86
Views
0
CrossRef citations to date
0
Altmetric
Research Article

RASSF1A Promotes ATM Signaling and RASSF1A Methylation is a Synthetic Lethal Marker for ATR Inhibitors

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1205-1220 | Received 29 Aug 2023, Accepted 23 Nov 2023, Published online: 14 Dec 2023

References

  • Morgan E , SoerjomataramI , RumgayHet al. The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: New Estimates From GLOBOCAN 2020. Gastroenterology163(3), 649–658.e642 (2022).
  • Wadhwa V , PatelN , GroverD , AliFS , ThosaniN. Interventional gastroenterology in oncology. CA. Cancer J. Clin. doi:10.3322/caac.21766 (2022).
  • Abnet CC , ArnoldM , WeiWQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology154(2), 360–373 (2018).
  • Doki Y , AjaniJA , KatoKet al. Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma. N. Engl. J. Med.386(5), 449–462 (2022).
  • Yang YM , HongP , XuWW , HeQY , LiB. Advances in targeted therapy for esophageal cancer. Signal Transduct. Target Ther.5(1), 229 (2020).
  • Cui Y , ChenH , XiRet al. Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res.30(10), 902–913 (2020).
  • Liu Z , ZhaoY , KongPet al. Integrated multi-omics profiling yields a clinically relevant molecular classification for esophageal squamous cell carcinoma. Cancer Cell41(1), 181–195.e189 (2023).
  • Moody S , SenkinS , IslamSMAet al. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. Nat. Genet.53(11), 1553–1563 (2021).
  • Lin DC , DinhHQ , XieJJet al. Identification of distinct mutational patterns and new driver genes in oesophageal squamous cell carcinomas and adenocarcinomas. Gut67(10), 1769–1779 (2018).
  • Huang A , GarrawayLA , AshworthA , WeberB. Synthetic lethality as an engine for cancer drug target discovery. Nat. Rev. Drug Discov.19(1), 23–38 (2020).
  • Gao A , GuoM. Epigenetic based synthetic lethal strategies in human cancers. Biomark. Res.8, 44 (2020).
  • Hu Y , GuoM. Synthetic lethality strategies: beyond BRCA1/2 mutations in pancreatic cancer. Cancer Sci.111(9), 3111–3121 (2020).
  • Li H , YangW , ZhangMet al. Methylation of TMEM176A, a key ERK signaling regulator, is a novel synthetic lethality marker of ATM inhibitors in human lung cancer. Epigenomics13(17), 1403–1419 (2021).
  • Du W , GaoA , HermanJGet al. Methylation of NRN1 is a novel synthetic lethal marker of PI3K–Akt–mTOR and ATR inhibitors in esophageal cancer. Cancer Sci.112(7), 2870–2883 (2021).
  • Ortiz-Vega S , KhokhlatchevA , NedwidekMet al. The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene21(9), 1381–1390 (2002).
  • Simanshu DK , PhilipsMR , HancockJF. Consensus on the RAS dimerization hypothesis: strong evidence for lipid-mediated clustering but not for G-domain-mediated interactions. Mol. Cell83(8), 1210–1215 (2023).
  • Chatzifrangkeskou M , PefaniDE , EyresMet al. RASSF1A is required for the maintenance of nuclear actin levels. EMBO J.38(16), e101168 (2019).
  • Bin Y , DingY , XiaoW , LiaoA. RASSF1A: a promising target for the diagnosis and treatment of cancer. Clin. Chim. Acta.504, 98–108 (2020).
  • Khandelwal M , AnandV , AppunniSet al. Decitabine augments cytotoxicity of cisplatin and doxorubicin to bladder cancer cells by activating hippo pathway through RASSF1A. Mol. Cell Biochem.446(1–2), 105–114 (2018).
  • Gao B , YangF , ChenWet al. Multidrug resistance affects the prognosis of primary epithelial ovarian cancer. Oncol. Lett.18(4), 4262–4269 (2019).
  • Pefani DE , TognoliML , PirincciErcan D , GorgoulisV , O’NeillE. MST2 kinase suppresses rDNA transcription in response to DNA damage by phosphorylating nucleolar histone H2B. EMBO J.37(15), e98760 (2018).
  • Tsaridou S , VelimeziG , WillenbrockFet al. 53BP1-mediated recruitment of RASSF1A to ribosomal DNA breaks promotes local ATM signaling. EMBO Rep.23(8), e54483 (2022).
  • Rice TW , IshwaranH , FergusonMK , BlackstoneEH , GoldstrawP. Cancer of the esophagus and esophagogastric junction: an eighth edition staging primer. J. Thorac. Oncol.12(1), 36–42 (2017).
  • D’Journo XB . Clinical implication of the innovations of the 8(th) edition of the TNM classification for esophageal and esophago-gastric cancer. J. Thorac. Dis.10(Suppl. 22), S2671–s2681 (2018).
