1,052
Views
1
CrossRef citations to date
0
Altmetric
Review

CRISPR-Based Epigenome Editing: Mechanisms and Applications

, & ORCID Icon
Pages 1137-1155 | Received 07 Aug 2023, Accepted 02 Nov 2023, Published online: 22 Nov 2023

References

  • Waddington CH . The epigenotype. 1942. Int. J. Epidemiol.41(1), 10–13 (2012).
  • Li Y , ChenX , LuC. The interplay between DNA and histone methylation: molecular mechanisms and disease implications. EMBO Rep.22(5), e51803 (2021).
  • Zhang Y , SunZ , JiaJet al. Overview of histone modification. Adv. Exp. Med. Biol.1283, 1–16 (2021).
  • Moore LD , LeT , FanG. DNA methylation and its basic function. Neuropsychopharmacology38(1), 23–38 (2013).
  • Klemm SL , ShiponyZ , GreenleafWJ. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet.20(4), 207–220 (2019).
  • Bonev B , CavalliG. Organization and function of the 3D genome. Nat. Rev. Genet.17(12), 772 (2016).
  • Morris KV . The emerging role of RNA in the regulation of gene transcription in human cells. Semin. Cell Dev. Biol.22(4), 351–358 (2011).
  • Morf J , BasuS , AmaralPP. RNA, genome output and input. Front. Genet.11, 589413 (2020).
  • de Mendoza A , Sebe-PedrosA. Origin and evolution of eukaryotic transcription factors. Curr. Opin. Genet. Dev.58–59, 25–32 (2019).
  • Barrera LO , RenB. The transcriptional regulatory code of eukaryotic cells – insights from genome-wide analysis of chromatin organization and transcription factor binding. Curr. Opin. Cell Biol.18(3), 291–298 (2006).
  • Li H , CuiD , WuSet al. Epigenetic regulation of gene expression in epithelial stem cells fate. Curr. Stem Cell Res. Ther.13(1), 46–51 (2018).
  • Namihira M , KohyamaJ , AbematsuM , NakashimaK. Epigenetic mechanisms regulating fate specification of neural stem cells. Philos Trans. R. Soc. Lond. B. Biol. Sci.363(1500), 2099–2109 (2008).
  • Wu H , SunYE. Epigenetic regulation of stem cell differentiation. Pediatr. Res.59(4 Pt 2), 21R–25R (2006).
  • Jasencakova Z , GrothA. Restoring chromatin after replication: how new and old histone marks come together. Semin. Cell Dev. Biol.21(2), 231–237 (2010).
  • Reveron-Gomez N , Gonzalez-AguileraC , Stewart-MorganKRet al. Accurate recycling of parental histones reproduces the histone modification landscape during DNA replication. Mol. Cell72(2), 239–249.e235 (2018).
  • Zhang L , LuQ , ChangC. Epigenetics in health and disease. Adv. Exp. Med. Biol.1253, 3–55 (2020).
  • Wu Y , SarkissyanM , VadgamaJV. Epigenetics in breast and prostate cancer. Methods Mol. Biol.1238, 425–466 (2015).
  • Garcia-Martinez L , ZhangY , NakataY , ChanHL , MoreyL. Epigenetic mechanisms in breast cancer therapy and resistance. Nat. Commun.12(1), 1786 (2021).
  • Nebbioso A , TambaroFP , Dell’AversanaC , AltucciL. Cancer epigenetics: moving forward. PLOS Genet.14(6), e1007362 (2018).
  • Moore-Morris T , van VlietPP , AndelfingerG , PuceatM. Role of epigenetics in cardiac development and congenital diseases. Physiol. Rev.98(4), 2453–2475 (2018).
  • Gomes CPC , SchroenB , KusterGMet al. Regulatory RNAs in heart failure. Circulation141(4), 313–328 (2020).
  • Cao J , WuQ , HuangY , WangL , SuZ , YeH. The role of DNA methylation in syndromic and non-syndromic congenital heart disease. Clin. Epigenetics13(1), 93 (2021).
