformin activates the AMPK-mTOR PATHWAY BY MODULAting lncRNA TUG1 to induce autophagy and inhibit atherosclerosis. Drug Des. Dev. Ther.14, 457–468 (2020).
  • Rafieian-Kopaei M , SetorkiM, DoudiM, BaradaranA, NasriH. Atherosclerosis: process, indicators, risk factors and new hopes. Int. J. Prev. Med.5(8), 927–946 (2014).
  • Yao S , LuoG, LiuHet al. Apolipoprotein M promotes the anti-inflammatory effect of high-density lipoprotein by binding to scavenger receptor BI. Ann. Transl. Med.8(24), 1676 (2020).
  • Huang LZ , GaoJL, PuCet al. Apolipoprotein M: research progress, regulation and metabolic functions (review). Mol. Med. Rep.12(2), 1617–1624 (2015).
  • St Paul A , PrestonK, CorbettCet al. FXR1 regulates blood pressure by altering vascular contractility. Circulation144(Suppl. 1), A13129 (2021).
  • Yang L , LiT. LncRNA TUG1 regulates ApoM to promote atherosclerosis progression through miR-92a/FXR1 axis. J. Cell. Mol. Med.24(15), 8836–8848 (2020).
  • Sun HJ , WuZY, NieXW, BianJS. Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front. Pharmacol.10, 1568 (2019).
  • Tang X , QinQ, XuW, ZhangX, Long Non-Coding RNA TUG1 Attenuates Insulin Resistance in Mice with Gestational Diabetes Mellitus via Regulation of the MicroRNA-328-3p/SREBP-2/ERK Axis. Diabetes Metab J. 47(2), 267–286 (2023).
  • Yan HY , BuSZ, ZhouWB, MaiYF. TUG1 promotes diabetic atherosclerosis by regulating proliferation of endothelial cells via Wnt pathway. Eur. Rev. Med. Pharmacol. Sci.22(20), 6922–6929 (2018).
  • Paneni F , DiazCañestro C, LibbyP, LüscherTF, CamiciGG. The aging cardiovascular system: understanding it at the cellular and clinical levels. J. Am. Coll. Cardiol.69(15), 1952–1967 (2017).
  • Yuan Y , LiP, YeJ. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell3(3), 173–181 (2012).
  • Javadifar A , RastgooS, BanachM, JamialahmadiT, JohnstonTP, SahebkarA. Foam cells as therapeutic targets in atherosclerosis with a focus on the regulatory roles of non-coding RNAs. Int. J. Mol. Sci.22(5), 2529 (2021).
  • Peng XP , HuangL, LiuZH. MiRNA-133a attenuates lipid accumulation via TR4-CD36 pathway in macrophages. Biochimie127, 79–85 (2016).
  • Wang JC , BennettM. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res.111(2), 245–259 (2012).
  • Reiss AB , SiegartNM, DeLeon J. Interleukin-6 in atherosclerosis: atherogenic or atheroprotective?Clin. Lipidol.12(1), 14–23 (2017).
  • Frisdal E , LesnikP, OlivierMet al. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J. Biol. Chem.286(35), 30926–30936 (2011).
  • Harrington JR . The role of MCP-1 in atherosclerosis. Stem Cells18(1), 65–66 (2000).
  • de Winther MP , LutgensE. MiR-92a: at the heart of lipid-driven endothelial dysfunction. Circ. Res.114(3), 399–401 (2014).
  • Hassanpour M , RahbarghaziR, NouriM, AghamohammadzadehN, SafaeiN, AhmadiM. Role of autophagy in atherosclerosis: foe or friend?J. Inflamm.16, 8 (2019).
  • Shao BZ , HanBZ, ZengYX, SuDF, LiuC. The roles of macrophage autophagy in atherosclerosis. Acta Pharmacol. Sin.37(2), 150–156 (2016).
  • Qi M , XinS. FGF signaling contributes to atherosclerosis by enhancing the inflammatory response in vascular smooth muscle cells. Mol. Med. Rep.20(1), 162–170 (2019).
  • Zhang L , ChengH, YueY, LiS, ZhangD, HeR. TUG1 knockdown ameliorates atherosclerosis via up-regulating the expression of miR-133a target gene FGF1. Cardiovasc. Pathol.33, 6–15 (2018).
  • Gabunia K , HermanAB, RayMet al. Induction of MiR133a expression by IL-19 targets LDLRAP1 and reduces oxLDL uptake in VSMC. J. Mol. Cell. Cardiol.105, 38–48 (2017).
  • Xue M , XiaF, WangYet al. The role of lncRNA TUG1 in obesity-related diseases. Mini Rev. Med. Chem.22(9), 1305–1313 (2022).
  • Bennett MR , SinhaS, OwensGK. Vascular smooth muscle cells in atherosclerosis. Circ. Res.118(4), 692–702 (2016).
