81
Views
0
CrossRef citations to date
0
Altmetric
Review

Exploring mRNA Translation Strategies for Hypoxia Adaptation Across Distantly Related Metazoans

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1069-1084 | Received 09 Jul 2023, Accepted 26 Oct 2023, Published online: 16 Nov 2023

References

  • Chawla A , LavaniaA. Oxygen toxicity. Med. J. Armed Forces India57(2), 131–133 (2001).
  • Dismukes GC , KlimovVV , BaranovSV , KozlovYN , DasGuptaJ , TyryshkinA. The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc. Natl. Acad. Sci.98(5), 2170–2175 (2001).
  • Taylor CT , McElwainJC. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology25(5), 272–279 (2010).
  • Lane N . Oxygen: the molecule that made the world (2004). https://nick-lane.net/books/oxygen-the-molecule-that-made-the-world/
  • Rytkönen KT . Oxygen and early animals. eLife7, e34756 (2018).
  • Vazquez A , LiuJ , ZhouY , OltvaiZN. Catabolic efficiency of aerobic glycolysis: The Warburg effect revisited. BMC Syst. Biol.4, 58 (2010).
  • Hashemzadeh S , ShahmoradS , Rafii-TabarH , OmidiY. Computational modeling to determine key regulators of hypoxia effects on the lactate production in the glycolysis pathway. Sci. Rep.10(1), 9163 (2020).
  • Brusca R , BruscaG. Invertebrates. Sinauer Associates, Sunderland, UK (2003).
  • CSIRO . All insects are invertebrates! (2016). www.ento.csiro.au/education/what_invertebrates.html
  • Schmitz A , HarrisonJF. Hypoxic tolerance in air-breathing invertebrates. Respir. Physiol. Neurobiol.141(3), 229–242 (2004).
  • Clegg null . Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. J. Exp. Biol.200(Pt 3), 467–475 (1997).
  • Yahalomi D , AtkinsonSD , NeuhofMet al. A cnidarian parasite of salmon (Myxozoa: Henneguya) lacks a mitochondrial genome. Proc. Natl Acad. Sci. USA117(10), 5358–5363 (2020).
  • Zhou D , XueJ , LaiJCK , SchorkNJ , WhiteKP , HaddadGG. Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: hairy as a metabolic switch. PLOS Genet.4(10), e1000221 (2008).
  • Callier V , HandSC , CampbellJB , BiddulphT , HarrisonJF. Developmental changes in hypoxic exposure and responses to anoxia in Drosophila melanogaster. J. Exp. Biol.218(18), 2927–2934 (2015).
  • Pannunzio TM , StoreyKB. Antioxidant defenses and lipid peroxidation during anoxia stress and aerobic recovery in the marine gastropod Littorina littorea. J. Exp. Mar. Biol. Ecol.221(2), 277–292 (1998).
  • Zenteno-Savín T , SaldiernaR , Ahuejote-SandovalM. Superoxide radical production in response to environmental hypoxia in cultured shrimp. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol.142(3), 301–308 (2006).
  • Brouwer M , LarkinP , Brown-PetersonN , KingC , ManningS , DenslowN. Effects of hypoxia on gene and protein expression in the blue crab, Callinectes sapidus. Mar. Environ. Res.58(2), 787–792 (2004).
  • Hoback WW , StanleyDW , HigleyLG , BarnhartMC. Survival of immersion and anoxia by larval tiger beetles, Cicindela togata. Am. Midl. Nat.140(1), 27–33 (1998).
  • Wyatt TD . How a subsocial intertidal beetle, Bledius spectabilis, prevents flooding and anoxia in its burrow. Behav. Ecol. Sociobiol.19(5), 323–331 (1986).
  • Conradi-Larsen E-M , SømmeL. Anaerobiosis in the overwintering beetle Pelophila borealis. Nature245(5425), 388–390 (1973).
