218
Views
0
CrossRef citations to date
0
Altmetric
Review

The epigenetics of frailty

ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 189-202 | Received 06 Aug 2023, Accepted 27 Nov 2023, Published online: 19 Dec 2023

References

  • Angioni D , Lu WH , Sourdet S et al. MAPT/DSA Group . Biomarkers of age-related frailty and frailty related to diseases: an exploratory, cross-sectional analysis from the MAPT study. J. Nutr. Health Aging 26, 545–551 (2022).
  • Kennedy BK , Berger SL , Brunet A et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).
  • Panza F , Lozupone M , Solfrizzi V et al. Different cognitive frailty models and health-and cognitive-related outcomes in older age: from epidemiology to prevention. J. Alz. Dis. 62(3), 993–1012 (2018).
  • Panza F , Solfrizzi V , Sardone R et al. Depressive and biopsychosocial frailty phenotypes: impact on late-life cognitive disorders. J. Alz. Dis. 94(3), 879–898 (2023).
  • Fried LP , Tangen CM , Walston J et al. Frailty in older adults: evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 56(3), 146–156 (2001).
  • Castellana F , Lampignano L , Bortone I et al. Physical frailty, multimorbidity, and all-cause mortality in an older population from southern Italy: results from the Salus in Apulia study. J. Am. Med. Dir. Assoc. 22(3), 598–605 (2021).
  • Mitnitski AB , Mogilner AJ , Rockwood K . Accumulation of deficits as a proxy measure of aging. Sci. World J. 1, 323–336 (2001).
  • Zupo R , Castellana F , Bortone I et al. Nutritional domains in frailty tools: working towards an operational definition of nutritional frailty. Ageing Res. Rev. 64, 101148 (2020).
  • Dibello V , Zupo R , Sardone R et al. Oral frailty and its determinants in older age: a systematic review. Lancet Healthy Longev. 2(8), e507–e520 (2021).
  • Ruan Q , Xiao F , Gong K et al. Prevalence of cognitive frailty phenotypes and associated factors in a community-dwelling elderly population. J. Nutr. Health Aging 24(2), 172–180 (2020).
  • Zupo R , Castellana F , Donghia R et al. Liver frailty and all-cause mortality in the older participants of the Salus in Apulia study. Geroscience 44(2), 835–845 (2022).
  • Tsutsumimoto K , Doi T , Makizako H et al. Association of social frailty with both cognitive and physical deficits among older people. J. Am. Med. Dir. Assoc. 18(7), 603–607 (2017).
  • Solfrizzi V , Scafato E , Lozupone M et al. Biopsychosocial frailty and the risk of incident dementia: the Italian longitudinal study on aging. Alzheimers Dement. 15(8), 1019–1028 (2019).
  • Panza F , Solfrizzi V , Lozupone M et al. An old challenge with new promises: a systematic review on comprehensive geriatric assessment in long-term care facilities. Rejuvenation Res. 21(1), 3–14 (2018).
  • Ferrucci L , Levine ME , Kuo PL , Simonsick EM . Time and the metrics of aging. Circ. Res. 123(7), 740–744 (2018).
  • Lopez-Otín C , Blasco MA , Partridge L , Serrano M , Kroemer G . The hallmarks of aging. Cell 153, 1194–1217 (2013).
  • Shadyab AH , LaCroix AZ . Genetic factors associated with longevity: a review of recent findings. Ageing Res. Rev. 19, 1–7 (2015).
  • Pilling LC , Kuo C-L , Sicinski K et al. Human longevity: 25 genetic loci associated in 389,166 UK Biobank participants. Aging 9, 2504 (2017).
  • Atkins JL , Jylhävä J , Pedersen NL et al. A genome-wide association study of the frailty index highlights brain pathways in ageing. Aging Cell 20(9), e13459 (2021).
  • Sathyan S , Verghese J . Genetics of frailty: a longevity perspective. Transl. Res. 221, 83–96 (2020).
  • Pal S , Tyler JK . Epigenetics and aging. Sci. Adv. 4(2), e1600584 (2016).
  • Lozupone M , La Montagna M , D’Urso F et al. The role of biomarkers in psychiatry. Adv. Exp. Med. Biol. 1118, 135–162 (2019).