  • Rohde K , KellerM , laCour Poulsen L , BluherM , KovacsP , BottcherY. Genetics and epigenetics in obesity. Metabolism92, 37–50 (2019).
  • Gao W , LiuJL , LuX , YangQ. Epigenetic regulation of energy metabolism in obesity. J. Mol. Cell Biol.13(7), 480–499 (2021).
  • Lardenoije R , IatrouA , KenisGet al. The epigenetics of aging and neurodegeneration. Prog. Neurobiol.131, 21–64 (2015).
  • Lardenoije R , PishvaE , LunnonK , vanden Hove DL. Neuroepigenetics of aging and age-related neurodegenerative disorders. Prog. Mol. Biol. Transl. Sci.158, 49–82 (2018).
  • Majchrzak-Celinska A , Baer-DubowskaW. Pharmacoepigenetics: an element of personalized therapy?Expert Opin. Drug Metab. Toxicol.13(4), 387–398 (2017).
  • Garcia-Gimenez JL , Sanchis-GomarF , LippiGet al. Epigenetic biomarkers: a new perspective in laboratory diagnostics. Clin. Chim Acta413(19–20), 1576–1582 (2012).
  • Miranda Furtado CL , DosSantos Luciano MC , DaSilva Santos R , FurtadoGP , MoraesMO , PessoaC. Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics14(12), 1164–1176 (2019).
  • Halabian R , ValizadehA , AhmadiA , SaeediP , AzimzadehJamalkandi S , AlivandMR. Laboratory methods to decipher epigenetic signatures: a comparative review. Cell Mol. Biol. Lett.26(1), 46 (2021).
  • Waryah CB , MosesC , AroojM , BlancafortP. Zinc fingers, TALEs, and CRISPR systems: a comparison of tools for epigenome editing. Methods Mol. Biol.1767, 19–63 (2018).
  • Mali P , YangL , EsveltKMet al. RNA-guided human genome engineering via Cas9. Science339(6121), 823–826 (2013).
  • Makarova KS , WolfYI , AlkhnbashiOSet al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol.13(11), 722–736 (2015).
  • Koonin EV , MakarovaKS , ZhangF. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol.37, 67–78 (2017).
  • Liu TY , IavaroneAT , DoudnaJA. RNA and DNA targeting by a reconstituted Thermus thermophilus type III-A CRISPR-Cas system. PLOS ONE12(1), e0170552 (2017).
  • Konermann S , LotfyP , BrideauNJ , OkiJ , ShokhirevMN , HsuPD. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell173(3), 665–676.e614 (2018).
  • Perculija V , LinJ , ZhangB , OuyangS. Functional features and current applications of the RNA-targeting type VI CRISPR-Cas systems. Adv. Sci. (Weinh.)8(13), 2004685 (2021).
  • Xu X , QiLS. A CRISPR-dCas toolbox for genetic engineering and synthetic biology. J. Mol. Biol.431(1), 34–47 (2019).
  • Wang Q , LiuY , HanCet al. Efficient RNA virus targeting via CRISPR/CasRx in fish. J. Virol.95(19), e0046121 (2021).
  • Gupta R , GhoshA , ChakravartiRet al. Cas13d: a new molecular scissor for transcriptome engineering. Front. Cell. Dev. Biol.10, 866800 (2022).
  • Yan WX , ChongS , ZhangHet al. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol. Cell.70(2), 327–339.e325 (2018).
  • O’Connell MR . Molecular mechanisms of RNA targeting by Cas13-containing type VI CRISPR-Cas systems. J. Mol. Biol.431(1), 66–87 (2019).
  • Qi LS , LarsonMH , GilbertLAet al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell152(5), 1173–1183 (2013).
  • Enriquez P . CRISPR-mediated epigenome editing. Yale J. Biol. Med.89(4), 471–486 (2016).
  • Cong L , RanFA , CoxDet al. Multiplex genome engineering using CRISPR/Cas systems. Science339(6121), 819–823 (2013).
  • Nunez JK , ChenJ , PommierGCet al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell184(9), 2503–2519.e2517 (2021).