  • Tsai PC , LiaoYC, WangYS, LinHF, LinRT, JuoSH. Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J. Vasc. Res.50(4), 346–354 (2013).
  • Wang M , LiW, ChangGQet al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler. Thromb. Vasc. Biol.31(9), 2044–2053 (2011).
  • Krzywińska O , BrachaM, JeanniereC, RecchiaE, KędzioraKornatowska K, KozakiewiczM. Meta-analysis of the potential role of miRNA-21 in cardiovascular system function monitoring. Biomed Res. Int.2020, 4525410 (2020).
  • Cheng Y , LiuX, ZhangS, LinY, YangJ, ZhangC. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. J. Mol. Cell. Cardiol.47(1), 5–14 (2009).
  • Blanco-Aparicio C , RennerO, LealJF, CarneroA. PTEN, more than the AKT pathway. Carcinogenesis28(7), 1379–1386 (2007).
  • Zhang X , ShiH, WangY, HuJ, SunZ, XuS. Down-regulation of hsa-miR-148b inhibits vascular smooth muscle cells proliferation and migration by directly targeting HSP90 in atherosclerosis. Am. J. Transl. Res.9(2), 629–637 (2017).
  • Wu X , ZhengX, ChengJ, ZhangK, MaC. LncRNA TUG1 regulates proliferation and apoptosis by regulating miR-148b/IGF2 axis in ox-LDL-stimulated VSMC and HUVEC. Life Sci.243, 117287 (2020).
  • Businaro R , ProfumoE, TaglianiAet al. Heat-shock protein 90: a novel autoantigen in human carotid atherosclerosis. Atherosclerosis207(1), 74–83 (2009).
  • Bergman D , HaljeM, NordinM, EngströmW. Insulin-like growth factor 2 in development and disease: a mini-review. Gerontology59(3), 240–249 (2013).
  • Wang B , GeZ, ChengZ, ZhaoZ. Tanshinone IIA suppresses the progression of atherosclerosis by inhibiting the apoptosis of vascular smooth muscle cells and the proliferation and migration of macrophages induced by ox-LDL. Open Biol.6(4), 489–495 (2017).
  • Tang FT , CaoY, WangTQet al. Tanshinone IIA attenuates atherosclerosis in apoE(-/-) mice through down-regulation of scavenger receptor expression. Eur. J. Pharmacol.650(1), 275–284 (2011).
  • Zhang Y , QinW, ZhangLet al. MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis. Sci. Rep.5, 9401 (2015).
  • Feng M , XuD, WangL. MiR-26a inhibits atherosclerosis progression by targeting TRPC3. Cell Biosci.8, 4 (2018).
  • Kemp CD , ConteJV. The pathophysiology of heart failure. Cardiovasc. Pathol.21(5), 365–371 (2012).
  • Rogers C , BushN. Heart failure: pathophysiology, diagnosis, medical treatment guidelines, and nursing management. Nurs. Clin. N. Am.50(4), 787–799 (2015).
  • Zhu Q , LiS, JiK, ZhouH, LuoC, SuiY. Differentially expressed TUG1 and miR-145-5p indicate different severity of chronic heart failure and predict 2-year survival prognosis. Exp. Ther. Med.22(6), 1362 (2021).
  • Mele D , NardozzaM, FerrariR. Left ventricular ejection fraction and heart failure: an indissoluble marriage?Eur. J. Heart Fail.20(3), 427–430 (2018).
  • Foley TA , MankadSV, AnavekarNSet al. Measuring left ventricular ejection fraction-techniques and potential pitfalls. Eur. Cardiol.8(2), 108–114 (2012).
  • Yancy CW , JessupM, BozkurtBet al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation128(16), 1810–1852 (2013).
  • Owan TE , HodgeDO, HergesRM, JacobsenSJ, RogerVL, RedfieldMM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N. Engl. J. Med.355(3), 251–259 (2006).
  • Kalogeropoulos A , GeorgiopoulouV, PsatyBMet al. Inflammatory markers and incident heart failure risk in older adults: the Health ABC (Health, Aging, and Body Composition) study. J. Am. Coll. Cardiol.55(19), 2129–2137 (2010).
  • Vasan RS , SullivanLM, RoubenoffRet al. Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation107(11), 1486–1491 (2003).
  • Paul B , SoonKH, DunneJ, DePasquale CG. Diagnostic and prognostic significance of plasma N-terminal-pro-brain natriuretic peptide in decompensated heart failure with preserved ejection fraction. Heart Lung Circ.17(6), 497–501 (2008).
  • Nishikimi T , MaedaN, MatsuokaH. The role of natriuretic peptides in cardioprotection. Cardiovasc. Res.69(2), 318–328 (2006).