  • Brunet A , Berger SL . Epigenetics of aging and aging-related disease. J. Gerontol. A Biol. Sci. Med. Sci. 69(Suppl. 1), S17–S20 (2014).
  • Munoz-Najar U , Sedivy JM . Epigenetic control of aging. Antioxid. Redox Signal. 14(2), 241–259 (2011).
  • Horvath S , Raj K . DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19(6), 371–384 (2018).
  • Schübeler D . Function and information content of DNA methylation. Nature 517(7534), 321–326 (2015).
  • Teschendorff AE , Relton CL . Statistical and integrative system-level analysis of DNA methylation data. Nat. Rev. Genet. 19(3), 129–147 (2018).
  • Collerton J , Gautrey HE , van Otterdijk SD et al. Acquisition of aberrant DNA methylation is associated with frailty in the very old: findings from the Newcastle 85+ study. Biogerontology 15(4), 317–328 (2014).
  • Gao X , Zhang Y , Saum K-U , Schöttker B , Breitling LP , Brenner H . Tobacco smoking and smoking-related DNA methylation are associated with the development of frailty among older adults. Epigenetics 12(2), 149–156 (2017).
  • Breitling LP , Saum KU , Perna L , Schöttker B , Holleczek B , Brenner H . Frailty is associated with the epigenetic clock but not with telomere length in a German cohort. Clin. Epigenet. 8, 21 (2016).
  • Gale CR , Marioni RE , Harris SE , Starr JM , Deary IJ . DNA methylation and the epigenetic clock in relation to physical frailty in older people: the Lothian Birth Cohort 1936. Clin. Epigenet. 10(1), 101 (2018).
  • Ipson BR , Fletcher MB , Espinoza SE , Fisher AL . Identifying exosome-derived microRNAs as candidate biomarkers of frailty. J. Frailty Aging 7(2), 100–103 (2018).
  • Rusanova I , Diaz-Casado ME , Fernández-Ortiz M et al. Analysis of plasma microRNAs as predictors and biomarkers of aging and frailty in humans. Oxid. Med. Cell. Longev. 2018, 7671850 (2018).
  • Vetter VM , Spira D , Banszerus VL , Demuth I . Epigenetic clock and leukocyte telomere length are associated with vitamin D status but not with functional assessments and frailty in the Berlin aging study II. J. Gerontol. A Biol. Sci. Med. Sci. 75(11), 2056–2063 (2020).
  • Bacalini MG , Gentilini D , Monti D et al. No association between frailty index and epigenetic clocks in Italian semi-supercentenarians. Mech. Ageing Dev. 197, 111514 (2021).
  • Carini G , Mingardi J , Bolzetta F et al. miRNome profiling detects miR-101-3p and miR-142-5p as putative blood biomarkers of frailty syndrome. Genes 13(2), 231 (2022).
  • Bellizzi D , D’Aquila P , Montesanto A et al. Global DNA methylation in old subjects is correlated with frailty. Age 34(1), 169–179 (2012).
  • Lin Q , Weidner CI , Costa IG et al. DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. Aging 8(2), 394–401 (2016).
  • Kim S , Myers L , Wyckoff J , Cherry KE , Jazwinski SM . The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. Geroscience 39(1), 83–92 (2017).
  • Zhang Y , Saum KU , Schöttker B , Holleczek B , Brenner H . Methylomic survival predictors, frailty, and mortality. Aging 10(3), 339–357 (2018).
  • Li X , Ploner A , Wang Y et al. Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. Elife 9, e51507 (2020).
  • McCrory C , Fiorito G , Hernandez B et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J. Gerontol. A Biol. Sci. Med. Sci. 76(5), 741–749 (2021).
  • Seligman BJ , Berry SD , Lipsitz LA , Travison TG , Kiel DP . Epigenetic age acceleration and change in frailty in MOBILIZE Boston. J. Gerontol. A Biol. Sci. Med. Sci. 77(9), 1760–1765 (2022).
  • Kuiper LM , Polinder-Bos HA , Bizzarri D et al. Epigenetic and metabolomic biomarkers for biological age: a comparative analysis of mortality and frailty risk. J. Gerontol. A Biol. Sci. Med. Sci. 78(10), 1753–1762 (2023).
  • Fraga MF . Genetic and epigenetic regulation of aging. Curr. Opin. Immunol. 21(4), 446–453 (2009).