  • Guo M , RenJ , HouseMG , QiY , BrockMV , HermanJG. Accumulation of promoter methylation suggests epigenetic progression in squamous cell carcinoma of the esophagus. Clin. Cancer Res.12(15), 4515–4522 (2006).
  • Herman JG , GraffJR , MyöhänenS , NelkinBD , BaylinSB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci USA93(18), 9821–9826 (1996).
  • Guide Design Resources . www.zlab.bio/resources
  • Derks S , LentjesMH , HellebrekersDM , de BruïneAP , HermanJG , van EngelandM. Methylation-specific PCR unraveled. Cell Oncol.26(5–6), 291–299 (2004).
  • Kalkan R , AtliE , ÖzdemirMet al. IDH1 mutations is prognostic marker for primary glioblastoma multiforme but MGMT hypermethylation is not prognostic for primary glioblastoma multiforme. Gene554(1), 81–86 (2015).
  • Wang X , DongY , ZhangHet al. DNA methylation drives a new path in gastric cancer early detection: current impact and prospects. Genes Dis.11(2), 847–860 (2024).
  • Nursal A , OguzC , ErogluO , ArtanS. Correlation of HER2/TOP2A gene aberrations with RASSF1A/APC gene methylation status in high-risk breast cancer. Turk. J. Oncol. doi:10.5505/tjo.2019.2017 (2019).
  • Han H , WangW. A tale of two Hippo pathway modules. EMBO J.42(11), e113970 (2023).
  • An L , CaoZ , NiePet al. Combinatorial targeting of Hippo-STRIPAK and PARP elicits synthetic lethality in gastrointestinal cancers. J. Clin. Invest.132(9), e155468 (2022).
  • Min A , ImSA , JangHet al. AZD6738, a novel oral inhibitor of ATR, induces synthetic lethality with ATM deficiency in gastric cancer cells. Mol. Cancer Ther.16(4), 566–577 (2017).
  • Wilson Z , OdedraR , WallezYet al. ATR inhibitor AZD6738 (ceralasertib) exerts antitumor activity as a monotherapy and in combination with chemotherapy and the PARP inhibitor olaparib. Cancer Res.82(6), 1140–1152 (2022).
  • Lord CJ , AshworthA. PARP inhibitors: synthetic lethality in the clinic. Science355(6330), 1152–1158 (2017).
  • Farmer H , McCabeN , LordCJet al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434(7035), 917–921 (2005).
  • Tutt ANJ , GarberJE , KaufmanBet al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N. Engl. J. Med.384(25), 2394–2405 (2021).
  • Li Q , QianW , ZhangY , HuL , ChenS , XiaY. A new wave of innovations within the DNA damage response. Signal Transduct. Target Ther.8(1), 338 (2023).
  • Bender A , PringleJR. Use of a screen for synthetic lethal and multicopy suppresses mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell Biol.11(3), 1295–1305 (1991).
  • Mullenders J , BernardsR. Loss-of-function genetic screens as a tool to improve the diagnosis and treatment of cancer. Oncogene28(50), 4409–4420 (2009).
  • Morgens DW , DeansRM , LiA , BassikMC. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat. Biotechnol.34(6), 634–636 (2016).
  • Deans RM , MorgensDW , ÖkesliAet al. Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target identification. Nat. Chem. Biol.12(5), 361–366 (2016).
  • McDonald ER 3rd , de WeckA , SchlabachMRet al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell170(3), 577–592.e510 (2017).
  • Tsherniak A , VazquezF , MontgomeryPGet al. Defining a cancer dependency map. Cell170(3), 564–576.e516 (2017).
  • Meyers RM , BryanJG , McFarlandJMet al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet.49(12), 1779–1784 (2017).
  • Behan FM , IorioF , PiccoGet al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature568(7753), 511–516 (2019).
  • Jurkovicova D , NeophytouCM , GašparovićA , GonçalvesAC. DNA damage response in cancer therapy and resistance: challenges and opportunities. Int. J. Mol. Sci.23(23), 14672 (2022).
  • Goldstein M , KastanMB. The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu. Rev. Med.66, 129–143 (2015).
  • Yang W , GuoC , HermanJGet al. Epigenetic silencing of JAM3 promotes esophageal cancer development by activating Wnt signaling. Clin. Epigenetics14(1), 164 (2022).
  • Zhu C , ZhangM , WangQ , JenJ , LiuB , GuoM. Intratumor epigenetic heterogeneity – a panel gene methylation study in thyroid cancer. Front. Genet.12, 714071 (2021).
  • Liu Y , ZhangM , HeTet al. Epigenetic silencing of IGFBPL1 promotes esophageal cancer growth by activating PI3K–AKT signaling. Clin. Epigenetics12(1), 22 (2020).
