108
Views
0
CrossRef citations to date
0
Altmetric
Review

Applicability of Mesenchymal Stem Cell-Derived Exosomes as a Cell-Free miRNA Therapy and Epigenetic Modifiers for Diabetes

ORCID Icon & ORCID Icon
Pages 1323-1336 | Received 26 Aug 2023, Accepted 17 Nov 2023, Published online: 29 Nov 2023

References

  • Dilworth L , FaceyA , OmoruyiF. Diabetes mellitus and its metabolic complications: the role of adipose tissues. Int. J. Mol. Sci.22(14), 7644 (2021).
  • https://diabetesatlas.org. Tenth Edition (2021).
  • Zang L , HaoH , LiuJet al. Mesenchymal stem cell therapy in Type 2 diabetes mellitus. Diabetol. Metab. Syndr.9, 36 (2017).
  • Gao S , ZhangY , LiangKet al. Mesenchymal stem cells (MSCs): a novel therapy for Type 2 diabetes. Stem Cells Int.2022, 8637493 (2022).
  • Zhong F , JiangY. Endogenous pancreatic β cell regeneration: a potential strategy for the recovery of β cell deficiency in diabetes. Front. Endocrinol. (Lausanne)10, 101 (2019).
  • www.clinicaltrials.gov
  • Huang Q , HuangY , LiuJ. Mesenchymal stem cells: an excellent candidate for the treatment of diabetes mellitus. Int. J. Endocrinol.2021, 9938658 (2021).
  • Yang M , ChenJ , ChenL. The roles of mesenchymal stem cell-derived exosomes in diabetes mellitus and its related complications. Front. Endocrinol. (Lausanne)13, 1027686 (2022).
  • Ling C , RönnT. Epigenetics in human obesity and Type 2 diabetes. Cell Metab.29(5), 1028–1044 (2019).
  • Sha K , BoyerLA. The chromatin signature of pluripotent cells. In: StemBook.Harvard Stem Cell Institute, Cambridge, MA, USA, PMID:20614601 (2008).
  • Podobinska M , Szablowska-GadomskaI , AugustyniakJet al. Epigenetic modulation of stem cells in neurodevelopment: the role of methylation and acetylation. Front. Cell Neurosci.11, 23 (2017).
  • Anastasiadi D , Esteve-CodinaA , PiferrerF. Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenetics Chromatin11, 37 (2018).
  • Walter M , TeissandierA , Pérez-PalaciosRet al. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. Elife.5, e11418 (2016).
  • Buitrago D , LabradorM , ArconJPet al. Impact of DNA methylation on 3D genome structure. Nat. Commun.12, 3243 (2021).
  • Carlund O , NorbergA , OstermanPet al. DNA methylation variations and epigenetic aging in telomere biology disorders. Sci. Rep.13, 7955 (2023).
  • SanMiguel JM , BartolomeiMS. DNA methylation dynamics of genomic imprinting in mouse development. Biol. Reprod.99(1), 252–262 (2018).
  • Duncan CG , GrimmSA , MorganDLet al. Dosage compensation and DNA methylation landscape of the X chromosome in mouse liver. Sci. Rep.8, 10138 (2018).
  • Loaeza-Loaeza J , BeltranAS , Hernández-SoteloD. DNMTs and impact of CpG content, transcription factors, consensus motifs, lncRNAs, and histone marks on DNA methylation. Genes (Basel)11(11), 1336 (2020).
  • Chapman C , MarianiC , WuFet al. TET-catalyzed 5-hydroxymethylcytosine regulates gene expression in differentiating colonocytes and colon cancer. Sci. Rep.5, 17568 (2015).
  • Saxonov S , BergP , BrutlagDL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc. Natl Acad. Sci. USA103(5), 1412–1417 (2006).
  • Bannister AJ , KouzaridesT. Regulation of chromatin by histone modifications. Cell Res.21(3), 381–395 (2011).
  • Li D , ZhangL , HeYet al. Novel histone post-translational modifications in diabetes and complications of diabetes: the underlying mechanisms and implications. Biomed. Pharmacother.156, 113984 (2022).
