88
Views
0
CrossRef citations to date
0
Altmetric
Review

The Epigenetics Orchestra of Notch Signaling: A Symphony for Cancer Therapy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 1337-1358 | Received 28 Jul 2023, Accepted 16 Nov 2023, Published online: 19 Dec 2023

References

  • Sato C , ZhaoG , IlaganMX. An overview of Notch signaling in adult tissue renewal and maintenance. Curr. Alzheimer Res.9(2), 227–240 (2012).
  • Andersen P , UosakiH , ShenjeLT , KwonC. Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol.22(5), 257–265 (2012).
  • Turkoz M , TownsendRR , KopanR. The Notch intracellular domain has an RBPj-independent role during mouse hair follicular development. J. Invest. Dermatol.136(6), 1106–1115 (2016).
  • Aster JC , PearWS , BlacklowSC. The varied roles of Notch in cancer. Annu. Rev. Pathol.12, 245–275 (2017).
  • Hibdon ES , RazumilavaN , KeeleyTMet al. Notch and mTOR signaling pathways promote human gastric cancer cell proliferation. Neoplasia21(7), 702–712 (2019).
  • Ghoshal P , NgangaAJ , Moran-GiuatiJet al. Loss of the SMRT/NCoR2 corepressor correlates with JAG2 overexpression in multiple myeloma. Cancer Res.69(10), 4380–4387 (2009).
  • Jin L , VuT , YuanG , DattaPK. STRAP promotes stemness of human colorectal cancer via epigenetic regulation of the NOTCH pathway. Cancer Res.77(20), 5464–5478 (2017).
  • Zhang TH , LiangLZ , LiuXLet al. Long non-coding RNA MALAT1 interacts with miR-124 and modulates tongue cancer growth by targeting JAG1. Oncol. Rep.37(4), 2087–2094 (2017).
  • Wang L , LongH , ZhengQ , BoX , XiaoX , LiB. Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol. Cancer18(1), 119 (2019).
  • Kuwabara S , YamakiM , YuH , ItohM. Notch signaling regulates the expression of glycolysis-related genes in a context-dependent manner during embryonic development. Biochem. Biophys. Res. Commun.503(2), 803–808 (2018).
  • Weidenbusch M , RodlerS , SongSet al. Gene expression profiling of the Notch–AhR–IL22 axis at homeostasis and in response to tissue injury. Biosci. Rep.37(6), 1–14 (2017).
  • Magee CN , MurakamiN , BorgesTJet al. Notch-1 inhibition promotes immune regulation in transplantation via regulatory T cell-dependent mechanisms. Circulation140(10), 846–863 (2019).
  • Ibrahim SA , GadallaR , El-GhonaimyEAet al. Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Mol. Cancer16(1), 57 (2017).
  • Brahmi M , BallyO , EberstL , CassierP. Therapeutic targeting of Notch signaling in cancer. Bull. Cancer104(10), 883–891 (2017).
  • Kushwah R , GuezguezB , LeeJB , HopkinsCI , BhatiaM. Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human. EMBO Rep.15(11), 1128–1138 (2014).
  • Yan B , LiuL , ZhaoYet al. Xiaotan Sanjie decoction attenuates tumor angiogenesis by manipulating Notch-1-regulated proliferation of gastric cancer stem-like cells. World J. Gastroenterol.20(36), 13105–13118 (2014).
  • Huang Z , LinS , LongCet al. Notch signaling pathway mediates doxorubicin-driven apoptosis in cancers. Cancer Manag. Res.10, 1439–1448 (2018).
  • Bigas A , EspinosaL. Notch signaling in cell–cell communication pathways. Curr. Stem Cell Rep.2(4), 349–355 (2016).
  • Li Z , FischerM , SatkunarajahM , ZhouD , WithersSG , RiniJM. Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1). Nat. Commun.8(1), 185 (2017).
  • D’souza B , Meloty-KapellaL , WeinmasterG. Canonical and non-canonical Notch ligands. In: Current Topics in Developmental Biology.Elsevier, 73–129 (2010).
  • Arnett KL , SeegarTC , BlacklowSC. Structural biology of Notch signaling. In: Targeting Notch in Cancer.Springer, 1–33 (2018).
  • Bray SJ . Notch signalling in context. Nat. Rev. Mol. Cell Biol.17(11), 722–735 (2016).
  • Lovendahl KN , BlacklowSC , GordonWR. The molecular mechanism of Notch activation. In: Molecular Mechanisms of Notch Signaling.Springer, 47–58 (2018).