  • Hilton IB , D’IppolitoAM , VockleyCMet al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol.33(5), 510–517 (2015).
  • Chen E , Lin-ShiaoE , TrinidadM , SaffariDoost M , ColognoriD , DoudnaJA. Decorating chromatin for enhanced genome editing using CRISPR-Cas9. Proc. Natl Acad. Sci. USA119(49), e2204259119 (2022).
  • Vojta A , DobrinicP , TadicVet al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res.44(12), 5615–5628 (2016).
  • Xiong T , MeisterGE , WorkmanREet al. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Sci. Rep.7(1), 6732 (2017).
  • Yang J , MengX , PanJet al. CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biol.15(1), 35–43 (2018).
  • Phelan JD , StaudtLM. CRISPR-based technology to silence the expression of IncRNAs. Proc. Natl Acad. Sci. USA117(15), 8225–8227 (2020).
  • Morita S , NoguchiH , HoriiTet al. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat. Biotechnol.34(10), 1060–1065 (2016).
  • Choudhury SR , CuiY , LubeckaK , StefanskaB , IrudayarajJ. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget7(29), 46545–46556 (2016).
  • Xu X , TaoY , GaoXet al. A CRISPR-based approach for targeted DNA demethylation. Cell. Discov.2, 16009 (2016).
  • Liu XS , WuH , JiXet al. Editing DNA methylation in the mammalian genome. Cell167(1), 233–247.e217 (2016).
  • McDonald JI , CelikH , RoisLEet al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open.5(6), 866–874 (2016).
  • Huang YH , SuJ , LeiYet al. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biol.18(1), 176 (2017).
  • Stepper P , KungulovskiG , JurkowskaRZet al. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res.45(4), 1703–1713 (2017).
  • Josipovic G , TadicV , KlasicMet al. Antagonistic and synergistic epigenetic modulation using orthologous CRISPR/dCas9-based modular system. Nucleic Acids Res.47(18), 9637–9657 (2019).
  • Nguyen TV , ListerR. Genomic targeting of TET activity for targeted demethylation using CRISPR/Cas9. Methods Mol. Biol.2272, 181–194 (2021).
  • Pflueger C , TanD , SwainTet al. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs. Genome Res.28(8), 1193–1206 (2018).
  • Zhao W , XuY , WangYet al. Investigating crosstalk between H3K27 acetylation and H3K4 trimethylation in CRISPR/dCas-based epigenome editing and gene activation. Sci. Rep.11(1), 15912 (2021).
  • Kuscu C , MammadovR , CzikoraAet al. Temporal and spatial epigenome editing allows precise gene regulation in mammalian cells. J. Mol. Biol.431(1), 111–121 (2019).
  • Shrimp JH , GroseC , WidmeyerSRT , ThorpeAL , JadhavA , MeierJL. Chemical control of a CRISPR-Cas9 acetyltransferase. ACS Chem. Biol.13(2), 455–460 (2018).
  • Kwon DY , ZhaoYT , LamonicaJM , ZhouZ. Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat. Commun.8, 15315 (2017).
  • Kearns NA , PhamH , TabakBet al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods12(5), 401–403 (2015).
  • O’Geen H , RenC , NicoletCMet al. dCas9-based epigenome editing suggests acquisition of histone methylation is not sufficient for target gene repression. Nucleic Acids Res.45(17), 9901–9916 (2017).
  • Chen X , WeiM , LiuXet al. Construction and validation of the CRISPR/dCas9-EZH2 system for targeted H3K27Me3 modification. Biochem. Biophys. Res. Commun.511(2), 246–252 (2019).
  • Xu D , CaiY , TangLet al. A CRISPR/Cas13-based approach demonstrates biological relevance of vlinc class of long non-coding RNAs in anticancer drug response. Sci. Rep.10(1), 1794 (2020).
  • Soubeyrand S , LauP , PetersV , McPhersonR. Off-target effects of CRISPRa on interleukin-6 expression. PLoS One14(10), e0224113 (2019).