  • Petrovič D , NguyenQD , PeterlinBet al. Omics technologies and neovascular ocular disorders. Biomed. Res. Int.2014, 231348 (2014).
  • Keating ST , PlutzkyJ , El-OstaA. Epigenetic changes in diabetes and cardiovascular risk. Circ. Res.118(11), 1706–1722 (2016).
  • Natalicchio A , MontagnaniM , GalloMet al. miRNA dysregulation underlying common pathways in Type 2 diabetes and cancer development: an Italian Association of Medical Oncology (AIOM)/Italian Association of Medical Diabetologists (AMD)/Italian Society of Diabetology (SID)/Italian Society of Endocrinology (SIE)/Italian Society of Pharmacology (SIF) multidisciplinary critical view. ESMO Open8(3), 101573 (2023).
  • Bhat SS , JarmolowskiA , Szweykowska-KulińskaZ. MicroRNA biogenesis: epigenetic modifications as another layer of complexity in the microRNA expression regulation. Acta Biochim. Pol.63(4), 717–723 (2016).
  • Ling C , GuerraDel S , LupiRet al. Epigenetic regulation of PPARGC1A in human Type 2 diabetic islets and effect on insulin secretion. Diabetologia51(4), 615–622 (2008).
  • Barrès R , OslerME , YanJet al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab.10(3), 189–198 (2009).
  • Hall E , DayehT , KirkpatrickCLet al. DNA methylation of the glucagon-like peptide 1 receptor (GLP1R) in human pancreatic islets. BMC Med. Genet.14, 76 (2013).
  • Yang BT , DayehTA , KirkpatrickCLet al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets. Diabetologia54(2), 360–367 (2011).
  • Yang BT , DayehTA , VolkovPAet al. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with Type 2 diabetes. Mol. Endocrinol.26(7), 1203–1212 (2012).
  • Dayeh T , VolkovP , SalöSet al. Genome-wide DNA methylation analysis of human pancreatic islets from Type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion. PLoS Genet.10(3), e1004160 (2014).
  • Volkmar M , DedeurwaerderS , CunhaDAet al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from Type 2 diabetic patients. EMBO J.31(6), 1405–1426 (2012).
  • Volkov P , BacosK , OforiJKet al. Whole-genome bisulfite sequencing of human pancreatic islets reveals novel differentially methylated regions in Type 2 diabetes pathogenesis. Diabetes66(4), 1074–1085 (2017).
  • Domingo-Relloso A , GribbleMO , Riffo-CamposALet al. Epigenetics of Type 2 diabetes and diabetes-related outcomes in the Strong Heart Study. Clin. Epigenetics14(1), 177 (2022).
  • Baca P , Barajas-OlmosF , MirzaeicheshmehEet al. DNA methylation and gene expression analysis in adipose tissue to identify new loci associated with T2D development in obesity. Nutr. Diabetes12(1), 50 (2022).
  • Fragoso-Bargas N , ElliottHR , Lee-ØdegårdSet al. Cross-ancestry DNA methylation marks of insulin resistance in pregnancy: an integrative epigenome wide association study. Diabetes72(3), 415–426 (2023).
  • Ouni M , EichelmannF , JähnertMet al. Differences in DNA methylation of HAMP in blood cells predicts the development of Type 2 diabetes. Mol. Metab.75, 101774 (2023).
  • Juvinao-Quintero DL , SharpGC , SandersonECMet al. Investigating causality in the association between DNA methylation and Type 2 diabetes using bidirectional two-sample Mendelian randomisation. Diabetologia66(7), 1247–1259 (2023).
  • Wang X , LiuJ , WangQ , ChenQ. The transcriptomic and epigenetic alterations in Type 2 diabetes mellitus patients of Chinese Tibetan and Han populations. Front. Endocrinol. (Lausanne)14, 1122047 (2023).
  • Kim H , BaeJH , ParkKSet al. DNA methylation changes associated with Type 2 diabetes and diabetic kidney disease in an East Asian Population. J. Clin. Endocrinol. Metab.106(10), e3837–e3851 (2021).