  • Seegar TCM , KillingsworthLB , SahaNet al. Structural basis for regulated proteolysis by the alpha-secretase ADAM10. Cell171(7), 1638–1648e7 (2017).
  • Sosa Iglesias V , TheysJ , GrootAJet al. Synergistic effects of NOTCH/gamma-secretase inhibition and standard of care treatment modalities in non-small cell lung cancer cells. Front. Oncol.8(460), 460 (2018).
  • Jang J , ByunSH , HanDet al. Notch intracellular domain deficiency in nuclear localization activity retains the ability to enhance neural stem cell character and block neurogenesis in mammalian brain development. Stem Cells Dev.23(23), 2841–2850 (2014).
  • Andersen P , UosakiH , ShenjeLT , KwonC. Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol.22(5), 257–265 (2012).
  • Krishna BM , JanaS , SinghalJet al. Notch signaling in breast cancer: from pathway analysis to therapy. Cancer Lett.461, 123–131 (2019).
  • Huang Q , LiJ , ZhengJ , WeiA. The carcinogenic role of the Notch signaling pathway in the development of hepatocellular carcinoma. J. Cancer10(6), 1570–1579 (2019).
  • Lim JS , IbasetaA , FischerMMet al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature545(7654), 360–364 (2017).
  • Hu YY , ZhengMH , ZhangR , LiangYM , HanH. Notch signaling pathway and cancer metastasis. Adv. Exp. Med. Biol.727, 186–198 (2012).
  • Landor SK , LendahlU. The interplay between the cellular hypoxic response and Notch signaling. Exp. Cell Res.356(2), 146–151 (2017).
  • Ayaz F , OsborneBA. Non-canonical notch signaling in cancer and immunity. Front. Oncol.4, 345 (2014).
  • Osipo C , GoldeTE , OsborneBA , MieleLA. Off the beaten pathway: the complex cross talk between Notch and NF-κB. Lab. Invest.88(1), 11 (2008).
  • Perumalsamy LR , NagalaM , BanerjeeP , SarinA. A hierarchical cascade activated by non-canonical Notch signaling and the mTOR–Rictor complex regulates neglect-induced death in mammalian cells. Cell Death Differ.16(6), 879–889 (2009).
  • Ang HL , TergaonkarV. Notch and NFκB signaling pathways: do they collaborate in normal vertebrate brain development and function?BioEssays29(10), 1039–1047 (2007).
  • Traustadottir GA , JensenCH , ThomassenMet al. Evidence of non-canonical NOTCH signaling: delta-like 1 homolog (DLK1) directly interacts with the NOTCH1 receptor in mammals. Cell. Signal.28(4), 246–254 (2016).
  • Wang MM . Notch signaling and Notch signaling modifiers. Int. J. Biochem. Cell Biol.43(11), 1550–1562 (2011).
  • Du J , WangX , ZhangX , ZhangX , JiangH. DNER modulates the length, polarity and synaptogenesis of spiral ganglion neurons via the Notch signaling pathway. Mol. Med. Rep.17(2), 2357–2365 (2018).
  • Ballester-Lopez C , ConlonTM , ErtuzZet al. The Notch ligand DNER regulates macrophage IFNγ release in chronic obstructive pulmonary disease. EBioMedicine43, 562–575 (2019).
  • Pan W , SongXY , HuQB , ZhangM , XuXH. TSP2 acts as a suppresser of cell invasion, migration and angiogenesis in medulloblastoma by inhibiting the Notch signaling pathway. Brain Res.1718, 223–230 (2019).
  • Rauen T , RaffetsederU , FryeBCet al. YB-1 acts as a ligand for Notch-3 receptors and modulates receptor activation. J. Biol. Chem.284(39), 26928–26940 (2009).
  • Tang H , XiaoWR , LiaoYYet al. EGFL7 silencing inactivates the Notch signaling pathway; enhancing cell apoptosis and suppressing cell proliferation in human cutaneous melanoma. Neoplasma66(2), 187–196 (2019).
  • Gupta R , HongD , IborraF , SarnoS , EnverT. NOV (CCN3) functions as a regulator of human hematopoietic stem or progenitor cells. Science316(5824), 590–593 (2007).
  • Vatanmakanian M , TavallaieM , GhadamiS. Imatinib independent aberrant methylation of NOV/CCN3 in chronic myelogenous leukemia patients: a mechanism upstream of BCR-ABL1 function?Cell Commun. Signal.17(1), 38 (2019).