  • Meidell E-M . Diapause, aerobic and anaerobic metabolism in alpine, adult Melasoma collaris (Coleoptera). Oikos41(2), 239–244 (1983).
  • Leinaas HP , SømmeL. Adaptations in Xenylla maritima and Anurophorus laricis (Collembola) to lichen habitats on alpine rocks. Oikos43(2), 197–206 (1984).
  • Sømme L , Conradi-LarsenE-M. Anaerobiosis in overwintering Collembolans and Oribatid mites from windswept mountain ridges. Oikos29(1), 127–132 (1977).
  • Houlihan DF . Some effects of low oxygen partial pressures on the development of Calliphora vomitoria. J. Insect Physiol.20(7), 1367–1387 (1974).
  • Chapman RF , ChapmanRF. The Insects: Structure and FunctionCambridge University Press, Cambridge, UK (1998).
  • Donahaye E . Laboratory selection of resistance by the red flour beetle, Tribolium castaneum (Herbst), to a carbon dioxide-enriched atmosphere. Phytoparasitica18(4), 299–308 (1990).
  • Knipling GD , SullivanWN , FultonRA. The survival of several species of insects in a nitrogen atmosphere. J. Econ. Entomol.54(5), 1054–1055 (1961).
  • Soderstrom EL , BrandlDG , MackeyB. Responses of codling moth (Lepidoptera: Tortricidae) life stages to high carbon dioxide or low oxygen atmospheres. J. Econ. Entomol.83(2), 472–475 (1990).
  • Hochachka PW , NenerJC , HoarJ , SaurezRK , HandSC. Disconnecting metabolism from adenylate control during extreme oxygen limitation. Can. J. Zool.71(6), 1267–1270 (1993).
  • Hoback WW , StanleyDW. Insects in hypoxia. J. Insect Physiol.47(6), 533–542 (2001).
  • Nagell B , LandahlC-C. Resistance to anoxia of Chironomus plumosus and Chironomus anthracinus (Diptera) larvae. Ecography1(4), 333–336 (1978).
  • Von Brand T . Anaerobiosis in invertebrates. Anaerobiosis Invertebr. (4), 328 (1946).
  • Foster WA , TreherneJE. Insects of marine saltmarshes: problems and adaptations. Mar. Insects5–42 (1976). ( Chapter 2).
  • Ortiz-Prado E , DunnJF , VasconezJ , CastilloD , ViscorG. Partial pressure of oxygen in the human body: a general review. Am. J. Blood Res.9(1), 1–14 (2019).
  • Harrison JF , GreenleeKJ , VerberkWCEP. Functional hypoxia in insects: definition, assessment, and consequences for physiology, ecology, and evolution. Annu. Rev. Entomol.63(1), 303–325 (2018).
  • Mylonis I , SimosG , ParaskevaE. Hypoxia-inducible factors and the regulation of lipid metabolism. Cells8(3), 214 (2019).
  • Tennessen JM , BertagnolliNM , EvansJ , SieberMH , CoxJ , ThummelCS. Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis. G3 Bethesda MD4(5), 839–850 (2014).
  • Zervou S , WhittingtonHJ , OstrowskiPJet al. Increasing creatine kinase activity protects against hypoxia / reoxygenation injury but not against anthracycline toxicity in vitro. PLOS ONE12(8), e0182994 (2017).
  • Sun JL , ZhaoLL , WuHet al. Acute hypoxia changes the mode of glucose and lipid utilization in the liver of the largemouth bass (Micropterus salmoides). Sci. Total Environ.713, 135157 (2020).
  • Yeung C , GibsonAE , IssaqSHet al. Targeting glycolysis through inhibition of lactate dehydrogenase impairs tumor growth in preclinical models of Ewing sarcoma. Cancer Res.79(19), 5060–5073 (2019).
  • Boutilier RG . Mechanisms of cell survival in hypoxia and hypothermia. J. Exp. Biol.204(18), 3171–3181 (2001).
