179
Views
0
CrossRef citations to date
0
Altmetric
Review

DNA Methylation as a Window into Female Reproductive Aging

ORCID Icon, ORCID Icon & ORCID Icon
Pages 175-188 | Received 24 Aug 2023, Accepted 05 Dec 2023, Published online: 22 Dec 2023

References

  • Lopez-Otin C , Blasco MA , Partridge L , Serrano M , Kroemer G . The hallmarks of aging. Cell 153(6), 1194–1217 (2013).
  • Li L , Wang Z . Ovarian aging and osteoporosis. Adv. Exp. Med. Biol. 1086, 199–215 (2018).
  • Rosano GM , Vitale C , Marazzi G , Volterrani M . Menopause and cardiovascular disease: the evidence. Climacteric 10(Suppl. 1), 19–24 (2007).
  • Koebele SV , Bimonte-Nelson HA . The endocrine-brain-aging triad where many paths meet: female reproductive hormone changes at midlife and their influence on circuits important for learning and memory. Exp. Gerontol. 94, 14–23 (2017).
  • Cedars MI . Biomarkers of ovarian reserve – do they predict somatic aging? Semin. Reprod. Med. 31(6), 443–451 (2013).
  • Perheentupa A , Huhtaniemi I . Aging of the human ovary and testis. Mol. Cell Endocrinol. 299(1), 2–13 (2009).
  • Broekmans FJ , Soules MR , Fauser BC . Ovarian aging: mechanisms and clinical consequences. Endocr. Rev. 30(5), 465–493 (2009).
  • Muka T , Oliver-Williams C , Kunutsor S et al. Association of age at onset of menopause and time since onset of menopause with cardiovascular outcomes, intermediate vascular traits, and all-cause mortality: a systematic review and meta-analysis. JAMA Cardiol. 1(7), 767–776 (2016).
  • Shuster LT , Rhodes DJ , Gostout BS , Grossardt BR , Rocca WA . Premature menopause or early menopause: long-term health consequences. Maturitas 65(2), 161–166 (2010).
  • Mishra GD , Pandeya N , Dobson AJ et al. Early menarche, nulliparity and the risk for premature and early natural menopause. Hum. Reprod. 32(3), 679–686 (2017).
  • Roman Lay AA , Do Nascimento CF , Horta BL , Dias Porto Chiavegatto Filho A . Reproductive factors and age at natural menopause: a systematic review and meta-analysis. Maturitas 131, 57–64 (2020).
  • Zhang X , Huangfu Z , Wang S . Review of mendelian randomization studies on age at natural menopause. Front. Endocrinol. (Lausanne) 14, 1234324 (2023).
  • Mishra SR , Chung HF , Waller M , Mishra GD . Duration of estrogen exposure during reproductive years, age at menarche and age at menopause, and risk of cardiovascular disease events, all-cause and cardiovascular mortality: a systematic review and meta-analysis. BJOG 128(5), 809–821 (2021).
  • Atwood CS , Bowen RL . The reproductive-cell cycle theory of aging: an update. Exp. Gerontol. 46(2–3), 100–107 (2011).
  • Parkinson KC , Peterson RL , Mason JB . Cognitive behavior and sensory function were significantly influenced by restoration of active ovarian function in postreproductive mice. Exp. Gerontol. 92, 28–33 (2017).
  • Mason JB , Cargill SL , Anderson GB , Carey JR . Transplantation of young ovaries to old mice increased life span in transplant recipients. J. Gerontol. A Biol. Sci. Med. Sci. 64(12), 1207–1211 (2009).
  • Cargill SL , Carey JR , Muller HG , Anderson G . Age of ovary determines remaining life expectancy in old ovariectomized mice. Aging Cell 2(3), 185–190 (2003).
  • Bonasio R , Tu S , Reinberg D . Molecular signals of epigenetic states. Science 330(6004), 612–616 (2010).
