1,491
Views
0
CrossRef citations to date
0
Altmetric
Review

Age-Related Changes in Sperm DNA Methylation and their Forensic and Clinical Implications

ORCID Icon & ORCID Icon
Pages 1157-1173 | Received 29 Aug 2023, Accepted 20 Oct 2023, Published online: 21 Nov 2023

References

  • Jenkins TG , AstonKI , PfluegerC , CairnsBR , CarrellDT. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLOS Genet.10(7), e1004458 (2014).
  • Ashapkin V , SuvorovA , PilsnerJR , KrawetzSA , SergeyevO. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development. Hum. Reprod. Update29(1), 24–44 (2023).
  • Oluwayiose OA , WuH , SaddikiHet al. Sperm DNA methylation mediates the association of male age on reproductive outcomes among couples undergoing infertility treatment. Sci. Rep.11(1), 3216 (2021).
  • Hannum G , GuinneyJ , ZhaoLet al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell49(2), 359–367 (2013).
  • Horvath S . DNA methylation age of human tissues and cell types. Genome Biol.14(10), R115 (2013).
  • Bormann F , Rodríguez-ParedesM , HagemannSet al. Reduced DNA methylation patterning and transcriptional connectivity define human skin aging. Aging Cell15(3), 563–571 (2016).
  • Jin B , LiY , RobertsonKD. DNA methylation: superior or subordinate in the epigenetic hierarchy?Genes Cancer2(6), 607–617 (2011).
  • Ghazimoradi MH , HasegawaK , ZolghadrE , MontazeriS , FarivarS. Reprogramming of fibroblast cells to totipotent state by DNA demethylation. Sci. Rep.13(1), 1154 (2023).
  • Aston KI , UrenPJ , JenkinsTGet al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil. Steril.104(6), 1388–1397.e1–5 (2015).
  • Bernhardt L , DittrichM , PrellAet al. Age-related methylation changes in the human sperm epigenome. Aging (Albany NY)15(5), 1257–1278 (2023).
  • Leitão E , DiPersio S , LaurentinoSet al. The sperm epigenome does not display recurrent epimutations in patients with severely impaired spermatogenesis. Clin. Epigenetics12(1), 61 (2020).
  • Zhu P , GuoH , RenYet al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet.50(1), 12–19 (2018).
  • Galan C , SerraRW , SunF , RinaldiVD , ConineCC , RandoOJ. Stability of the cytosine methylome during post-testicular sperm maturation in mouse. PLoS Genet.17(3), e1009416 (2021).
  • Ramakrishna NB , MurisonK , MiskaEA , LeitchHG. Epigenetic regulation during primordial germ cell development and differentiation. Sex. Dev.15(5–6), 411–431 (2021).
  • Ben Maamar M , BeckD , NilssonE , McCarreyJR , SkinnerMK. Developmental alterations in DNA methylation during gametogenesis from primordial germ cells to sperm. iScience25(2), 103786 (2022).
  • Li L , LiL , LiQet al. Dissecting the epigenomic dynamics of human fetal germ cell development at single-cell resolution. Cell Res.31(4), 463–477 (2021).
  • Rotondo JC , LanzillottiC , MazziottaC , TognonM , MartiniF. Epigenetics of male infertility: the role of DNA methylation. Front. Cell Dev. Biol.9, 689624 (2021).
  • Laurentino S , CremersJF , HorsthemkeBet al. A germ cell-specific ageing pattern in otherwise healthy men. Aging Cell19(10), e13242 (2020).
  • Denomme MM , HaywoodME , ParksJC , SchoolcraftWB , Katz-JaffeMG. The inherited methylome landscape is directly altered with paternal aging and associated with offspring neurodevelopmental disorders. Aging Cell19(8), e13178 (2020).
  • Ben Maamar M , KingSE , NilssonE , BeckD , SkinnerMK. Epigenetic transgenerational inheritance of parent-of-origin allelic transmission of outcross pathology and sperm epimutations. Dev. Biol.458(1), 106–119 (2020).
  • Jenkins TG , JamesER , AstonKIet al. Age-associated sperm DNA methylation patterns do not directly persist trans-generationally. Epigenetics Chromatin12(1), 74 (2019).
  • WHO . WHO Laboratory Manual for the Examination and Processing of Human Semen. WHO, Geneva, Switzerland (2021).
  • Anamthathmakula P , WinuthayanonW. Mechanism of semen liquefaction and its potential for a novel non-hormonal contraception. Biol. Reprod.103(2), 411–426 (2020).
  • Long S , KenworthyS. Round cells in diagnostic semen analysis: a guide for laboratories and clinicians. Br. J. Biomed. Sci.79, 10129 (2022).