  • Zhang S , JinR, LiB. Serum NT-proBNP and TUG1 as novel biomarkers for elderly hypertensive patients with heart failure with preserved ejection fraction. Exp. Ther. Med.21(5), 446 (2021).
  • Frey N , OlsonEN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu. Rev. Physiol.65, 45–79 (2003).
  • Zou X , WangJ, TangL, WenQ. LncRNA TUG1 contributes to cardiac hypertrophy via regulating miR-29b-3p. In Vitro Cell. Dev. Biol. Anim.55(7), 482–490 (2019).
  • Pan J , XuZ, GuoGet al. Circ_nuclear factor I X (circNfix) attenuates pressure overload-induced cardiac hypertrophy via regulating miR-145-5p/ATF3 axis. Bioengineered12(1), 5373–5385 (2021).
  • Zhang G , NiX. Knockdown of TUG1 rescues cardiomyocyte hypertrophy through targeting the miR-497/MEF2C axis. Open Life Sci.16(1), 242–251 (2021).
  • Tham YK , BernardoBC, OoiJY, WeeksKL, McMullenJR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch. Toxicol.89(9), 1401–1438 (2015).
  • Verdin E , HirscheyMD, FinleyLW, HaigisMC. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem. Sci.35(12), 669–675 (2010).
  • Xiao Y , ZhangX, FanS, CuiG, ShenZ. MicroRNA-497 inhibits cardiac hypertrophy by targeting Sirt4. PLOS ONE11(12), e0168078 (2016).
  • Luo YX , TangX, AnXZet al. SIRT4 accelerates Ang II-induced pathological cardiac hypertrophy by inhibiting manganese superoxide dismutase activity. Eur. Heart J.38(18), 1389–1398 (2017).
  • Tsutsui H , KinugawaS, MatsushimaS. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol.301(6), H2181–2190 (2011).
  • Dong C , YangXZ, ZhangCYet al. Myocyte enhancer factor 2C and its directly-interacting proteins: a review. Prog. Biophys. Mol. Biol.126, 22–30 (2017).
  • Cornwell JD , McDermottJC. MEF2 in cardiac hypertrophy in response to hypertension. Trends Cardiovasc. Med.33(4), 204–212 (2023).
  • Desjardins CA , NayaFJ. The function of the MEF2 family of transcription factors in cardiac development, cardiogenomics, and direct reprogramming. J. Cardiovasc. Dev. Dis.3(3), 26 (2016).
  • Hua CC , LiuXM, LiangLR, WangLF, ZhongJC. Targeting the microRNA-34a as a novel therapeutic strategy for cardiovascular diseases. Front. Cardiovasc. Med.8, 784044 (2021).
  • Fang Q , LiuT, YuCet al. LncRNA TUG1 alleviates cardiac hypertrophy by targeting miR-34a/DKK1/Wnt-β-catenin signalling. J. Cell. Mol. Med.24(6), 3678–3691 (2020).
  • Foulquier S , DaskalopoulosEP, LluriG, HermansKCM, DebA, BlankesteijnWM. WNT signaling in cardiac and vascular disease. Pharmacol. Rev.70(1), 68–141 (2018).
  • Ueland T , OtterdalK, LekvaTet al. Dickkopf-1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis. Arterioscler. Thromb. Vasc. Biol.29(8), 1228–1234 (2009).
  • Maeda S , YamamotoH, KinchLNet al. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat. Struct. Mol. Biol.27(12), 1194–1201 (2020).
  • Huang J , SunW, HuangHet al. MiR-34a modulates angiotensin II-induced myocardial hypertrophy by direct inhibition of ATG9A expression and autophagic activity. PLOS ONE9(4), e94382 (2014).
  • Jiang W , XiongY, LiX, YangY. Cardiac fibrosis: cellular effectors, molecular pathways, and exosomal roles. Front. Cardiovasc. Med.8, 715258 (2021).
  • Travers JG , KamalFA, RobbinsJ, YutzeyKE, BlaxallBC. Cardiac fibrosis: the fibroblast awakens. Circ. Res.118(6), 1021–1040 (2016).
  • Silva AC , PereiraC, FonsecaA, Pinto-do-ÓP, NascimentoDS. Bearing my heart: the role of extracellular matrix on cardiac development, homeostasis, and injury response. Front. Cell Dev. Biol.8, 621644 (2020).
  • Nagpal V , RaiR, PlaceATet al. MiR-125b is critical for fibroblast-to-myofibroblast transition and cardiac fibrosis. Circulation133(3), 291–301 (2016).
  • van Rooij E , SutherlandLB, ThatcherJEet al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. PNAS105(35), 13027–13032 (2008).
  • Liang JN , ZouX, FangXHet al. The Smad3-miR-29b/miR-29c axis mediates the protective effect of macrophage migration inhibitory factor against cardiac fibrosis. Biochim. Biophys. Acta Mol. Basis Dis.1865(9), 2441–2450 (2019).