  • Peng Y , WangL , WuL , ZhangL , NieG , GuoM. Methylation of SLFN11 promotes gastric cancer growth and increases gastric cancer cell resistance to cisplatin. J. Cancer10(24), 6124–6134 (2019).
  • Li Y , YangY , LuYet al. Predictive value of CHFR and MLH1 methylation in human gastric cancer. Gastric Cancer18(2), 280–287 (2015).
  • Wick W , WellerM , vanden Bent Met al. MGMT testing – the challenges for biomarker-based glioma treatment. Nat. Rev. Neurol.10(7), 372–385 (2014).
  • Guo M , PengY , GaoA , DuC , HermanJG. Epigenetic heterogeneity in cancer. Biomark Res.7, 23 (2019).
  • Constâncio V , NunesSP , Moreira-BarbosaCet al. Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin. Epigenetics11(1), 175 (2019).
  • Joosten SC , DeckersIA , AartsMJet al. Prognostic DNA methylation markers for renal cell carcinoma: a systematic review. Epigenomics9(9), 1243–1257 (2017).
  • Dubois F , KellerM , HoflackJet al. Role of the YAP-1 transcriptional target cIAP2 in the differential susceptibility to chemotherapy of non-small-cell lung cancer (NSCLC) patients with tumor RASSF1A gene methylation from the phase 3 IFCT-0002 trial. Cancers (Basel)11(12), 1835 (2019).
  • Papaspyropoulos A , AngelopoulouA , MourkiotiIet al. RASSF1A disrupts the NOTCH signaling axis via SNURF/RNF4-mediated ubiquitination of HES1. EMBO Rep.23(2), e51287 (2022).
  • Pefani DE , LatusekR , PiresIet al. RASSF1A–LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2. Nat. Cell Biol.16(10), 962–971; 961–968 (2014).
  • Donninger H , ClarkJ , RinaldoFet al. The RASSF1A tumor suppressor regulates XPA-mediated DNA repair. Mol. Cell Biol.35(1), 277–287 (2015).
  • Papaspyropoulos A , BradleyL , ThapaAet al. RASSF1A uncouples Wnt from Hippo signalling and promotes YAP mediated differentiation via p73. Nat. Commun.9(1), 424 (2018).
  • Schirosi L , MazzottaA , OpintoGet al. β-catenin interaction with NHERF1 and RASSF1A methylation in metastatic colorectal cancer patients. Oncotarget7(42), 67841–67850 (2016).
  • Khandelwal M , AnandV , AppunniSet al. RASSF1A-Hippo pathway link in patients with urothelial carcinoma of bladder: plausible therapeutic target. Mol. Cell Biochem.464(1–2), 51–63 (2020).
  • Kumari S , MishraS , AnandN , HadiR , RastogiM , HusainN. Circulating free DNA integrity index and promoter methylation of tumor suppressor gene P16, DAPK and RASSF1A as a biomarker for oropharyngeal squamous cell carcinoma. Pathol. Res. Pract.246, 154489 (2023).
  • Gao D , HermanJG , GuoM. The clinical value of aberrant epigenetic changes of DNA damage repair genes in human cancer. Oncotarget7(24), 37331–37346 (2016).
  • Huang R , ZhouPK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct. Target Ther.6(1), 254 (2021).
  • Chabanon RM , RouanneM , LordCJ , SoriaJC , PaseroP , Postel-VinayS. Targeting the DNA damage response in immuno-oncology: developments and opportunities. Nat. Rev. Cancer21(11), 701–717 (2021).
  • Surova O , ZhivotovskyB. Various modes of cell death induced by DNA damage. Oncogene32(33), 3789–3797 (2013).
  • Gourley C , BalmañaJ , LedermannJAet al. Moving from poly(ADP-ribose) polymerase inhibition to targeting DNA repair and DNA damage response in cancer therapy. J. Clin. Oncol.37(25), 2257–2269 (2019).
  • Perkhofer L , SchmittA , RomeroCarrasco MCet al. ATM deficiency generating genomic instability sensitizes pancreatic ductal adenocarcinoma cells to therapy-induced DNA damage. Cancer Res.77(20), 5576–5590 (2017).
  • Schmitt A , KnittelG , WelckerDet al. ATM deficiency is associated with sensitivity to PARP1- and ATR inhibitors in lung adenocarcinoma. Cancer Res.77(11), 3040–3056 (2017).
  • Cossío FP , EstellerM , BerdascoM. Towards a more precise therapy in cancer: exploring epigenetic complexity. Curr. Opin. Chem. Biol.57, 41–49 (2020).
  • Mondal P , NateshJ , PentaD , MeeranSM. Progress and promises of epigenetic drugs and epigenetic diets in cancer prevention and therapy: a clinical update. Semin. Cancer Biol.83, 503–522 (2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.