  • Meng H , ZhangX , HankensonKD , WangMM. Thrombospondin 2 potentiates notch3/jagged1 signaling. J. Biol. Chem.284(12), 7866–7874 (2009).
  • Shi J , LiP , ZouL , ChenP , ZhangLP. Extracellular Y-box binding protein-1 promotes proliferation and metastasis of HepG2 cells through Notch3 receptor. Zhonghua Gan Zang Bing Za Zhi24(3), 202–206 (2016).
  • Lindquist JA , MertensPR. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun. Signal.16(1), 63 (2018).
  • Ke B , FanC , TuW , FangX. The role of Y-box binding protein 1 in kidney injury: friend or foe?Cell. Physiol. Biochem.46(1), 314–321 (2018).
  • Hong G , KuekV , ShiJet al. EGFL7: master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. J. Cell. Physiol.233(11), 8526–8537 (2018).
  • Palmer WH , DengWM. Ligand-independent mechanisms of Notch activity. Trends Cell Biol.25(11), 697–707 (2015).
  • Sakamoto K , YamaguchiS , AndoRet al. The nephroblastoma overexpressed gene (NOV/ccn3) protein associates with Notch1 extracellular domain and inhibits myoblast differentiation via Notch signaling pathway. J. Biol. Chem.277(33), 29399–29405 (2002).
  • Thibout H , MartinerieC , CreminonCet al. Characterization of human NOV in biological fluids: an enzyme immunoassay for the quantification of human NOV in sera from patients with diseases of the adrenal gland and of the nervous system. J. Clin. Endocrinol. Metab.88(1), 327–336 (2003).
  • Miyamoto A , LauR , HeinPW , ShipleyJM , WeinmasterG. Microfibrillar proteins MAGP-1 and MAGP-2 induce Notch1 extracellular domain dissociation and receptor activation. J. Biol. Chem.281(15), 10089–10097 (2006).
  • Aithal MG , RajeswariN. Role of Notch signalling pathway in cancer and its association with DNA methylation. J. Genet.92(3), 667–675 (2013).
  • Wang J , SullengerBA , RichJN. Notch signaling in cancer stem cells. ( 0065–2598 [Print]).
  • Capaccione KM , PineSR. The Notch signaling pathway as a mediator of tumor survival. ( 1460–2180 [Electronic]).
  • Xiao W , GaoZ , DuanY , YuanW , KeY. Notch signaling plays a crucial role in cancer stem-like cells maintaining stemness and mediating chemotaxis in renal cell carcinoma. J. Exp. Clin. Cancer Res.36(1), 41 (2017).
  • Natsuizaka M , WhelanKA , KagawaSet al. Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nat. Commun.8(1), 1758 (2017).
  • De Francesco EM , MaggioliniM , MustiAM. Crosstalk between Notch, HIF-1α and GPER in breast cancer EMT. Int. J. Mol. Sci.19(7), 2011 (2018).
  • Pandya Thakkar N , PereiraBMV , KatakiaYTet al. Elevated H3K4me3 through MLL2-WDR82 upon hyperglycemia causes jagged ligand dependent notch activation to interplay with differentiation state of endothelial cells. Font. Cell Dev. Biol.10, 839109 (2022).
  • Gottlieb TM , LealJF , SegerR , TayaY , OrenM. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. ( 0950–9232 [Print]).
  • Dotto GP . Crosstalk of Notch with p53 and p63 in cancer growth control. Nat. Rev. Cancer9(8), 587–595 (2009).
  • Radtke F , RajK. The role of Notch in tumorigenesis: oncogene or tumour suppressor?Nat. Rev. Cancer3(10), 756–767 (2003).
  • South AP , ChoRJ , AsterJC. The double-edged sword of Notch signaling in cancer. Semin. Cell Dev. Biol.23(4), 458–464 (2012).
  • Roy G , YangT , LiuS , LuoY-L , LiuY , ZhongQ. Epigenetic regulation of MAP3K8 in EBV-associated gastric carcinoma. Int. J. Mol. Sci.24(3), 1964 (2023).
  • Ellisen LW , BirdJ , WestDCet al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. ( 0092–8674 [Print]).
  • Reynolds TC , SmithSD , SklarJ. Analysis of DNA surrounding the breakpoints of chromosomal translocations involving the beta T cell receptor gene in human lymphoblastic neoplasms. ( 0092–8674 [Print]).
  • Girard L , HannaZ , BeaulieuNet al. Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev.10(15), 1930–1944 (1996).