  • Cox DBT , GootenbergJS , AbudayyehOOet al. RNA editing with CRISPR-Cas13. Science358(6366), 1019–1027 (2017).
  • Abudayyeh OO , GootenbergJS , EssletzbichlerPet al. RNA targeting with CRISPR-Cas13. Nature550(7675), 280–284 (2017).
  • Abudayyeh OO , GootenbergJS , KonermannSet al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science353(6299), aaf5573 (2016).
  • East-Seletsky A , O’ConnellMR , BursteinD , KnottGJ , DoudnaJA. RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol. Cell.66(3), 373–383.e373 (2017).
  • Ozcan A , KrajeskiR , IoannidiEet al. Programmable RNA targeting with the single-protein CRISPR effector Cas7-11. Nature597(7878), 720–725 (2021).
  • Sapozhnikov DM , SzyfM. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nat. Commun.12(1), 5711 (2021).
  • Gao D , LiangFS. Chemical inducible dCas9-guided editing of H3K27 acetylation in mammalian cells. Methods Mol. Biol.1767, 429–445 (2018).
  • Zhang X , WangW , ShanLet al. Gene activation in human cells using CRISPR/Cpf1-p300 and CRISPR/Cpf1-SunTag systems. Protein Cell9(4), 380–383 (2018).
  • Li K , LiuY , CaoHet al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat. Commun.11(1), 485 (2020).
  • Chen T , GaoD , ZhangRet al. Chemically controlled epigenome editing through an inducible dCas9 system. J. Am. Chem. Soc.139(33), 11337–11340 (2017).
  • Hyun K , JeonJ , ParkK , KimJ. Writing, erasing and reading histone lysine methylations. Exp. Mol. Med.49(4), e324 (2017).
  • Cano-Rodriguez D , GjaltemaRA , JilderdaLJet al. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun.7, 12284 (2016).
  • Thakore PI , D’IppolitoAM , SongLet al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods12(12), 1143–1149 (2015).
  • Fukushima HS , TakedaH , NakamuraR. Targeted in vivo epigenome editing of H3K27me3. Epigenetics Chromatin12(1), 17 (2019).
  • Aparicio-Prat E , ArnanC , SalaI , BoschN , GuigoR , JohnsonR. DECKO: single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC Genomics16, 846 (2015).
  • Shariati SA , DominguezA , XieS , WernigM , QiLS , SkotheimJM. Reversible disruption of specific transcription factor-DNA interactions using CRISPR/Cas9. Mol. Cell.74(3), 622–633.e624 (2019).
  • Morgan SL , MarianoNC , BermudezAet al. Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat. Commun.8, 15993 (2017).
  • Kim JH , RegeM , ValeriJet al. LADL: light-activated dynamic looping for endogenous gene expression control. Nat. Methods16(7), 633–639 (2019).
  • Kohli RM , ZhangY. TET enzymes, TDG and the dynamics of DNA demethylation. Nature502(7472), 472–479 (2013).
  • Bannister AJ , KouzaridesT. Regulation of chromatin by histone modifications. Cell Res.21(3), 381–395 (2011).
  • Stillman B . Histone modifications: insights into their influence on gene expression. Cell175(1), 6–9 (2018).
  • Chiarella AM , ButlerKV , GryderBEet al. Dose-dependent activation of gene expression is achieved using CRISPR and small molecules that recruit endogenous chromatin machinery. Nat. Biotechnol.38(1), 50–55 (2020).
  • Upadhyay AK , ChengX. Dynamics of histone lysine methylation: structures of methyl writers and erasers. Prog. Drug Res.67, 107–124 (2011).
  • Martin C , ZhangY. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell. Biol.6(11), 838–849 (2005).
  • Wang H , GuoR , DuZet al. Epigenetic targeting of granulin in hepatoma cells by synthetic CRISPR dCas9 Epi-suppressors. Mol. Ther. Nucleic Acids11, 23–33 (2018).
  • Kim JM , KimK , SchmidtTet al. Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Res43(18), 8868–8883 (2015).
  • Hombach S , KretzM. Non-coding RNAs: classification, biology and functioning. Adv. Exp. Med. Biol.937, 3–17 (2016).