  • García-Calzón S , SchraderS , PerfilyevAet al. DNA methylation partially mediates antidiabetic effects of metformin on HbA1c levels in individuals with Type 2 diabetes. Diabetes Res. Clin. Pract.202, 110807 (2023).
  • Tu P , LiX , MaBet al. Liver histone H3 methylation and acetylation may associate withTtype 2 diabetes development. J. Physiol. Biochem.71(1), 89–98 (2015).
  • Jufvas A , SjödinS , LundqvistKet al. Global differences in specific histone H3 methylation are associated with overweight and Type 2 diabetes. Clin. Epigenetics5(1), 15 (2013).
  • Lu TT , HeyneS , DrorEet al. The polycomb-dependent epigenome controls β cell dysfunction, dedifferentiation, and diabetes. Cell. Metab.27(6), 1294–1308.e7 (2018).
  • Vanderkruk B , MaeshimaN , PasulaDJet al. Methylation of histone H3 lysine 4 is required for maintenance of beta cell function in adult mice. Diabetologia66(6), 1097–1115 (2023).
  • Michael J , FowlerMD. Microvascular and macrovascular complications of diabetes. Clin. Diabetes26(2), 77–82 (2008).
  • Liu DD , ZhangCY , ZhangJTet al. Epigenetic modifications and metabolic memory in diabetic retinopathy: beyond the surface. Neural. Regen. Res.18(7), 1441–1449 (2023).
  • Zhao L , XuH , LiuXet al. The role of TET2-mediated ROBO4 hypomethylation in the development of diabetic retinopathy. J. Transl. Med.21(1), 455 (2023).
  • Li Y , GongC , XuYet al. Genetic regulation of THBS1 methylation in diabetic retinopathy. Front. Endocrinol. (Lausanne)13, 991803 (2022).
  • He Y , DanY , GaoXet al. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial–mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am. J. Physiol. Endocrinol. Metab.320(3), e598–e608 (2021).
  • Xi X , WangM , ChenQet al. DNMT1 regulates miR-20a/TXNIP-mediated pyroptosis of retinal pigment epithelial cells through DNA methylation. Mol. Cell. Endocrinol.577, 112012 (2023).
  • Muramatsu D , KimuraH , KotoshibaKet al. Pericentric H3K9me3 formation by HP1 interaction-defective histone methyltransferase Suv39h1. Cell Struct. Funct.41(2), 145–152 (2016).
  • Bertoluci MC , RochaVZ. Cardiovascular risk assessment in patients with diabetes. Diabetol. Metab. Syndr.9, 25 (2017).
  • Petrie JR , GuzikTJ , TouyzRM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can. J. Cardiol.34(5), 575–584 (2018).
  • Keating ST , PlutzkyJ , El-OstaA. Epigenetic changes in diabetes and cardiovascular risk. Circ. Res.118, 1706–1722 (2016).
  • Balakrishnan A , GuruprasadKP , SatyamoorthyKet al. Interleukin-6 determines protein stabilization of DNA methyltransferases and alters DNA promoter methylation of genes associated with insulin signaling and angiogenesis. Lab. Invest.98(9), 1143–1158 (2018).
  • Pepin ME , SchianoC , MiceliMet al. The human aortic endothelium undergoes dose-dependent DNA methylation in response to transient hyperglycemia. Exp. Cell Res.400(2), 112485 (2021).
  • Biswas S , FengB , ThomasAet al. Endothelin-1 regulation is entangled in a complex web of epigenetic mechanisms in diabetes. Physiol. Res.67(1), S115–S125 (2018).
  • Liao Y , GouL , ChenLet al. NADPH oxidase 4 and endothelial nitric oxide synthase contribute to endothelial dysfunction mediated by histone methylations in metabolic memory. Free Radic. Biol. Med.115, 383–394 (2018).
  • Paneni F , CostantinoS , BattistaRet al. Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with Type 2 diabetes mellitus. Circ. Cardiovasc. Genet.8(1), 150–158 (2015).