  • Tohda S . NOTCH signaling roles in acute myeloid leukemia cell growth and interaction with other stemness-related signals. Anticancer Res.34(11), 6259–6264 (2014).
  • Gallahan D , KozakC , CallahanR. A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J. Virol.61(1), 218–220 (1987).
  • Reedijk M , OdorcicS , ChangLet al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res.65(18), 8530 (2005).
  • Zagouras P , StifaniS , BlaumuellerCM , CarcangiuML , Artavanis-TsakonasS. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl Acad. Sci. USA92(14), 6414–6418 (1995).
  • Zhang Y , LiB , JiZZ , ZhengPS. Notch1 regulates the growth of human colon cancers. Cancer116(22), 5207–5218 (2010).
  • Westhoff B , ColalucaIN , D’ArioGet al. Alterations of the Notch pathway in lung cancer. Proc. Natl Acad. Sci. USA106(52), 22293–22298 (2009).
  • Klinakis A , LobryC , Abdel-WahabOet al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature473(7346), 230–233 (2011).
  • Lowell S , WattFM. Delta regulates keratinocyte spreading and motility independently of differentiation. Mech. Dev.107(1–2), 133–140 (2001).
  • Rampias T , VgenopoulouP , AvgerisMet al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat. Med.20(10), 1199–1205 (2014).
  • Zhu B , SunL , LuoWet al. Activated Notch signaling augments cell growth in hepatocellular carcinoma via up-regulating the nuclear receptor NR4A2. Oncotarget8(14), 23289–23302 (2017).
  • Thélu J , RossioP , FavierB. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol.2, 7–7 (2002).
  • Lo Muzio L , PannoneG , StaibanoSet al. WNT-1 expression in basal cell carcinoma of head and neck. An immunohistochemical and confocal study with regard to the intracellular distribution of beta-catenin. Anticancer Res.22(2A), 565–576 (2002).
  • Sriuranpong V , BorgesMW , RaviRKet al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res.61(7), 3200–3205 (2001).
  • Zhang Y , LiD , FengFet al. Progressive and prognosis value of Notch receptors and ligands in hepatocellular carcinoma: a systematic review and meta-analysis. Sci. Rep.7(1), 14809 (2017).
  • Wang M , XueL , CaoQ , LinYet al. Expression of Notch1, Jagged1 and beta-catenin and their clinicopathological significance in hepatocellular carcinoma. ( 0028–2685 [Print]).
  • Sun L , LiuM , SunGCet al. Notch signaling activation in cervical cancer cells induces cell growth arrest with the involvement of the nuclear receptor NR4A2. J. Cancer7(11), 1388–1395 (2016).
  • Yoshikawa A , GotandaY , SuzukiYet al. Age- and gender-specific distributions of hepatitis B virus (HBV) genotypes in Japanese HBV-positive blood donors. Transfusion49(7), 1314–1320 (2009).
  • Wang L , QinH , ChenB , XinX , LiJ , HanH. Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells. Int. J. Gynecol. Cancer17(6), 1283–1292 (2007).
  • Suman S , DasTP , AnkemMK , DamodaranC. Targeting Notch signaling in colorectal cancer. Curr. Colorectal Cancer Rep.10(4), 411–416 (2014).
  • Galluzzo P , BocchettaM. Notch signaling in lung cancer. Expert Rev. Anticancer Ther.11(4), 533–540 (2011).
  • Motooka Y , FujinoK , SatoY , KudohS , SuzukiM , ItoT. Pathobiology of Notch2 in lung cancer. Pathology49(5), 486–493 (2017).
  • Di Ianni M , BaldoniS , RosatiEet al. A new genetic lesion in B-CLL: a NOTCH1 PEST domain mutation. ( 1365–2141 [Electronic]).
  • Puente XS , PinyolM , QuesadaVet al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature475(7354), 101–105 (2011).
  • Agrawal N , FrederickMJ , PickeringCRet al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science333(6046), 1154–1157 (2011).
  • Pickering CR , ZhouJH , LeeJJet al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin. Cancer Res.20(24), 6582–6592 (2014).
  • Song Y , LiL , OuYet al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature509(7498), 91–95 (2014).
  • George J , LimJS , JangSJet al. Comprehensive genomic profiles of small cell lung cancer. Nature524(7563), 47–53 (2015).
  • Rekhtman N , PietanzaMC , HellmannMDet al. Next-generation sequencing of pulmonary large cell neuroendocrine carcinoma reveals small cell carcinoma-like and non-small cell carcinoma-like subsets. Clin. Cancer Res.22(14), 3618–3629 (2016).