  • Horvath S . DNA methylation age of human tissues and cell types. Genome Biol. 14(10), R115 (2013).
  • Lopez J , Hohensee G , Liang J , Sela M , Johnson J , Kallen AN . The aging ovary and the tales learned since fetal development. Sex Dev. 17(2–3), 156–168 (2023).
  • Llarena N , Hine C . Reproductive longevity and aging: geroscience approaches to maintain long-term ovarian fitness. J. Gerontol. A Biol. Sci. Med. Sci. 76(9), 1551–1560 (2021).
  • Lopez-Otin C , Blasco MA , Partridge L , Serrano M , Kroemer G . Hallmarks of aging: an expanding universe. Cell 186(2), 243–278 (2023).
  • Zhu Z , Xu W , Liu L . Ovarian aging: mechanisms and intervention strategies. Med. Rev. (Berl.) 2(6), 590–610 (2022).
  • Ruth KS , Day FR , Hussain J et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature 596(7872), 393–397 (2021).
  • Weeg N , Hershko Klement A , Haikin E et al. The effect of maternal body mass index (BMI) and telomere function on in vitro fertilization (IVF) outcome: a preliminary cohort study. Hum. Fertil. (Camb.) 23(4), 282–288 (2020).
  • Cordova-Oriz I , Chico-Sordo L , Varela E . Telomeres, aging and reproduction. Curr. Opin. Obstet Gynecol. 34(3), 151–158 (2022).
  • Belsky DW , Moffitt TE , Cohen AA et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: do they measure the same thing? Am. J. Epidemiol. 187(6), 1220–1230 (2018).
  • Marioni RE , Harris SE , Shah S et al. The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int. J. Epidemiol. 47(1), 356 (2018).
  • Banszerus VL , Vetter VM , Salewsky B , Konig M , Demuth I . Exploring the relationship of relative telomere length and the epigenetic clock in the LipidCardio cohort. Int. J. Mol. Sci. 20(12), (2019).
  • Pearce EE , Alsaggaf R , Katta S et al. Telomere length and epigenetic clocks as markers of cellular aging: a comparative study. Geroscience 44(3), 1861–1869 (2022).
  • Hipp MS , Kasturi P , Hartl FU . The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20(7), 421–435 (2019).
  • Niinuma SA , Lubbad L , Lubbad W , Moin ASM , Butler AE . The role of heat shock proteins in the pathogenesis of polycystic ovarian syndrome: a review of the literature. Int. J. Mol. Sci. 24(3), (2023).
  • Wang T , Tsui B , Kreisberg JF et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18(1), 57 (2017).
  • Xu C , Cai Y , Fan P et al. Calorie restriction prevents metabolic aging caused by abnormal SIRT1 function in adipose tissues. Diabetes 64(5), 1576–1590 (2015).
  • Boucret L , Chao De La Barca JM , Moriniere C et al. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum. Reprod 30(7), 1653–1664 (2015).
  • Di Micco R , Krizhanovsky V , Baker D , D’adda Di Fagagna F . Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22(2), 75–95 (2021).
  • Secomandi L , Borghesan M , Velarde M , Demaria M . The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Hum. Reprod. Update 28(2), 172–189 (2022).
  • Li A , Koch Z , Ideker T . Epigenetic aging: Biological age prediction and informing a mechanistic theory of aging. J. Intern Med. 292(5), 733–744 (2022).
  • Gonzalez F . Inflammation in polycystic ovary syndrome: underpinning of insulin resistance and ovarian dysfunction. Steroids 77(4), 300–305 (2012).
  • Dabravolski SA , Nikiforov NG , Eid AH et al. Mitochondrial dysfunction and chronic inflammation in polycystic ovary syndrome. Int. J. Mol. Sci. 22(8), (2021).
  • Boots CE , Jungheim ES . Inflammation and human ovarian follicular dynamics. Semin Reprod. Med. 33(4), 270–275 (2015).