  • Mota-Zamorano S , GonzálezLM , RoblesNRet al. A custom target next-generation sequencing 70-gene panel and replication study to identify genetic markers of diabetic kidney disease. Genes (Basel)12(12), 1992 (2021).
  • Li X , LuL , HouWet al. Epigenetics in the pathogenesis of diabetic nephropathy. Acta Biochim. Biophys. Sin. (Shanghai)54(2), 163–172 (2022).
  • Marumo T , YagiS , KawarazakiWet al. Diabetes induces aberrant DNA methylation in the proximal tubules of the kidney. J. Am. Soc. Nephrol.26(10), 2388–2397 (2015).
  • Li X , LiaoJ , GuoZ. Detection value of FOXO1 gene methylation, blood glucose and lipids in patients with Type 2 diabetic kidney disease. Medicine (Baltimore)101(49), e31663 (2022).
  • Li KY , TamCHT , LiuHet al. DNA methylation markers for kidney function and progression of diabetic kidney disease. Nat. Commun.14(1), 2543 (2023).
  • Chen H , HuangY , ZhuXet al. Histone demethylase UTX is a therapeutic target for diabetic kidney disease. J. Physiol.597(6), 1643–1660 (2019).
  • Hung PH , HsuYC , ChenTHet al. The histone demethylase inhibitor GSK-J4 is a therapeutic target for the kidney fibrosis of diabetic kidney disease via DKK1 modulation. Int. J. Mol. Sci.23(16), 9407 (2022).
  • Lu L , LiX , ZhongZet al. KMT5A downregulation participated in high glucose-mediated EndMT via upregulation of ENO1 expression in diabetic nephropathy. Int. J. Biol. Sci.17(15), 4093–4107 (2021).
  • Wang F , HouW , LiXet al. SETD8 cooperates with MZF1 to participate in hyperglycemia-induced endothelial inflammation via elevation of WNT5A levels in diabetic nephropathy. Cell. Mol. Biol. Lett.27(1), 30 (2022).
  • Jia Y , ReddyMA , DasSet al. Dysregulation of histone H3 lysine 27 trimethylation in transforming growth factor-β1-induced gene expression in mesangial cells and diabetic kidney. J. Biol. Chem.294(34), 12695–12707 (2019).
  • Cheng Y , ChenY , WangGet al. Protein methylation in diabetic kidney disease. Front. Med. (Lausanne)9, 736006 (2022).
  • Fan Y , FanH , LiPet al. Mitogen-activating protein kinase kinase kinase kinase-3, inhibited by astragaloside IV through H3 lysine 4 monomethylation, promotes the progression of diabetic nephropathy by inducing apoptosis. Bioengineered13(5), 11517–11529 (2022).
  • Feng J , XingW , XieL. Regulatory roles of microRNAs in diabetes. Int. J. Mol. Sci.17(10), 1729 (2016).
  • Deng J , GuoF. MicroRNAs and Type 2 diabetes. ExRNA1, 36 (2019).
  • Benko J , SarlinovaM , MikusovaVet al. miR-126 and miR-146a as markers of Type 2 diabetes mellitus: a pilot study. Bratisl. Lek. Listy124(7), 527–533 (2023).
  • Taylor HJ , HungYH , NarisuNet al. Human pancreatic islet microRNAs implicated in diabetes and related traits by large-scale genetic analysis. Proc. Natl Acad. Sci. USA120(7), e2206797120 (2023).
  • Cheung R , PizzaG , ChabosseauPet al. Glucose-dependent miR-125b is a negative regulator of β-cell function. Diabetes71(7), 1525–1545 (2022).
  • Wang Y , ZhouF , LiMet al. miR-34a-5p promotes hepatic gluconeogenesis by suppressing SIRT1 expression. Exp. Cell Res.420(1), 113336 (2022).
  • Lu H , YangJ , LiJet al. iR-190 ameliorates glucotoxicity-induced dysfunction and apoptosis of pancreatic β-cells by inhibiting NOX2-mediated reactive oxygen species production. PeerJ10, e13849 (2022).