  • Cancer Genome Atlas Research Network , BratDJ , VerhaakRGet al.Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med.372(26), 2481–2498 (2015).
  • Biswas S , RaoCM. Epigenetics in cancer: fundamentals and beyond. Pharmacol. Ther.173, 118–134 (2017).
  • Kagohara LT , Stein-O’BrienGL , KelleyDet al. Epigenetic regulation of gene expression in cancer: techniques, resources and analysis. Brief Funct. Genomics17(1), 49–63 (2017).
  • Bernstein BE , MeissnerA , LanderES. The mammalian epigenome. Cell128(4), 669–681 (2007).
  • Du Q , LuuPL , StirzakerC , ClarkSJ. Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics7(6), 1051–1073 (2015).
  • Chen QW , ZhuXY , LiYY , MengZQ. Epigenetic regulation and cancer (review). Oncol. Rep.31(2), 523–532 (2014).
  • Arrowsmith CH , BountraC , FishPV , LeeK , SchapiraM. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov.11(5), 384–400 (2012).
  • Falkenberg KJ , JohnstoneRW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat. Rev. Drug Discov.13(9), 673 (2014).
  • Pande V . Understanding the complexity of epigenetic target space: miniperspective. J. Med. Chem.59(4), 1299–1307 (2016).
  • Brownell JE , AllisCD. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev.6(2), 176–184 (1996).
  • Ruiz-Carrillo A , WanghLJ , AllfreyVG. Processing of newly synthesized histone molecules. Science190(4210), 117–128 (1975).
  • Baxter E , WindlochK , GannonF , LeeJS. Epigenetic regulation in cancer progression. Cell Biosci.4(1), 45 (2014).
  • Huang Y , GreeneE , StewartTMet al. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc. Natl Acad. Sci. USA104(19), 8023–8028 (2007).
  • Shi Y , LanF , MatsonCet al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell119(7), 941–953 (2004).
  • Banerjee T , ChakravartiD. A peek into the complex realm of histone phosphorylation. Mol. Cell. Biol.05631–05611 (2011).
  • Kschonsak M , HaeringCH. Shaping mitotic chromosomes: from classical concepts to molecular mechanisms. BioEssays37(7), 755–766 (2015).
  • Nowak SJ , CorcesVG. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet.20(4), 214–220 (2004).
  • Rossetto D , AvvakumovN , CoteJ. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics7(10), 1098–1108 (2012).
  • Aihara H , NakagawaT , YasuiKet al. Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo. Genes Dev.18(8), 877–888 (2004).
  • Lowndes NF , TohGW. DNA repair: the importance of phosphorylating histone H2AX. Curr. Biol.15(3), R99–R102 (2005).
  • Pinto DMS , FlausA. Structure and function of histone H2AX. In: Genome Stability and Human Diseases.Springer, 55–78 (2010).
  • Cole AJ , Clifton-BlighR , MarshDJ. Histone H2B monoubiquitination: roles to play in human malignancy. Endocr. Relat. Cancer22(1), T19–T33 (2015).
  • Wang Z , LiY , KongD , AhmadA , BanerjeeS , SarkarFH. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett.292(2), 141–148 (2010).
  • Geisler S , CollerJ. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell Biol.14(11), 699–712 (2013).
  • Reicher A , FoßeltederJ , KwongLN , PichlerM. Crosstalk between the Notch signaling pathway and long non-coding RNAs. Cancer Lett.420, 91–96 (2018).
  • Wang KC , ChangHY. Molecular mechanisms of long noncoding RNAs. Mol. Cell43(6), 904–914 (2011).
  • Pan Y , MaoY , JinR , JiangL. Crosstalk between the Notch signaling pathway and non-coding RNAs in gastrointestinal cancers. Oncol. Lett.15(1), 31–40 (2018).
  • Piazzi G , BazzoliF , RicciardielloL. Epigenetic silencing of Notch signaling in gastrointestinal cancers. Cell Cycle11(23), 4323–4327 (2012).
  • Piazzi G , FiniL , SelgradMet al. Epigenetic regulation of delta-like1 controls Notch1 activation in gastric cancer. Oncotarget2(12), 1291–1301 (2011).
  • Gaykalova DA , ZizkovaV , GuoTet al. Integrative computational analysis of transcriptional and epigenetic alterations implicates DTX1 as a putative tumor suppressor gene in HNSCC. Oncotarget8(9), 15349 (2017).