  • Meier HCS , Mitchell C , Karadimas T , Faul JD . Systemic inflammation and biological aging in the Health and Retirement Study. Geroscience 45(6), 3257–3265 (2023).
  • Nieto-Torres JL , Hansen M . Macroautophagy and aging: the impact of cellular recycling on health and longevity. Mol. Aspects Med. 82, 101020 (2021).
  • Shao T , Ke H , Liu R et al. Autophagy regulates differentiation of ovarian granulosa cells through degradation of WT1. Autophagy 18(8), 1864–1878 (2022).
  • Baker JM , Al-Nakkash L , Herbst-Kralovetz MM . Estrogen–gut microbiome axis: physiological and clinical implications. Maturitas 103, 45–53 (2017).
  • Xu L , Zhang Q , Dou X et al. Fecal microbiota transplantation from young donor mice improves ovarian function in aged mice. J. Genet. Genomics 49(11), 1042–1052 (2022).
  • Shirafuta Y , Tamura I , Ohkawa Y et al. Integrated analysis of transcriptome and histone modifications in granulosa cells during ovulation in female mice. Endocrinology 162(9), (2021).
  • Fitzgerald JB , George J , Christenson LK . Non-coding RNA in ovarian development and disease. Adv. Exp. Med. Biol. 886, 79–93 (2016).
  • Gu C , Liu S , Wu Q , Zhang L , Guo F . Integrative single-cell analysis of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes. Cell Res. 29(2), 110–123 (2019).
  • Johnson AA , Shokhirev MN , Shoshitaishvili B . Revamping the evolutionary theories of aging. Ageing Res. Rev. 55, 100947 (2019).
  • Pollycove R , Naftolin F , Simon JA . The evolutionary origin and significance of menopause. Menopause 18(3), 336–342 (2011).
  • Moskalev AA , Aliper AM , Smit-Mcbride Z , Buzdin A , Zhavoronkov A . Genetics and epigenetics of aging and longevity. Cell Cycle 13(7), 1063–1077 (2014).
  • American College of Obstetricians and Gynecologists . Having a baby after age 35: how aging affects fertility and pregnancy. www.acog.org/womens-health/faqs/having-a-baby-after-age-35-how-aging-affects-fertility-and-pregnancy
  • Martins R , Sousa B , Kneib T et al. Is age at menopause decreasing? – The consequences of not completing the generational cohort. BMC Med. Res. Methodol. 22(1), 187 (2022).
  • Sweeney MM , Raley RK . Race, ethnicity, and the changing context of childbearing in the United States. Annu. Rev. Sociol. 40, 539–558 (2014).
  • Martin JA , Hamilton BE , Osterman MJK , Driscoll AK , Drake P . Births: final data for 2016. Natl. Vital Stat. Rep. 67(1), 1–55 (2018).
  • Dunson DB , Baird DD , Colombo B . Increased infertility with age in men and women. Obstet Gynecol. 103(1), 51–56 (2004).
  • Moolhuijsen LME , Visser JA .Anti-Mullerian hormone and ovarian reserve: update on assessing ovarian function. J. Clin. Endocrinol. Metab. 105(11), 3361–3373 .
  • Vijay AS , Gopireddy MMR , Fyzullah S et al. Association between AMH levels and fertility/reproductive outcomes among women undergoing IVF: a retrospective study. J. Reprod. Infertil. 23(1), 54–60 (2022).
  • Wang S , Zhang Y , Mensah V , Huber WJ 3rd , Huang YT , Alvero R . Discordant anti-mullerian hormone (AMH) and follicle stimulating hormone (FSH) among women undergoing in vitro fertilization (IVF): which one is the better predictor for live birth? J. Ovarian Res. 11(1), 60 (2018).
  • Kruszynska A , Slowinska-Srzednicka J . Anti-Mullerian hormone (AMH) as a good predictor of time of menopause. Prz. Menopauzalny 16(2), 47–50 (2017).