  • Kawakami K , Nakamura A , Ishigami A , Goto S , Takahashi R . Age-related difference of site-specific histone modifications in rat liver. Biogerontology 10(4), 415–421 (2009).
  • Gravina S , Vijg J . Epigenetic factors in aging and longevity. Pflugers Arch. 459(2), 247–258 (2010).
  • Rando TA . Epigenetics and aging. Exp. Gerontol. 45(4), 253–254 (2010).
  • Wilson VL , Smith RA , Ma S , Cutler RG . Genomic 5-methyldeoxycytidine decreases with age. J. Biol. Chem. 262(21), 9948–9951 (1987).
  • Oakes CC , Smiraglia DJ , Plass C , Trasler JM , Robaire B . Aging results in hypermethylation of ribosomal DNA in sperm and liver of male rats. Proc. Natl Acad. Sci. USA 100(4), 1775–1780 (2003).
  • Richardson B . Impact of aging on DNA methylation. Ageing Res. Rev. 2(3), 245–261 (2003).
  • Ling C , Del Guerra S , Lupi R et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51(4), 615–622 (2008).
  • Fraga MF , Esteller M . Epigenetics and aging: the targets and the marks. Trends Genet. 23(8), 413–418 (2007).
  • Lee J , Jeong DJ , Kim J et al. The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma. Mol. Cancer 9, 109 (2010).
  • Arai T , Kasahara I , Sawabe M , Honma N , Aida J , Tabubo K . Role of methylation of the hMLH1 gene promoter in the development of gastric and colorectal carcinoma in the elderly. Geriatr. Gerontol. Int. 10(Suppl. 1), S207–S212 (2010).
  • Bell CG , Lowe R , Adams PD et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20(1), 249 (2019).
  • Horvath S . DNA methylation age of human tissues and cell types. Genome Biol. 14(10), R115 (2013).
  • Oblak L , van der Zaag J , Higgins-Chen AT , Levine ME , Boks MP . A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res. Rev. 69, 101348 (2021).
  • Levine ME , Higgins-Chen A , Thrush K , Minteer C , Niimi P . Clock work: deconstructing the epigenetic clock signals in aging, disease, and reprogramming. bioRxiv doi: 10.1101/2022.02.13.480245 (2022) ( Preprint).
  • Hannum G , Guinney J , Zhao L et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49(2), 359–367 (2013).
  • Evert J , Lawler E , Bogan H , Perls T . Morbidity profiles of centenarians: survivors, delayers, and escapers. J. Gerontol. A Biol. Sci. Med. Sci. 58(3), 232–237 (2003).
  • Marzetti E , Lorenzi M , Antocicco M et al. Shorter telomeres in peripheral blood mononuclear cells from older persons with sarcopenia: results from an exploratory study. Front. Aging Neurosci. 6, 233 (2014).
  • Jilhava J , Pedersen NL , Hägg S . Biological age predictors. EBioMedicine 21, 29–36 (2017).
  • Fasanelli F , Baglietto L , Ponzi E et al. Hypomethylation of smoking-related genes is associated with future lung cancer in four prospective cohorts. Nat. Commun. 6, 10192 (2015).
  • Zhang Y , Schöttker B , Florath I et al. Smoking-associated DNA methylation biomarkers and their predictive value for all-cause and cardiovascular mortality. Environ. Health Perspect. 124(1), 67–74 (2016).
  • Zhong J , He Y , Chen W , Shui X , Chen C , Lei W . Circulating microRNA-19a as a potential novel biomarker for diagnosis of acute myocardial infarction. Int. J. Mol. Sci. 15(11), 20355–20364 (2014).
  • Bernabeu E , McCartney DL , Gadd DA et al. Refining epigenetic prediction of chronological and biological age. Genome Med. 15(1), 12 (2023).
  • Belsky DW , Caspi A , Corcoran DL et al. DunedinPACE, a DNA methylation biomarker of the pace of aging. Elife 11, e73420 (2022).
  • Lu AT , Binder AM , Zhang J et al. DNA methylation GrimAge version 2. Aging 14(23), 9484–9549 (2022).