  • Hernandez-Vargas H , LambertM-P , LeCalvez-Kelm Fet al. Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLOS ONE5(3), e9749 (2010).
  • Zhu Y , YeM , XuHet al. Methylation status of CpG sites in the NOTCH4 promoter region regulates NOTCH4 expression in patients with tetralogy of Fallot. Mol. Med. Rep.22(5), 4412–4422 (2020).
  • Bhagat TD , ZouY , HuangSet al. Notch pathway is activated via genetic and epigenetic alterations and is a therapeutic target in clear cell renal cancer. J. Biol. Chem.M116, 745208 (2016).
  • Kuang SQ , FangZ , Zweidler-MckayPAet al. Epigenetic inactivation of Notch–Hes pathway in human B-cell acute lymphoblastic leukemia. PLOS ONE8(4), e61807 (2013).
  • Scourzic L , CouronneL , PedersenMTet al. DNMT3A(R882H) mutant and Tet2 inactivation cooperate in the deregulation of DNA methylation control to induce lymphoid malignancies in mice. Leukemia30(6), 1388–1398 (2016).
  • Arzate-Mejia RG , Valle-GarciaD , Recillas-TargaF. Signaling epigenetics: novel insights on cell signaling and epigenetic regulation. IUBMB Life63(10), 881–895 (2011).
  • Cierpicki T , RisnerLE , GrembeckaJet al. Structure of the MLL CXXC domain-DNA complex and its functional role in MLL-AF9 leukemia. Nat. Struct. Mol. Biol.17(1), 62–68 (2010).
  • Huang YC , LinSJ , ShihHYet al. Epigenetic regulation of NOTCH1 and NOTCH3 by KMT2A inhibits glioma proliferation. Oncotarget8(38), 63110–63120 (2017).
  • Rauen T , GrammatikosAP , HedrichCMet al. cAMP-responsive element modulator alpha (CREMalpha) contributes to decreased Notch-1 expression in T cells from patients with active systemic lupus erythematosus (SLE). J. Biol. Chem.287(51), 42525–42532 (2012).
  • Xia Y , CaoX , XueXet al. Development of hair cells in inner ear is associated with expression and promoter methylation of Notch-1 in postnatal mice. Int. J. Clin. Exp. Med.8(9), 15542 (2015).
  • Moshkin YM , KanTW , GoodfellowHet al. Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing. Mol. Cell35(6), 782–793 (2009).
  • Sawarkar R , ParoR. Interpretation of developmental signaling at chromatin: the polycomb perspective. Dev. Cell19(5), 651–661 (2010).
  • De Koning L , CorpetA , HaberJE , AlmouzniG. Histone chaperones: an escort network regulating histone traffic. Nat. Struct. Mol. Biol.14(11), 997–1007 (2007).
  • Eitoku M , SatoL , SendaT , HorikoshiM. Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly. Cell. Mol. Life Sci.65(3), 414–444 (2008).
  • Pile LA , SchlagEM , WassarmanDA. The SIN3/RPD3 deacetylase complex is essential for G2 phase cell cycle progression and regulation of SMRTER corepressor levels. Mol. Cell. Biol.22(14), 4965–4976 (2002).
  • Vaquero A , SternglanzR , ReinbergD. NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene26(37), 5505–5520 (2007).
  • Majidinia M , DarbandSG , KavianiM , NabaviSM , Jahanban-EsfahlanR , YousefiB. Cross-regulation between Notch signaling pathway and miRNA machinery in cancer. DNA Repair66–67, 30–41 (2018).
  • Kefas B , ComeauL , FloydDHet al. The neuronal microRNA miR-326 acts in a feedback loop with notch and has therapeutic potential against brain tumors. J. Neurosci.29(48), 15161–15168 (2009).
  • Xing CG , ZhuBS , FanXQet al. Effects of LY294002 on the invasiveness of human gastric cancer in vivo in nude mice. World J. Gastroenterol.15(40), 5044–5052 (2009).
  • Song G , ZhangY , WangL. MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J. Biol. Chem.284(46), 31921–31927 (2009).
  • Cai H , YaoJ , AnYet al. lncRNA HOTAIR acts as competing endogenous RNA to control the expression of Notch3 via sponging miR-613 in pancreatic cancer. Oncotarget8(20), 32905 (2017).
  • Raveh E , MatoukIJ , GilonM , HochbergA. The H19 long non-coding RNA in cancer initiation, progression and metastasis – a proposed unifying theory. Mol. Cancer14(1), 184 (2015).