  • Larade K , StoreyKB. Living without oxygen: anoxia-responsive gene expression and regulation. Curr. Genomics10(2), 76–85 (2009).
  • Gorr TA , GassmannM , WappnerP. Sensing and responding to hypoxia via HIF in model invertebrates. J. Insect Physiol.52(4), 349–364 (2006).
  • Hershey JWB , SonenbergN , MathewsMB. Principles of translational control. Cold Spring Harb. Perspect. Biol.11(9), a032607 (2019).
  • Holcik M , SonenbergN. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol.6(4), 318–327 (2005).
  • Thomas JD , JohannesGJ. Identification of mRNAs that continue to associate with polysomes during hypoxia. RNA13(7), 1116–1131 (2007).
  • Fingar DC , BlenisJ. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene23(18), 3151–3171 (2004).
  • Ma XM , BlenisJ. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol.10(5), 307–318 (2009).
  • Buchkovich NJ , YuY , ZampieriCA , AlwineJC. The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K–Akt–mTOR signalling pathway. Nat. Rev. Microbiol.6(4), 266–275 (2008).
  • Koritzinsky M , MagagninMG , vanden Beucken Tet al. Gene expression during acute and prolonged hypoxia is regulated by distinct mechanisms of translational control. EMBO J.25(5), 1114–1125 (2006).
  • Bickler PE , BuckLT. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu. Rev. Physiol.69(1), 145–170 (2007).
  • Pivovarov AS , CalahorroF , WalkerRJ. Na+/K+-pump and neurotransmitter membrane receptors. Invert. Neurosci.19(1), (2019).
  • Roy M , Sivan-LoukianovaE , EberlDF. Cell-type-specific roles of Na+/K+ ATPase subunits in Drosophila auditory mechanosensation. Proc. Natl Acad. Sci. USA110(1), 181–186 (2013).
  • Luptakova D , BaciakL , PluhacekTet al. Membrane depolarization and aberrant lipid distributions in the neonatal rat brain following hypoxic-ischaemic insult. Sci. Rep.8(1), 6952 (2018).
  • Orrenius S , ZhivotovskyB , NicoteraP. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol.4(7), 552–565 (2003).
  • Garcia D , ShawRJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell66(6), 789–800 (2017).
  • Willmore WG , StoreyKB. Antioxidant systems and anoxia tolerance in a freshwater turtle Trachemys scripta elegans. Mol. Cell. Biochem.170(1), 177–185 (1997).
  • Janes TA , SyedNI. Neuronal mechanisms of oxygen chemoreception: an invertebrate perspective. Adv. Exp. Med. Biol.758, 7–17 (2012).
  • Hammarlund EU , FlashmanE , MohlinS , LicausiF. Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science370(6515), eaba3512 (2020).
  • Hong S-S , LeeH , KimK-W. HIF-1α: a valid therapeutic target for tumor therapy. Cancer Res. Treat. Off. J. Korean Cancer Assoc.36(6), 343–353 (2004).
  • Iliopoulos O , LevyAP , JiangC , KaelinWG , GoldbergMA. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl Acad. Sci. USA93(20), 10595–10599 (1996).
  • Ivanova IG , ParkCV , KennethNS. Translating the hypoxic response –the role of HIF protein translation in the cellular response to low oxygen. Cells8(2), 114 (2019).
  • Downes NL , Laham-KaramN , KaikkonenMU , Ylä-HerttualaS. Differential but complementary HIF1α and HIF2α transcriptional regulation. Mol. Ther.26(7), 1735–1745 (2018).
  • Semenza GL . Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer3(10), 721–732 (2003).
  • Uniacke J , HoltermanCE , LachanceGet al. An oxygen-regulated switch in the protein synthesis machinery. Nature486(7401), 126–129 (2012).
  • Fagerberg L , HallströmBM , OksvoldPet al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics MCP13(2), 397–406 (2014).