  • Jain S , ThakkarN , ChhataiJ , PalBhadra M , BhadraU. Long non-coding RNA: functional agent for disease traits. RNA Biol.14(5), 522–535 (2017).
  • Jarroux J , MorillonA , PinskayaM. History, discovery, and classification of lncRNAs. Adv. Exp. Med. Biol.1008, 1–46 (2017).
  • Engreitz JM , HainesJE , PerezEMet al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature539(7629), 452–455 (2016).
  • Zhu S , LiW , LiuJet al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat. Biotechnol.34(12), 1279–1286 (2016).
  • Joung J , EngreitzJM , KonermannSet al. Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature548(7667), 343–346 (2017).
  • Liu Y , CaoZ , WangYet al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat. Biotechnol. doi: 10.1038/nbt.4283 (2018).
  • Liu SJ , HorlbeckMA , ChoSWet al. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science355(6320), (2017).
  • Chen W , ZhangG , LiJet al. CRISPRlnc: a manually curated database of validated sgRNAs for lncRNAs. Nucleic Acids Res.47(D1), D63–D68 (2019).
  • Morelli E , GullaA , AmodioNet al. CRISPR interference (CRISPRi) and CRISPR Activation (CRISPRa) to explore the oncogenic lncRNA network. Methods Mol. Biol.2348, 189–204 (2021).
  • Arnan C , UllrichS , Pulido-QuetglasCet al. Paired guide RNA CRISPR-Cas9 screening for protein-coding genes and lncRNAs involved in transdifferentiation of human B-cells to macrophages. BMC Genomics23(1), 402 (2022).
  • Zhang B , YeY , YeWet al. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d. Nat. Commun.10(1), 2544 (2019).
  • Liu L , LiX , MaJet al. The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell170(4), 714–726.e710 (2017).
  • Tan MH , LiQ , ShanmugamRet al. Dynamic landscape and regulation of RNA editing in mammals. Nature550(7675), 249–254 (2017).
  • Savva YA , RiederLE , ReenanRA. The ADAR protein family. Genome Biol.13(12), 252 (2012).
  • Splinter E , de LaatW. The complex transcription regulatory landscape of our genome: control in three dimensions. EMBO J.30(21), 4345–4355 (2011).
  • Zhou HY , KatsmanY , DhaliwalNKet al. A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential. Genes Dev.28(24), 2699–2711 (2014).
  • Canver MC , LessardS , PinelloLet al. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci. Nat. Genet.49(4), 625–634 (2017).
  • Gasperini M , HillAJ , McFaline-FigueroaJLet al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell176(1–2), 377–390.e319 (2019).
  • Gasperini M , FindlayGM , McKennaAet al. CRISPR/Cas9-mediated scanning for regulatory elements required for HPRT1 expression via thousands of large, programmed genomic deletions. Am. J. Hum. Genet.101(2), 192–205 (2017).
  • Sanjana NE , WrightJ , ZhengKet al. High-resolution interrogation of functional elements in the noncoding genome. Science353(6307), 1545–1549 (2016).
  • Liu X , ZhangY , ChenYet al. In situ capture of chromatin interactions by biotinylated dCas9. Cell170(5), 1028–1043.e1019 (2017).
  • Rajagopal N , SrinivasanS , KoosheshKet al. High-throughput mapping of regulatory DNA. Nat. Biotechnol.34(2), 167–174 (2016).
  • Fulco CP , MunschauerM , AnyohaRet al. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science354(6313), 769–773 (2016).
  • Korkmaz G , LopesR , UgaldeAPet al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat. Biotechnol.34(2), 192–198 (2016).
  • Ren X , WangM , LiBet al. Parallel characterization of cis-regulatory elements for multiple genes using CRISPRpath. Sci. Adv.7(38), eabi4360 (2021).
  • Hartenian E , DoenchJG. Genetic screens and functional genomics using CRISPR/Cas9 technology. FEBS J282(8), 1383–1393 (2015).
  • Klann TS , BlackJB , ChellappanMet al. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol.35(6), 561–568 (2017).