  • Zhang K , HanX , ZhangZet al. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat. Commun.8(1), 144 (2017).
  • Kong D , WangY. Retracted: knockdown of lncRNA HULC inhibits proliferation, migration, invasion, and promotes apoptosis by sponging miR-122 in osteosarcoma. J. Cell. Biochem.119(1), 1050–1061 (2018).
  • Lee M , KimHJ , KimSWet al. The long non-coding RNA HOTAIR increases tumour growth and invasion in cervical cancer by targeting the Notch pathway. Oncotarget7(28), 44558–44571 (2016).
  • Rani N , NowakowskiTJ , ZhouHet al. A primate lncRNA mediates notch signaling during neuronal development by sequestering miRNA. Neuron90(6), 1174–1188 (2016).
  • Ohtsuka M , LingH , IvanCet al. H19 noncoding RNA, an independent prognostic factor, regulates essential Rb-E2F and CDK8-beta-catenin signaling in colorectal cancer. EBioMedicine13, 113–124 (2016).
  • Durinck K , WallaertA , VanDe Walle Iet al. The Notch driven long non-coding RNA repertoire in T-cell acute lymphoblastic leukemia. Haematologica99(12), 1808–1816 (2014).
  • Katsushima K , NatsumeA , OhkaFet al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat. Commun.7, 13616 (2016).
  • Ounzain S , MichelettiR , ArnanCet al. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J. Mol. Cell. Cardiol.89(Pt A), 98–112 (2015).
  • Ebbesen KK , KjemsJ , HansenTB. Circular RNAs: identification, biogenesis and function. Biochim. Biophys. Acta1859(1), 163–168 (2016).
  • Ntziachristos P , LimJS , SageJ , AifantisI. From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell25(3), 318–334 (2014).
  • Olsauskas-Kuprys R , ZlobinA , OsipoC. Gamma secretase inhibitors of Notch signaling. Onco Targets Ther.6, 943–955 (2013).
  • Clarke EE , ChurcherI , EllisSet al. Intra- or intercomplex binding to the gamma-secretase enzyme. A model to differentiate inhibitor classes. J. Biol. Chem.281(42), 31279–31289 (2006).
  • Kummar S , O’SullivanCoyne G , DoKTet al. Clinical activity of the gamma-secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosis). J. Clin. Oncol.35(14), 1561–1569 (2017).
  • Wei P , WallsM , QiuMet al. Evaluation of selective γ-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol. Cancer Ther.9(6), 1618–1628 (2010).
  • Takebe N , NguyenD , YangSX. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol. Ther.141(2), 140–149 (2014).
  • Huynh C , PolisenoL , SeguraMFet al. The novel gamma secretase inhibitor RO4929097 reduces the tumor initiating potential of melanoma. PLOS ONE6(9), e25264 (2011).
  • Zhang C , QinS , XieHet al. RO4929097, a selective γ-secretase inhibitor, inhibits subretinal fibrosis via suppressing Notch and ERK1/2 signaling in laser-induced mouse model. Invest. Ophthalmol. Vis. Sci.63(10), 14 (2022).
  • Ryeom SW . The cautionary tale of side effects of chronic Notch1 inhibition. J. Clin. Invest.121(2), 508–509 (2011).
  • Wu Y , Cain-HomC , ChoyLet al. Therapeutic antibody targeting of individual Notch receptors. Nature464(7291), 1052–1057 (2010).
  • Zheng X , PangB , GuGet al. Melatonin inhibits glioblastoma stem-like cells through suppression of EZH2-NOTCH1 signaling axis. Int. J. Biol. Sci.13(2), 245–253 (2017).
  • Palermo R , ChecquoloS , GiovencoAet al. Acetylation controls Notch3 stability and function in T-cell leukemia. Oncogene31(33), 3807–3817 (2012).
  • Mohammed TA , HolenKD , Jaskula-SztulRet al. A pilot phase II study of valproic acid for treatment of low-grade neuroendocrine carcinoma. Oncologist16(6), 835–843 (2011).
  • Stockhausen MT , SjolundJ , ManetopoulosC , AxelsonH. Effects of the histone deacetylase inhibitor valproic acid on Notch signalling in human neuroblastoma cells. Br. J. Cancer92(4), 751–759 (2005).
  • A Sun L , HeQ , TsaiCet al. HDAC inhibitors suppressed small cell lung cancer cell growth and enhanced the suppressive effects of receptor-targeting cytotoxins via upregulating somatostatin receptor II. Am. J. Transl. Res.10(2), 545–553 (2018).