  • Yang S-L , WuC , XiongZ-F , FangX. Progress on hypoxia-inducible factor-3: its structure, gene regulation and biological function (review). Mol. Med. Rep.12(2), 2411–2416 (2015).
  • Zhang P , YaoQ , LuL , LiY , ChenP-J , DuanC. Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep.6(6), 1110–1121 (2014).
  • Tolonen J-P , HeikkiläM , MalinenMet al. A long hypoxia-inducible factor 3 isoform 2 is a transcription activator that regulates erythropoietin. Cell Mol Life Sci.17(18), 3627–3642 (2020).
  • Loenarz C , ColemanML , BoleiningerAet al. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens . EMBO Rep. 12(1), 63–70 (2011).
  • Dumesic PA , EganDF , GutPet al. An evolutionarily conserved uORF regulates PGC1α and oxidative metabolism in mice, flies, and bluefin tuna. Cell Metab.30(1), 190–200.e6 (2019).
  • Li Y , PadmanabhaD , GentileLB , DumurCI , BecksteadRB , BakerKD. HIF- and Non-HIF-regulated hypoxic responses require the estrogen-related receptor in Drosophila melanogaster. PLOS Genet.9(1), (2013).
  • Shen C , NettletonD , JiangM , KimSK , Powell-CoffmanJA. Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans. J. Biol. Chem.280(21), 20580–20588 (2005).
  • Jain IH , CalvoSE , MarkhardALet al. Genetic screen for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism. Cell181(3), 716–727.e11 (2020).
  • Mata-Greenwood E , GoyalD , GoyalR. Comparative and experimental studies on the genes altered by chronic hypoxia in human brain microendothelial cells. Front. Physiol.8, 365 (2017).
  • Rytkönen KT , WilliamsTA , RenshawGM , PrimmerCR , NikinmaaM. Molecular evolution of the metazoan PHD–HIF oxygen-sensing system. Mol. Biol. Evol.28(6), 1913–1926 (2011).
  • Mills DB , FrancisWR , VargasSet al. The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. Elife.7, e31176 (2018).
  • Graham AM , BarretoFS. Independent losses of the hypoxia-inducible factor (HIF) pathway within Crustacea. Mol. Biol. Evol.37(5), 1342–1349 (2020).
  • Graham AM , BarretoFS. Loss of the HIF pathway in a widely distributed intertidal crustacean, the copepod Tigriopus californicus. Proc. Natl Acad. Sci. USA116(26), 12913–12918 (2019).
  • Gorospe M , TominagaK , WuX , FählingM , IvanM. Post-transcriptional control of the hypoxic response by RNA-binding proteins and microRNAs. Front Mol Neurosci.4, 7 (2011).
  • Gilmore TD , WolenskiFS. NF-κB: where did it come from and why?Immunol. Rev.246(1), 14–35 (2012).
  • Kockel L , HomsyJG , BohmannD. Drosophila AP-1: lessons from an invertebrate. Oncogene20(19), 2347–2364 (2001).
  • Uno M , HonjohS , MatsudaMet al. A fasting-responsive signaling pathway that extends life span in C. elegans. Cell Rep.3(1), 79–91 (2013).
  • Seo J , FortunoES , SuhJMet al. Atf4 regulates obesity, glucose homeostasis, and energy expenditure. Diabetes58(11), 2565–2573 (2009).
  • Cordeiro IR , TanakaM. Environmental oxygen is a key modulator of development and evolution: from molecules to ecology. BioEssays42(9), 2000025 (2020).
  • Brar GA , YassourM , FriedmanN , RegevA , IngoliaNT , WeissmanJS. High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science335(6068), 552–557 (2012).
  • Barbosa C , PeixeiroI , RomãoL. Gene expression regulation by upstream open reading frames and human disease. PLOS Genet.9(8), e1003529 (2013).