  • Maddock J , Castillo-Fernandez J , Wong A et al. DNA methylation age and physical and cognitive aging. J. Gerontol. A Biol. Sci. Med. Sci. 75(3), 504–511 (2020).
  • Verschoor CP , Lin DTS , Kobor MS et al. Epigenetic age is associated with baseline and 3-year change in frailty in the Canadian Longitudinal Study on Aging. Clin. Epigenetics 13(1), 163 (2021).
  • Levine ME , Lu AT , Quach A et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10(4), 573–591 (2018).
  • Lu AT , Quach A , Wilson JG et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11(2), 303–327 (2019).
  • Gobbens RJJ , Boersma P , Uchmanowicz I , Santiago LM . The Tilburg frailty indicator (TFI): new evidence for its validity. Clin. Interv. Aging 15, 265–274 (2020).
  • Wu C , Geldhof GJ , Xue QL , Kim DH , Newman AB , Odden MC . Development, construct validity, and predictive validity of a continuous frailty scale: results from 2 large US cohorts. Am. J. Epidemiol. 187(8), 1752–1762 (2018).
  • Pilotto A , Ferrucci L , Franceschi M et al. Development and validation of a multidimensional prognostic index for one-year mortality from comprehensive geriatric assessment in hospitalized older patients. Rejuvenation Res. 11(1), 151–161 (2008).
  • Solfrizzi V , Scafato E , Lozupone M et al. Italian Longitudinal Study on Aging Working Group . Additive role of a potentially reversible cognitive frailty model and inflammatory state on the risk of disability: the Italian Longitudinal Study on Aging. Am. J. Geriatr. Psychiatry 25(11), 1236–1248 (2017).
  • Ambros V . The functions of animal microRNAs. Nature 431(7006), 350–355 (2004).
  • Lu TX , Rothenberg ME . MicroRNA. J. Allergy Clin. Immunol. 141(4), 1202–1207 (2018).
  • Rusanova I , Fernández-Martínez J , Fernández-Ortiz M et al. Involvement of plasma miRNAs, muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty. Exp. Gerontol. 124, 110637 (2019).
  • Pan Y , Ji T , Li Y , Ma L . Omics biomarkers for frailty in older adults. Clin. Chim. Acta 510, 363–372 (2020).
  • Xue QL . The frailty syndrome: definition and natural history. Clin. Geriatr. Med. 27(1), 1–15 (2011).
  • Cruz-Jentoft AJ , Bahat G , Bauer J et al. Sarcopenia: revised European consensus on definition and diagnosis. Age. Ageing 48(4), 601 (2019).
  • Olivieri F , Rippo MR , Procopio AD , Fazioli F . Circulating inflamma-miRs in aging and age-related diseases. Front. Genet. 4, 121 (2013).
  • Suh N . MicroRNA controls of cellular senescence. BMB Rep. 51(10), 493–499 (2018).
  • Yin J , Qian Z , Chen Y , Li Y , Zhou X . MicroRNA regulatory networks in the pathogenesis of sarcopenia. J. Cell. Mol. Med. 24(9), 4900–4912 (2020).
  • Sarkar SN , Russell AE , Engler-Chiurazzi EB , Porter KN , Simpkins JW . MicroRNAs and the genetic nexus of brain aging, neuroinflammation, neurodegeneration, and brain trauma. Aging Dis. 10(2), 329–352 (2019).
  • Mone P , de Donato A , Varzideh F et al. Functional role of miR-34a in diabetes and frailty. Front. Aging 3, 949924 (2022).
  • Zheng Y , Kong J , Li Q , Wang Y , Li J . Role of miRNAs in skeletal muscle aging. Clin. Interv. Aging 13, 2407–2419 (2018).
  • Fabbri M , Paone A , Calore F , Galli R , Croce CM . A new role for microRNAs, as ligands of Toll-like receptors. RNA Biol. 10(2), 169–174 (2013).
  • Xu T , Zhou Q , Che L et al. Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients. Oncotarget 7(11), 12414–12425 (2016).
  • Boyd-Kirkup JD , Green CD , Wu G , Wang D , Han JD . Epigenomics and the regulation of aging. Epigenomics 5(2), 205–227 (2013).
  • Wagner K-H , Cameron-Smith D , Wessner B , Franzke B . Biomarkers of aging: from function to molecular biology. Nutrients 8(6), 338 (2016).