  • Depmann M , Eijkemans MJC , Broer SL et al. Does AMH relate to timing of menopause? Results of an individual patient data meta-analysis. J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2018-00724 (2018) ( Online ahead of print).
  • Harris BS , Jukic AM , Truong T , Nagle CT , Erkanli A , Steiner AZ . Markers of ovarian reserve as predictors of future fertility. Fertil. Steril. 119(1), 99–106 (2023).
  • Randolph JF Jr , Zheng H , Sowers MR et al. Change in follicle-stimulating hormone and estradiol across the menopausal transition: effect of age at the final menstrual period. J. Clin. Endocrinol. Metab. 96(3), 746–754 (2011).
  • Zhu D , Li X , Macrae VE , Simoncini T , Fu X . Extragonadal effects of follicle-stimulating hormone on osteoporosis and cardiovascular disease in women during menopausal transition. Trends Endocrinol. Metab. 29(8), 571–580 (2018).
  • Shuster LT , Gostout BS , Grossardt BR , Rocca WA . Prophylactic oophorectomy in premenopausal women and long-term health. Menopause Int. 14(3), 111–116 (2008).
  • Honigberg MC , Zekavat SM , Aragam K et al. Association of premature natural and surgical menopause with incident cardiovascular disease. JAMA 322(24), 2411–2421 (2019).
  • Yu B , Russanova VR , Gravina S et al. DNA methylome and transcriptome sequencing in human ovarian granulosa cells links age-related changes in gene expression to gene body methylation and 3′-end GC density. Oncotarget 6(6), 3627–3643 (2015).
  • Olsen KW , Castillo-Fernandez J , Chan AC et al. Identification of a unique epigenetic profile in women with diminished ovarian reserve. Fertil. Steril. 115(3), 732–741 (2021).
  • Kordowitzki P , Haghani A , Zoller JA et al. Epigenetic clock and methylation study of oocytes from a bovine model of reproductive aging. Aging Cell 20(5), e13349 (2021).
  • Xi X , Zou Q , Wei Y et al. Dynamic changes of DNA methylation and transcriptome expression in porcine ovaries during aging. Biomed. Res. Int. 2019, 8732023 (2019).
  • Hannum G , Guinney J , Zhao L et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49(2), 359–367 (2013).
  • Knight AK , Craig JM , Theda C et al. An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol. 17(1), 206 (2016).
  • Bohlin J , Håberg S , Magnus P et al. Prediction of gestational age based on genome-wide differentially methylated regions. Genome Biol. 17(1), 207 (2016).
  • Horvath S , Oshima J , Martin GM et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford progeria syndrome and ex vivo studies. Aging (Albany NY) 10(7), 1758–1775 (2018).
  • Voisin S , Harvey NR , Haupt LM et al. An epigenetic clock for human skeletal muscle. J. Cachexia Sarcopenia Muscle 11(4), 887–898 (2020).
  • Lee Y , Choufani S , Weksberg R et al. Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. Aging (Albany NY) 11(12), 4238–4253 (2019).
  • Olsen KW , Castillo-Fernandez J , Zedeler A et al. A distinctive epigenetic ageing profile in human granulosa cells. Hum. Reprod. 35(6), 1332–1345 (2020).
  • Marioni RE , Shah S , Mcrae AF et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).
  • Declerck K , Vanden Berghe W . Back to the future: epigenetic clock plasticity towards healthy aging. Mech. Ageing Dev. 174, 18–29 (2018).
  • Liu Z , Leung D , Thrush K et al. Underlying features of epigenetic aging clocks in vivo and in vitro . Aging Cell 19(10), e13229 (2020).
  • Lu AT , Quach A , Wilson JG et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 11(2), 303–327 (2019).
  • Kabacik S , Lowe D , Fransen L et al. The relationship between epigenetic age and the hallmarks of aging in human cells. Nat. Aging 2(6), 484–493 (2022).