  • Xie S , DuanJ , LiB , ZhouP , HonGC. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell.66(2), 285–299.e285 (2017).
  • Fulco CP , NasserJ , JonesTRet al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet.51(12), 1664–1669 (2019).
  • Zheng H , XieW. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell. Biol.20(9), 535–550 (2019).
  • Vertii A . Stress as a chromatin landscape architect. Front. Cell. Dev. Biol.9, 790138 (2021).
  • Tang WY , HoSM. Epigenetic reprogramming and imprinting in origins of disease. Rev. Endocr. Metab. Disord.8(2), 173–182 (2007).
  • Mehmood R , VargaG , MohantySQet al. Epigenetic reprogramming in Mist1 (-/-) mice predicts the molecular response to cerulein-induced pancreatitis. PLOS ONE9(1), e84182 (2014).
  • Heintzman ND , StuartRK , HonGet al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet.39(3), 311–318 (2007).
  • Visel A , RubinEM , PennacchioLA. Genomic views of distant-acting enhancers. Nature461(7261), 199–205 (2009).
  • Ong CT , CorcesVG. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet.12(4), 283–293 (2011).
  • Eggermann T , SchonherrN , MeyerEet al. Epigenetic mutations in 11p15 in Silver-Russell syndrome are restricted to the telomeric imprinting domain. J. Med. Genet.43(7), 615–616 (2006).
  • Ballestar E , EstellerM. Epigenetic gene regulation in cancer. Adv. Genet.61, 247–267 (2008).
  • Ng JM , YuJ. Promoter hypermethylation of tumour suppressor genes as potential biomarkers in colorectal cancer. Int. J. Mol. Sci.16(2), 2472–2496 (2015).
  • Wu J , HeK , ZhangYet al. Inactivation of SMARCA2 by promoter hypermethylation drives lung cancer development. Gene687, 193–199 (2019).
  • Wang Q , DaiL , WangYet al. Targeted demethylation of the SARI promotor impairs colon tumour growth. Cancer Lett.448, 132–143 (2019).
  • Saunderson EA , StepperP , GommJJet al. Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors. Nat. Commun.8(1), 1450 (2017).
  • Kardooni H , Gonzalez-GualdaE , StylianakisE , SaffaranS , WaxmanJ , KyptaRM. CRISPR-mediated reactivation of DKK3 expression attenuates TGF-beta signaling in prostate cancer. Cancers (Basel)10(6), (2018).
  • Yoshida M , YokotaE , SakumaTet al. Development of an integrated CRISPRi targeting DeltaNp63 for treatment of squamous cell carcinoma. Oncotarget9(49), 29220–29232 (2018).
  • Hu Y , ZhangH , GuoZet al. CKM and TERT dual promoters drive CRISPR-dCas9 to specifically inhibit the malignant behavior of osteosarcoma cells. Cell Mol. Biol. Lett.28(1), 52 (2023).
  • Xu X , LiJ , ZhuYet al. CRISPR-ON-mediated KLF4 overexpression inhibits the proliferation, migration and invasion of urothelial bladder cancer in vitro and in vivo. Oncotarget8(60), 102078–102087 (2017).
  • Pakalniskyte D , SchonbergerT , StrobelBet al. Rosa26-LSL-dCas9-VPR: a versatile mouse model for tissue specific and simultaneous activation of multiple genes for drug discovery. Sci. Rep.12(1), 19268 (2022).
  • Garcia-Bloj B , MosesC , SgroAet al. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget7(37), 60535–60554 (2016).
  • Escriva-Fernandez J , Cueto-UrenaC , Solana-OrtsA , LledoE , Ballester-LurbeB , PochE. A CRISPR interference strategy for gene expression silencing in multiple myeloma cell lines. J. Biol. Eng.17(1), 34 (2023).
  • Okano H , MorimotoS. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell29(2), 189–208 (2022).
  • Li Y , LiL , ChenZN , GaoG , YaoR , SunW. Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. Biofabrication9(3), 032001 (2017).