  • Chew G-L , PauliA , RinnJL , RegevA , SchierAF , ValenE. Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Dev. Camb. Engl.140(13), 2828–2834 (2013).
  • McGillivray P , AultR , PawasheM , KitchenR , BalasubramanianS , GersteinM. A comprehensive catalog of predicted functional upstream open reading frames in humans. Nucleic Acids Res.46(7), 3326–3338 (2018).
  • van den Beucken T , MagagninMG , SavelkoulsK , LambinP , KoritzinskyM , WoutersBG. Regulation of Cited2 expression provides a functional link between translational and transcriptional responses during hypoxia. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol.83(3), 346–352 (2007).
  • Hantelys F , GodetA-C , DavidFet al. Vasohibin1, a new mouse cardiomyocyte IRES trans-acting factor that regulates translation in early hypoxia. eLife8, e50094 (2019).
  • Stein I , ItinA , EinatP , SkaliterR , GrossmanZ , KeshetE. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol. Cell. Biol.18(6), 3112–3119 (1998).
  • Staudacher JJ , Naarmann-deVries IS , UjvariSJet al. Hypoxia-induced gene expression results from selective mRNA partitioning to the endoplasmic reticulum. Nucleic Acids Res.43(6), 3219–3236 (2015).
  • Young RM , WangS-J , GordanJD , JiX , LiebhaberSA , SimonMC. Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism. J. Biol. Chem.283(24), 16309–16319 (2008).
  • Fähling M , SteegeA , PerlewitzAet al. Role of nucleolin in posttranscriptional control of MMP-9 expression. Biochim. Biophys. Acta BBA - Gene Struct. Expr.1731(1), 32–40 (2005).
  • de Toeuf B , SoinR , NazihAet al. ARE-mediated decay controls gene expression and cellular metabolism upon oxygen variations. Sci. Rep.8(1), 5211 (2018).
  • Chen C , ChenH , ZhangYet al. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant.. 13(8), 1194–1202 (2020).
  • Genuth NR , BarnaM. Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nat. Rev. Genet.19(7), 431–452 (2018).
  • Leppek K , DasR , BarnaM. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol.19(3), 158–174 (2018).
  • Fernandes LD , de MouraAPS , CiandriniL. Gene length as a regulator for ribosome recruitment and protein synthesis: theoretical insights. Sci. Rep.7(1), 1–11 (2017).
  • Fredrick K , IbbaM. How the sequence of a gene can tune its translation. Cell141(2), 227–229 (2010).
  • Rogers DW , BöttcherMA , TraulsenA , GreigD. Ribosome reinitiation can explain length-dependent translation of messenger RNA. PLOS Comput. Biol.13(6), e1005592 (2017).
  • Li JJ , ChewG-L , BigginMD. Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes. Genome Biol.20(1), 162 (2019).
  • Jan CH , FriedmanRC , RubyJG , BartelDP. Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature469(7328), 97–101 (2011).
  • Lianoglou S , GargV , YangJL , LeslieCS , MayrC. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev.27(21), 2380–2396 (2013).
  • Mayr C . Evolution and biological roles of alternative 3′UTRs. Trends Cell Biol.26(3), 227–237 (2016).
  • Siwiak M , ZielenkiewiczP. A comprehensive, quantitative, and genome-wide model of translation. PLOS Comput. Biol.6(7), e1000865 (2010).
  • Zheng D , WangR , DingQet al. Cellular stress alters 3′UTR landscape through alternative polyadenylation and isoform-specific degradation. Nat. Commun.9(1), 2268 (2018).
  • Mayr C . Regulation by 3′-untranslated regions. Annu. Rev. Genet.51, 171–194 (2017).
  • Mayr C . What are 3′ UTRs doing?Cold Spring Harb. Perspect. Biol.11(10), a034728 (2019).
  • Yaffe D , NudelU , MayerY , NeumanS. Highly conserved sequences in the 3′ untranslated region of mRNAs coding for homologous proteins in distantly related species. Nucleic Acids Res.13(10), 3723–3737 (1985).