  • Chen X , TianF , SunZet al. Elevation of circulating miR-210 participates in the occurrence and development of Type 2 diabetes mellitus and its complications. J. Diabetes Res.2022, 9611509 (2022).
  • Barutta F , BelliniS , MastrocolaRet al. MicroRNA and microvascular complications of diabetes. Int. J. Endocrinol.2018, 6890501 (2018).
  • Wu JH , WangYH , WangWet al. miR-18b suppresses high-glucose-induced proliferation in HRECs by targeting IGF-1/IGF1R signaling pathways. Int. J. Biochem. Cell Biol.73, 41–52 (2016).
  • Jin J , WangX , ZhiX , MengD. Epigenetic regulation in diabetic vascular complications. J. Mol. Endocrinol.63(4), R103–R115 (2019).
  • Zhao S , LiT , LiJet al. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia59(3), 644–654 (2016).
  • Feng B , LiuJ , WangEet al. Endothelial derived miRNA-9 mediated cardiac fibrosis in diabetes and its regulation by ZFAS1. PLoS One17(10), e0276076 (2022).
  • Wu H , KongL , ZhouSet al. The role of microRNAs in diabetic nephropathy. J. Diabetes Res.2014, 920134 (2014).
  • Lu Z , LiuN , WangF. Epigenetic regulations in diabetic nephropathy. J. Diabetes Res.2017, 7805058 (2017).
  • Zhong X , ChungAC , ChenHYet al. miR-21 is a key therapeutic target for renal injury in a mouse model of Type 2 diabetes. Diabetologia56(3), 663–674 (2013).
  • Tsai YC , KuoMC , HungWWet al. Proximal tubule-derived exosomes contribute to mesangial cell injury in diabetic nephropathy via miR-92a-1-5p transfer. Cell. Commun. Signal.21(1), 10 (2023).
  • Wang J , TaoY , ZhaoFet al. Expression of urinary exosomal miRNA-615-3p and miRNA-3147 in diabetic kidney disease and their association with inflammation and fibrosis. Ren. Fail.45(1), 2121929 (2023).
  • Caplan AI , DennisJE. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem.98(5), 1076–1084 (2006).
  • Hu J , WangY , GongHet al. Long term effect and safety of Wharton’s jelly-derived mesenchymal stem cells on Type 2 diabetes. Exp. Ther. Med.12(3), 1857–1866 (2016).
  • Zang L , LiY , HaoHet al. Efficacy of umbilical cord-derived mesenchymal stem cells in the treatment of type 2 diabetes assessed by retrospective continuous glucose monitoring. Stem Cells Transl Med. doi: 10.1093/stcltm/szad060 (2023) ( Epub ahead of print).
  • Skyler JS , FonsecaVA , SegalKRet al. Allogeneic mesenchymal precursor cells in Type 2 diabetes: a randomized, placebo-controlled, dose-escalation safety and tolerability pilot study. Diabetes Care38(9), 1742–1749 (2015).
  • Li H , ZhuH , GeTet al. Mesenchymal stem cell-based therapy for diabetes mellitus: enhancement strategies and future perspectives. Stem. Cell Rev. Rep.17(5), 1552–1569 (2021).
  • Gao X , SongL , ShenKet al. Bone marrow mesenchymal stem cells promote the repair of islets from diabetic mice through paracrine actions. Mol. Cell. Endocrinol.388(1–2), 41–50 (2014).
  • Sun Y , ShiH , YinSet al. Human mesenchymal stem cell derived exosomes alleviate Type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano12(8), 7613–7628 (2018).
  • Chen MT , ZhaoYT , ZhouLYet al. Exosomes derived from human umbilical cord mesenchymal stem cells enhance insulin sensitivity in insulin resistant human adipocytes. Curr. Med. Sci.41(1), 87–93 (2021).