  • Zhao Y , DuD, ChenS, ChenZ, ZhaoJ. New insights into the functions of microRNAs in cardiac fibrosis: from mechanisms to therapeutic strategies. Gene13(8), (2022).
  • Cushing L , CostineanS, XuWet al. Disruption of miR-29 leads to aberrant differentiation of smooth muscle cells selectively associated with distal lung vasculature. PLoS Genet.11(5), e1005238 (2015).
  • Yang PY , HoDC, ChenSHet al. Down-regulation of miR-29c promotes the progression of oral submucous fibrosis through targeting tropomyosin-1. J. Formos. Med. Assoc.121(6), 1117–1122 (2022).
  • Shinde AV , HumeresC, FrangogiannisNG. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta Mol. Basis Dis.1863(1), 298–309 (2017).
  • Wang J , ZoharR, McCullochCA. Multiple roles of alpha-smooth muscle actin in mechanotransduction. Exp. Cell Res.312(3), 205–214 (2006).
  • Zhu Y , FengZ, JianZ, XiaoY. Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR-29c in chronic hypoxia. Mol. Med. Rep.18(3), 3451–3460 (2018).
  • Gil H , GoldshteinM, EtzionSet al. Defining the timeline of periostin upregulation in cardiac fibrosis following acute myocardial infarction in mice. Sci. Rep.12(1), 21863 (2022).
  • Dorn LE , PetrosinoJM, WrightP, AccorneroF. CTGF/CCN2 is an autocrine regulator of cardiac fibrosis. J. Mol. Cell. Cardiol.121, 205–211 (2018).
  • Townley-Tilson WH , CallisTE, WangD. MicroRNAs 1, 133, and 206: critical factors of skeletal and cardiac muscle development, function, and disease. Int. J. Biochem. Cell Biol.42(8), 1252–1255 (2010).
  • Zhang S , WangN, MaQ, FanF, MaX. LncRNA TUG1 acts as a competing endogenous RNA to mediate CTGF expression by sponging miR-133b in myocardial fibrosis after myocardial infarction. Cell Biol. Int.45(12), 2534–2543 (2021).
  • Panizo S , Carrillo-LópezN, Naves-DíazMet al. Regulation of miR-29b and miR-30c by vitamin D receptor activators contributes to attenuate uraemia-induced cardiac fibrosis. Nephrol. Dial. Transplant.32(11), 1831–1840 (2017).
  • Shimbori C , BellayePS, XiaJet al. Fibroblast growth factor-1 attenuates TGF-β1-induced lung fibrosis. J. Pathol.240(2), 197–210 (2016).
  • Sun Q , LuoM, GaoZet al. TUG1 knockdown suppresses cardiac fibrosis after myocardial infarction. Mamm. Genome32(6), 435–442 (2021).
  • Yuan X , PanJ, WenLet al. MiR-590-3p regulates proliferation, migration and collagen synthesis of cardiac fibroblast by targeting ZEB1. J. Cell. Mol. Med.24(1), 227–237 (2020).
  • Sagris M , VardasEP, TheofilisP, AntonopoulosAS, OikonomouE, TousoulisD. Atrial fibrillation: pathogenesis, predisposing factors, and genetics. Int. J. Mol. Sci.23(1), 6 (2021).
  • Guo Y , SunZ, ChenM, LunJ. LncRNA TUG1 regulates proliferation of cardiac fibroblast via the miR-29b-3p/TGF-β1 axis. Front. Cardiovasc. Med.8, 646806 (2021).
  • Nattel S . How does fibrosis promote atrial fibrillation persistence: in silico findings, clinical observations, and experimental data. Cardiovasc. Res.110(3), 295–297 (2016).
  • Nattel S . New ideas about atrial fibrillation 50 years on. Nature415(6868), 219–226 (2002).
  • Saadat S , NoureddiniM, Mahjoubin-TehranMet al. Pivotal role of TGF-β/Smad signaling in cardiac fibrosis: non-coding RNAs as effectual players. Front. Cardiovasc. Med.7, 588347 (2020).
  • Kim KK , SheppardD, ChapmanHA. TGF-β1 signaling and tissue fibrosis. Cold Spring Harb. Perspect. Biol.10(4), a022293 (2018).
  • Li J , CenB, ChenS, HeY. MicroRNA-29b inhibits TGF-β1-induced fibrosis via regulation of the TGF-β1/Smad pathway in primary human endometrial stromal cells. Mol. Med. Rep.13(5), 4229–4237 (2016).
  • Kunej T , ObsteterJ, PogacarZ, HorvatS, CalinGA. The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring. Crit. Rev. Clin. Lab. Sci.51(6), 344–357 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.