  • Mandai M , WatanabeA , KurimotoYet al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med.376(11), 1038–1046 (2017).
  • Michurina S , StafeevI , BoldyrevaMet al. Transplantation of adipose-tissue-engineered constructs with CRISPR-mediated UCP1 activation. Int. J. Mol. Sci.24(4), (2023).
  • Lundh M , PlucinskaK , IsidorMS , PetersenPSS , EmanuelliB. Bidirectional manipulation of gene expression in adipocytes using CRISPRa and siRNA. Mol. Metab.6(10), 1313–1320 (2017).
  • Giehrl-Schwab J , GiesertF , RauserBet al. Parkinson’s disease motor symptoms rescue by CRISPRa-reprogramming astrocytes into GABAergic neurons. EMBO Mol. Med.14(5), e14797 (2022).
  • Petazzi P , Torres-RuizR , FidanzaAet al. Robustness of catalytically dead Cas9 activators in human pluripotent and mesenchymal stem cells. Mol. Ther. Nucleic Acids20, 196–204 (2020).
  • Horike S , MitsuyaK , MeguroMet al. Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith–Wiedemann syndrome. Hum. Mol. Genet.9(14), 2075–2083 (2000).
  • Camprubi C , CollMD , VillatoroSet al. Imprinting center analysis in Prader–Willi and Angelman syndrome patients with typical and atypical phenotypes. Eur. J. Med. Genet.50(1), 11–20 (2007).
  • Park JW , HanJW. Targeting epigenetics for cancer therapy. Arch. Pharm. Res.42(2), 159–170 (2019).
  • Vo BT , KwonJA , LiCet al. Mouse medulloblastoma driven by CRISPR activation of cellular Myc. Sci. Rep.8(1), 8733 (2018).
  • Takahashi K , YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4), 663–676 (2006).
  • Liu XS , WuH , KrzischMet al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell172(5), 979–992.e976 (2018).
  • Bengtsson NE , HallJK , OdomGLet al. Corrigendum: muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat. Commun.8, 16007 (2017).
  • Black JB , AdlerAF , WangHGet al. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell19(3), 406–414 (2016).
  • Rots MG , JeltschA. Editing the epigenome: overview, open questions, and directions of future development. Methods Mol. Biol.1767, 3–18 (2018).
  • Policarpi C , DabinJ , HackettJA. Epigenetic editing: dissecting chromatin function in context. Bioessays43(5), e2000316 (2021).
  • Wilson RC , GilbertLA. The promise and challenge of in vivo delivery for genome therapeutics. ACS Chem. Biol.13(2), 376–382 (2018).
  • Gemberling MP , SiklenkaK , RodriguezEet al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat. Methods18(8), 965–974 (2021).
  • Richards DY , WinnSR , DudleySet al. AAV-mediated CRISPR/Cas9 gene editing in murine phenylketonuria. Mol. Ther. Methods Clin. Dev.17, 234–245 (2020).
  • Gao J , BergmannT , ZhangW , SchiwonM , Ehrke-SchulzE , EhrhardtA. Viral vector-based delivery of CRISPR/Cas9 and donor DNA for homology-directed repair in an in vitro model for canine hemophilia B. Mol. Ther. Nucleic Acids14, 364–376 (2019).
  • Staahl BT , BenekareddyM , Coulon-BainierCet al. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol.35(5), 431–434 (2017).
  • Lee K , ConboyM , ParkHMet al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng.1, 889–901 (2017).
  • Qiu M , GlassZ , ChenJet al. Lipid nanoparticle-mediated codelivery of Cas9 mRNA and single-guide RNA achieves liver-specific in vivo genome editing of Angptl3. Proc. Natl Acad. Sci. USA118(10), (2021).
  • Mirjalili Mohanna SZ , HickmottJW , LamSLet al. Germline CRISPR/Cas9-mediated gene editing prevents vision loss in a novel mouse model of aniridia. Mol. Ther. Methods Clin. Dev.17, 478–490 (2020).
  • Saito M , XuP , FaureGet al. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature620(7974), 660–668 (2023).