  • Yap SK , TanKL , AbdRahaman NYet al. Human umbilical cord mesenchymal stem cell-derived small extracellular vesicles ameliorated insulin resistance in Type 2 diabetes mellitus rats. Pharmaceutics14(3), 649 (2022).
  • Xiong J , HuH , GuoRet al. Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications. Front. Endocrinol. (Lausanne)12, 646233 (2021).
  • Xiang E , HanB , ZhangQet al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res. Ther.11(1), 336 (2020).
  • Wang Y , LiuJ , WangHet al. Mesenchymal stem cell-derived exosomes ameliorate diabetic kidney disease through the NLRP3 signaling pathway. Stem Cells41(4), 368–383 (2023).
  • Nagaishi K , MizueY , ChikenjiTet al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci. Rep.6, 34842 (2016).
  • Li H , RongP , MaXet al. Mouse umbilical cord mesenchymal stem cell paracrine alleviates renal fibrosis in diabetic nephropathy by reducing myofibroblast transdifferentiation and cell proliferation and upregulating MMPs in mesangial cells. J. Diabetes Res.2020, 3847171 (2020).
  • Lin Y , ZhangF , LianXFet al. Mesenchymal stem cell-derived exosomes improve diabetes mellitus-induced myocardial injury and fibrosis via inhibition of TGF-β1/Smad2 signaling pathway. Cell Mol. Biol. (Noisy-le-grand)65(7), 123–126 (2019).
  • Yin K , WangS , ZhaoRC. Exosomes from mesenchymal stem/stromal cells: a new therapeutic paradigm. Biomark Res.7, 8 (2019).
  • Testa R , BonfigliAR , PrattichizzoF , LaSala L , DeNigris V , CerielloA. The “metabolic memory” theory and the early treatment of hyperglycemia in prevention of diabetic complications. Nutrients9(5), 437 (2017).
  • Drzewoski J , KasznickiJ , TrojanowskiZ. The role of “metabolic memory” in the natural history of diabetes mellitus. Pol. Arch. Med. Wewn.119(7–8), 493–500 (2009).
  • Intine RV , SarrasMPJr. Metabolic memory and chronic diabetes complications: potential role for epigenetic mechanisms. Curr. Diab. Rep.12(5), 551–559 (2012).
  • Sharma S , BhondeR. Genetic and epigenetic stability of stem cells: epigenetic modifiers modulate the fate of mesenchymal stem cells. Genomics112(2020), 3615–3623 (2020).
  • Chen MT , ZhaoYT , ZhouLYet al. Exosomes derived from human umbilical cord mesenchymal stem cells enhance insulin sensitivity in insulin resistant human adipocytes. Curr. Med. Sci.41(1), 87–93 (2021).
  • Hao Y , MiaoJ , LiuWet al. Mesenchymal stem cell-derived exosomes carry microRNA-125a to protect against diabetic nephropathy by targeting histone deacetylase 1 and downregulating endothelin-1. Diabetes Metab. Syndr. Obes.14, 1405–1418 (2021).
  • Zhang Y , LeX , ZhengSet al. MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization. Stem Cell Res. Ther.13(1), 171 (2022).
  • Jin J , ShiY , GongJet al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res. Ther.10(1), 95 (2019).
  • Jin J , WangY , ZhaoLet al. Exosomal miRNA-215-5p derived from adipose-derived stem cells attenuates epithelial–mesenchymal transition of podocytes by inhibiting ZEB2. Biomed. Res. Int.2020, 2685305 (2020).
  • Zhang W , WangY , KongY. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Invest. Ophthalmol. Vis. Sci.60(1), 294–303 (2019).
  • Zhao H , LiZ , WangYet al. Bioengineered MSC-derived exosomes in skin wound repair and regeneration. Front. Cell Dev. Biol.11, 1029671 (2023).
  • Zollner H , HahnSA , MaghnoujA. Lentiviral overexpression of miRNAs. Method Mol. Biol.1095, 177–190 (2014).
  • Fan J , FengY , ZhangRet al. A simplified system for the effective expression and delivery of functional mature microRNAs in mammalian cells. Cancer Gene Ther.27, 424–437 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.