  • Shadyab AH , Gass ML , Stefanick ML et al. Maternal age at childbirth and parity as predictors of longevity among women in the United States: the Women’s Health Initiative. Am. J. Public Health 107(1), 113–119 (2017).
  • Dior UP , Hochner H , Friedlander Y et al. Association between number of children and mortality of mothers: results of a 37-year follow-up study. Ann. Epidemiol. 23(1), 13–18 (2013).
  • Koski-Rahikkala H , Pouta A , Pietilainen K , Hartikainen AL . Does parity affect mortality among parous women? J. Epidemiol. Community Health 60(11), 968–973 (2006).
  • Kresovich JK , Harmon QE , Xu Z , Nichols HB , Sandler DP , Taylor JA . Reproduction, DNA methylation and biological age. Hum. Reprod. 34(10), 1965–1973 (2019).
  • Ryan CP , Hayes MG , Lee NR et al. Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women. Sci. Rep. 8(1), 11100 (2018).
  • Nishitani S , Kasaba R , Hiraoka D et al. Epigenetic clock deceleration and maternal reproductive efforts: associations with increasing gray matter volume of the precuneus. Front. Genet. 13, 803584 (2022).
  • Morin SJ , Tao X , Marin D et al. DNA methylation-based age prediction and telomere length in white blood cells and cumulus cells of infertile women with normal or poor response to ovarian stimulation. Aging (Albany NY) 10(12), 3761–3773 (2018).
  • Hanson BM , Tao X , Zhan Y et al. Young women with poor ovarian response exhibit epigenetic age acceleration based on evaluation of white blood cells using a DNA methylation-derived age prediction model. Hum. Reprod. 35(11), 2579–2588 (2020).
  • Monseur B , Murugappan G , Bentley J , Teng N , Westphal L . Epigenetic clock measuring age acceleration via DNA methylation levels in blood is associated with decreased oocyte yield. J. Assist Reprod. Genet 37(5), 1097–1103 (2020).
  • Knight AK , Hipp HS , Abhari S et al. Markers of ovarian reserve are associated with reproductive age acceleration in granulosa cells from IVF patients. Hum. Reprod. 37(10), 2438–2445 (2022).
  • Asllanaj E , Bano A , Glisic M et al. Age at natural menopause and life expectancy with and without type 2 diabetes. Menopause 26(4), 387–394 (2019).
  • Savonitto S , Morici N , Franco N et al. Age at menopause, extent of coronary artery disease and outcome among postmenopausal women with acute coronary syndromes. Int. J. Cardiol. 259, 8–13 (2018).
  • Levine ME , Lu AT , Chen BH et al. Menopause accelerates biological aging. Proc. Natl Acad. Sci. USA 113(33), 9327–9332 (2016).
  • Thurston RC , Carroll JE , Levine M et al. Vasomotor symptoms and accelerated epigenetic aging in the Women’s Health Initiative (WHI). J. Clin. Endocrinol. Metab. 105(4), 1221–1227 (2020).
  • Quach A , Levine ME , Tanaka T et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging (Albany NY) 9(2), 419–446 (2017).
  • Galkin F , Kovalchuk O , Koldasbayeva D , Zhavoronkov A , Bischof E . Stress, diet, exercise: common environmental factors and their impact on epigenetic age. Ageing Res. Rev. 88, 101956 (2023).
  • Fahy GM , Brooke RT , Watson JP et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 18(6), e13028 (2019).
  • Dou X , Sun Y , Li J et al. Short-term rapamycin treatment increases ovarian lifespan in young and middle-aged female mice. Aging Cell 16(4), 825–836 (2017).
  • Garcia DN , Saccon TD , Pradiee J et al. Effect of caloric restriction and rapamycin on ovarian aging in mice. Geroscience 41(4), 395–408 (2019).
  • Wang K , Liu H , Hu Q et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct. Target Ther. 7(1), 374 (2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.