  • Tsai C , LeslieJS , Franko-TobinLGet al. Valproic acid suppresses cervical cancer tumor progression possibly via activating Notch1 signaling and enhances receptor-targeted cancer chemotherapeutic via activating somatostatin receptor type II. Arch. Gynecol. Obstet.288(2), 393–400 (2013).
  • Franko-Tobin LG , MackeyLV , HuangWet al. Notch1-mediated tumor suppression in cervical cancer with the involvement of SST signaling and its application in enhanced SSTR-targeted therapeutics. Oncologist17(2), 220–232 (2012).
  • Sen P , GhoshSS. γ-Secretase inhibitor potentiates the activity of suberoylanilide hydroxamic acid by inhibiting its ability to induce epithelial to mesenchymal transition and stemness via Notch pathway activation in triple-negative breast cancer cells. ACS Pharmacol. Transl. Sci.6(10), 1396–1415 (2023).
  • Butler LM , AgusDB , ScherHIet al. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res.60(18), 5165–5170 (2000).
  • Vigushin DM , AliS , PacePEet al. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin. Cancer Res.7(4), 971–976 (2001).
  • Hu W , LuC , DongHHet al. Biological roles of the Delta family Notch ligand Dll4 in tumor and endothelial cells in ovarian cancer. Cancer Res.71(18), 6030–6039 (2011).
  • Liu Q , ZhengJM , ChenJKet al. Histone deacetylase 5 promotes the proliferation of glioma cells by upregulation of Notch 1. Mol. Med. Rep.10(4), 2045–2050 (2014).
  • Pandya K , MeekeK , ClementzAGet al. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br. J. Cancer105(6), 796–806 (2011).
  • Farnie G , WillanPM , ClarkeRB , BundredNJ. Combined inhibition of ErbB1/2 and Notch receptors effectively targets breast ductal carcinoma in situ (DCIS) stem/progenitor cell activity regardless of ErbB2 status. PLOS ONE8(2), e56840 (2013).
  • Ma Y , RenY , HanEQet al. Inhibition of the Wnt–beta-catenin and Notch signaling pathways sensitizes osteosarcoma cells to chemotherapy. Biochem. Biophys. Res. Commun.431(2), 274–279 (2013).
  • Jin R , NakadaM , TengLet al. Combination therapy using Notch and Akt inhibitors is effective for suppressing invasion but not proliferation in glioma cells. Neurosci. Lett.534, 316–321 (2013).
  • Shepherd C , BanerjeeL , CheungCWet al. PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response. Leukemia27(3), 650–660 (2013).
  • Yao J , QianC , ShuT , ZhangX , ZhaoZ , LiangY. Combination treatment of PD98059 and DAPT in gastric cancer through induction of apoptosis and downregulation of WNT/beta-catenin. Cancer Biol. Ther.14(9), 833–839 (2013).
  • Doody RS , RamanR , FarlowMet al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med.369(4), 341–350 (2013).
  • Siemers ER , QuinnJF , KayeJet al. Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology66(4), 602–604 (2006).
  • Fleisher AS , RamanR , SiemersERet al. Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Arch. Neurol.65(8), 1031–1038 (2008).
  • Mandasari M , SawangarunW , KatsubeK , KayamoriK , YamaguchiA , SakamotoK. A facile one-step strategy for the generation of conditional knockout mice to explore the role of Notch1 in oroesophageal tumorigenesis. Biochem. Biophys. Res. Commun.469(3), 761–767 (2016).
  • Han N , HuG , ShiLet al. Notch1 ablation radiosensitizes glioblastoma cells. Oncotarget8(50), 88059–88068 (2017).
  • Huo L , WeiW , WuSet al. Effect of dihydroarteminin combined with siRNA targeting Notch1 on Notch1/c-Myc signaling in T-cell lymphoma cells. Exp. Ther. Med.15(3), 3059–3065 (2018).
  • Yamaguchi N , OyamaT , ItoEet al. NOTCH3 signaling pathway plays crucial roles in the proliferation of ErbB2-negative human breast cancer cells. Cancer Res.68(6), 1881–1888 (2008).
  • Lewis NA , KleinRH , KellyC , YeeJ , KnoepflerPS. Histone H3.3 K27M chromatin functions implicate a network of neurodevelopmental factors including ASCL1 and NEUROD1 in DIPG. Epigenetics Chromatin15(1), 18 (2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.