  • Fedder J . Nonsperm cells in human semen: with special reference to seminal leukocytes and their possible influence on fertility. Arch. Androl.36(1), 41–65 (1996).
  • Di Persio S , LeitãoE , WösteMet al. Whole-genome methylation analysis of testicular germ cells from cryptozoospermic men points to recurrent and functionally relevant DNA methylation changes. Clin. Epigenetics13(1), 160 (2021).
  • Luján S , CaroppoE , NiederbergerCet al. Sperm DNA methylation epimutation biomarkers for male infertility and FSH therapeutic responsiveness. Sci. Rep.9(1), 16786 (2019).
  • Lee HY , JungSE , OhYN , ChoiA , YangWI , ShinKJ. Epigenetic age signatures in the forensically relevant body fluid of semen: a preliminary study. Forensic Sci. Int. Genet.19, 28–34 (2015).
  • Weidner CI , LinQ , KochCMet al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol.15(2), R24 (2014).
  • Pilsner JR , SaddikiH , WhitcombBWet al. Sperm epigenetic clock associates with pregnancy outcomes in the general population. Hum. Reprod.37(7), 1581–1593 (2022).
  • Orioli D , DellambraE. Epigenetic regulation of skin cells in natural aging and premature aging diseases. Cells7(12), 1–30 (2018).
  • Simpson DJ , ChandraT. Epigenetic age prediction. Aging Cell20(9), e13452 (2021).
  • Heidegger A , PisarekA , dela Puente Met al. Development and inter-laboratory validation of the VISAGE enhanced tool for age estimation from semen using quantitative DNA methylation analysis. Forensic Sci. Int. Genet.56, 102596 (2022).
  • Pisarek A , PośpiechE , HeideggerAet al. Epigenetic age prediction in semen – marker selection and model development. Aging (Albany NY)13(15), 19145–19164 (2021).
  • Milekic MH , XinY , O’DonnellAet al. Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. Mol. Psychiatry20(8), 995–1001 (2015).
  • Prell A , SenMO , PotabattulaRet al. Species-specific paternal age effects and sperm methylation levels of developmentally important genes. Cells11(4), 1–12 ( 2022).
  • Kayser M , SchneiderPM. DNA-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations. Forensic Sci. Int. Genet.3(3), 154–161 (2009).
  • Freire-Aradas A , PośpiechE , AliferiAet al. A comparison of forensic age prediction models using data from four DNA methylation technologies. Front. Genet.11, 932 (2020).
  • Paparazzo E , LaganiV , GeracitanoSet al. An ELOVL2-based epigenetic clock for forensic age prediction: a systematic review. Int. J. Mol. Sci.24(3), 1–14 (2023).
  • Daunay A , BaudrinLG , DeleuzeJF , How-KitA. Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing. Sci. Rep.9(1), 8862 (2019).
  • Lee JW , ChoungCM , JungJY , LeeHY , LimSK. A validation study of DNA methylation-based age prediction using semen in forensic casework samples. Leg. Med. (Tokyo)31, 74–77 (2018).
  • Zbiec-Piekarska R , SpolnickaM , KupiecTet al. Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci. Int. Genet.17, 173–179 (2015).
  • Thong Z , ChanXLS , TanJYY , LooES , SynCKC. Evaluation of DNA methylation-based age prediction on blood. Forensic Sci. Int. Genet. Suppl. Ser.6, e249–e251 (2017).
  • Cho S , JungSE , HongSRet al. Independent validation of DNA-based approaches for age prediction in blood. Forensic Sci. Int. Genet.29, 250–256 (2017).
  • Li L , SongF , LangMet al. Methylation-based age prediction using pyrosequencing platform from seminal stains in Han Chinese males. J. Forensic Sci.65(2), 610–619 (2020).
  • Vidaki A , KayserM. From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence. Genome Biol.18(1), 238 (2017).
  • Aliferi A , BallardD , GallidabinoMD , ThurtleH , BarronL , SyndercombeCourt D. DNA methylation-based age prediction using massively parallel sequencing data and multiple machine learning models. Forensic Sci. Int. Genet.37, 215–226 (2018).
  • Bendixen KK , MindegaardM , EpistolioSet al. A qPCR technology for direct quantification of methylation in untreated DNA. Nat. Commun.14(1), 5153 (2023).
  • Cao M , ShaoX , ChanPet al. High-resolution analyses of human sperm dynamic methylome reveal thousands of novel age-related epigenetic alterations. Clin. Epigenetics12(1), 192 (2020).
  • Jenkins TG , AstonKI , CairnsB , SmithA , CarrellDT. Paternal germ line aging: DNA methylation age prediction from human sperm. BMC Genomics19(1), 763 (2018).