  • Amrani N , GanesanR , KervestinS , MangusDA , GhoshS , JacobsonA. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature432(7013), 112–118 (2004).
  • Costello J , CastelliLM , RoweWet al. Global mRNA selection mechanisms for translation initiation. Genome Biol.16(1), 10 (2015).
  • Berkovits BD , MayrC. Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. Nature522(7556), 363–367 (2015).
  • Mazumder B , SampathP , SeshadriV , MaitraRK , DiCorletoPE , FoxPL. Regulated release of L13a from the 60S ribosomal subunit as a mechanism of transcript-specific translational control. Cell115(2), 187–198 (2003).
  • Chartron JW , HuntKCL , FrydmanJ. Cotranslational signal-independent SRP preloading during membrane targeting. Nature536(7615), 224–228 (2016).
  • Ho JJD , WangM , AudasTEet al. Systemic reprogramming of translation efficiencies on oxygen stimulus. Cell Rep.14(6), 1293–1300 (2016).
  • de Moor CH , MeijerH , LissendenS. Mechanisms of translational control by the 3′ UTR in development and differentiation. Semin. Cell Dev. Biol.16(1), 49–58 (2005).
  • PubPeer . An oxygen-regulated switch in the protein synthesis machinery. https://pubpeer.com/publications/22678294
  • Matoulkova E , MichalovaE , VojtesekB , HrstkaR. The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol.9(5), 563–576 (2012).
  • Courel M , ClémentY , BossevainCet al. GC content shapes mRNA storage and decay in human cells. eLife8, e49708 (2019).
  • Ho JJD , BalukoffNC , TheodoridisPRet al. A network of RNA-binding proteins controls translation efficiency to activate anaerobic metabolism. Nat. Commun.11(1), 2677 (2020).
  • Dominguez D , FreeseP , AlexisMSet al. Sequence, structure, and context preferences of human RNA binding proteins. Mol. Cell70(5), 854–867.e9 (2018).
  • Ray D , KazanH , CookKBet al. A compendium of RNA-binding motifs for decoding gene regulation. Nature499(7457), 172–177 (2013).
  • Brannan KW , JinW , HuelgaSCet al. SONAR discovers RNA-binding proteins from analysis of large-scale protein–protein interactomes. Mol. Cell64(2), 282–293 (2016).
  • Macharia LW , WanjiruCM , MureithiMW , PereiraCM , FerrerVP , Moura-NetoV. MicroRNAs, hypoxia and the stem-like state as contributors to cancer aggressiveness. Front Genet.10, 125 (2019).
  • Serocki M , BartoszewskaS , Janaszak-JasieckaA , OchockaRJ , CollawnJF , BartoszewskiR. miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis21(2), 183–202 (2018).
  • Ho JJD , BalukoffNC , CervantesG , MalcolmPD , KriegerJR , LeeS. Oxygen-sensitive remodeling of central carbon metabolism by archaic eIF5B. Cell Rep.22(1), 17–26 (2018).
  • Haizel SA , BhardwajU , GonzalezRL , MitraS , GossDJ. 5′-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs. J. Biol. Chem.295(33), 11693–11706 (2020).
  • Xie Y , YaoL , YuX , RuanY , LiZ , GuoJ. Action mechanisms and research methods of tRNA-derived small RNAs. Signal Transduct. Target. Ther.5(1), 1–9 (2020).
  • Thompson DM , ParkerR. The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J. Cell Biol.185(1), 43–50 (2009).
  • Metge BJ , KammerudSC , PruittHC , ShevdeLA , SamantRS. Hypoxia re-programs 2′-O-Me modifications on ribosomal RNA. iScience24(1), 102010 (2021).
  • Floor SN , DoudnaJA. Tunable protein synthesis by transcript isoforms in human cells. eLife5, e10921 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.