  • Nascimento CM , Ingles M , Salvador-Pascual A , Cominetti MR , Gomez-Cabrera MC , Viña J . Sarcopenia, frailty and their prevention by exercise. Free Radic. Biol. Med. 132, 42–49 (2019).
  • Viña J , Tarazona-Santabalbina FJ , Pérez-Ros P et al. Biology of frailty: modulation of ageing genes and its importance to prevent age-associated loss of function. Mol. Asp. Med. 50, 88–108 (2016).
  • Drummond MJ , McCarthy JJ , Sinha M et al. Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol. Genomics 43(10), 595–603 (2011).
  • Margolis LM , McClung HL , Murphy NE , Carrigan CT , Pasiakos SM . Skeletal muscle myomiR are differentially expressed by endurance exercise mode and combined essential amino acid and carbohydrate supplementation. Front. Physiol. 8, 182 (2017).
  • Russell AP , Lamon S , Boon H et al. Regulation of miRNAs in human skeletal muscle following acute endurance exercise and short-term endurance training. J. Physiol. 591(18), 4637–4653 (2013).
  • Nielsen S , Åkerström T , Rinnov A et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLOS ONE 9(2), e87308 (2014).
  • Agostini S , Mancuso R , Costa AS et al. Sarcopenia associates with SNAP-25 SNPs and a miRNAs profile which is modulated by structured rehabilitation treatment. J. Transl. Med. 19(1), 315 (2021).
  • Agostini S , Mancuso R , Citterio LA , Mihali GA , Arosio B , Clerici M . Evaluation of serum miRNAs expression in frail and robust subjects undergoing multicomponent exercise protocol (VIVIFRAIL). J. Transl. Med. 21(1), 67 (2023).
  • Bacalini MG , Friso S , Olivieri F et al. Present and future of anti-ageing epigenetic diets. Mech. Ageing Dev. 136–137, 101–115 (2014).
  • Kok DEG , Dhonukshe-Rutten RAM , Lute C et al. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects. Clin. Epigenetics 7, 121 (2015).
  • Quach A , Levine ME , Tanaka T et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging 9(2), 419–446 (2017).
  • Gensous N , Garagnani P , Santoro A et al. One-year Mediterranean diet promotes epigenetic rejuvenation with country- and sex-specific effects: a pilot study from the NU-AGE project. Geroscience 42(2), 687–701 (2020).
  • Teo N , Yeo PS , Gao Q et al. A bio-psycho-social approach for frailty amongst Singaporean Chinese community-dwelling older adults – evidence from the Singapore Longitudinal Aging Study. BMC Geriatr. 19(1), 50 (2019).
  • Lozupone M , Panza F . Social determinants of late life depression epigenetics. Epigenomics 12(7), 559–562 (2020).
  • Araújo Carvalho AC , Tavares Mendes ML , da Silva Reis MC , Santos VS , Tanajura DM , Martins-Filho PRS . Telomere length and frailty in older adults – a systematic review and meta-analysis. Ageing Res. Rev. 54, 100914 (2019).
  • Gale CR , Cooper C . Attitudes to ageing and change in frailty status: the English longitudinal study of ageing. Gerontology 64(1), 58–66 (2017).
  • Morley JE , Vellas B , van Kan GA et al. Frailty consensus: a call to action. J. Am. Med. Dir. Assoc. 14(6), 392–397 (2013).
  • Seripa D , Solfrizzi V , Imbimbo BP et al. Tau-directed approaches for the treatment of Alzheimer’s disease: focus on leuco-methylthioninium. Expert Rev. Neurother. 16(3), 259–277 (2016).
  • Lozupone M , Solfrizzi V , D’Urso F et al. Anti-amyloid-β protein agents for the treatment of Alzheimer’s disease: an update on emerging drugs. Expert Opin. Emerg. Drugs 25(3), 319–335 (2020).
  • Zupo R , Castellana F , Guerra V et al. Associations between nutritional frailty and 8-year all-cause mortality in older adults: the Salus in Apulia study. J. Intern. Med. 290(5), 1071–1082 (2021).
  • Lozupone M , D’Urso F , Piccininni C et al. The relationship between epigenetics and microbiota in neuropsychiatric diseases. Epigenomics 12(17), 1559–1568 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.