1,114
Views
0
CrossRef citations to date
0
Altmetric
Review

Exploring the Pathogenesis and Treatment of IgA Nephropathy Based on Epigenetics

ORCID Icon, , &
Pages 1017-1026 | Received 06 Sep 2023, Accepted 17 Oct 2023, Published online: 01 Nov 2023

References

  • Nihei Y , SuzukiH , SuzukiY. Current understanding of IgA antibodies in the pathogenesis of IgA nephropathy. Front. Immunol.14(3), 1165394 (2023).
  • Rajasekaran A , JulianBA , RizkDV. IgA nephropathy: an interesting autoimmune kidney disease. Am. J. Med. Sci.361(2), 176–194 (2021).
  • Magistroni R , D’agatiVD , AppelGB , KirylukK. New developments in the genetics, pathogenesis, and therapy of IgA nephropathy. Kidney Int.88(5), 974–989 (2015).
  • Kwon CS , DanieleP , ForsytheA , NgaiC. A systematic literature review of the epidemiology, health-related quality of life impact, and economic burden of immunoglobulin A nephropathy. J. Health Econ. Outcomes Res.8(2), 36–45 (2021).
  • Reily C , UedaH , HuangZQet al. Cellular signaling and production of galactose-deficient IgA1 in IgA nephropathy, an autoimmune disease. J. Immunol. Res.2014(2), 197548 (2014).
  • Li M , WangL , ShiDCet al. Genome-wide meta-analysis identifies three novel susceptibility loci and reveals ethnic heterogeneity of genetic susceptibility for IgA nephropathy. J. Am. Soc. Nephrol.31(12), 2949–2963 (2020).
  • Li M , YuXQ. Genetic determinants of IgA nephropathy: eastern perspective. Semin. Nephrol.38(5), 455–460 (2018).
  • Kiryluk K , Sanchez-RodriguezE , ZhouXJet al. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat. Genet.55(7), 1091–1105 (2023).
  • Waddington CH . The epigenotype. 1942. Int. J. Epidemiol.41(1), 10–13 (2012).
  • Delcuve GP , RastegarM , DavieJR. Epigenetic control. J. Cell. Physiol.219(2), 243–250 (2009).
  • Lin J , ZouHB , LuR , DuYJ. Research progress of epigenetics and IgA nephropathy. Chin. J. Lab. Diagnostics17(4), 4 (2013).
  • Sallustio F , SerinoG , CoxSNet al. Aberrantly methylated DNA regions lead to low activation of CD4+ T-cells in IgA nephropathy. Clin. Sci.130(9), 733–746 (2016).
  • Qiang S , ZhangJ , ZhouNet al. DNA methylation in Cosmc promoter region and aberrantly glycosylated IgA1 associated with pediatric IgA nephropathy. PLOS ONE10(2), e112305 (2015).
  • Hotchkiss RD . The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J. Biol. Chem.175(1), 315–332 (1948).
  • Ginder G , WilliamsD. Readers of DNA methylation, the MBD family as potential therapeutic targets. Pharmacol. Ther.184(3), 98–111 (2018).
  • Greenberg MV , BourchisD. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol.20(10), 590–607 (2019).
  • Gouil Q , KeniryA. Latest techniques to study DNA methylation. Essays Biochem.63(6), 639–648 (2019).
  • Tortajada A , GutierrezE , PickeringMC , TerenteMP , Medjeral-ThomasN. The role of complement in IgA nephropathy. Mol. Immunol.114(3), 123–132 (2019).
  • Perse M , Veceric-HalerZ. The role of IgA in the pathogenesis of IgA nephropathy. Int. J. Mol. Sci.20(24), 6199 (2019).
  • Gale DP , MolyneuxK , WimburyDet al. Galactosylation of IgA1 is associated with common variation in C1GALT1. J. Am. Soc. Nephrol.28(7), 2158–2166 (2017).
  • Young HA , GhoshP , YeJet al. Differentiation of the T helper phenotypes by analysis of the methylation state of the IFN-gamma gene. J. Immunol153(8), 3603–3610 (1994).
  • Pavic K , DuanG , KoehnM. VHR/DUSP3 phosphatase: structure, function and regulation. FEBS J.282(10), 1871–1890 (2015).
  • Cai X , SrivastavaS , SunYet al. Tripartite motif containing protein 27 negatively regulates CD4 T cells by ubiquitinating and inhibiting the class II PI3K-C2β. Proc. Natl Acad Sci.108(50), 20072–20077 (2011).
  • Amand M , ErpicumC , BajouKet al. DUSP3/VHR is a pro-angiogenic atypical dual-specificity phosphatase. Mol. Cancer13(1), 108 (2014).
  • Bharti N , AgrawalV , KamthanS , PrasadN , AgarwalV. Blood TGF-beta1 and miRNA-21-5p levels predict renal fibrosis and outcome in IgA nephropathy. Int. Urol. Nephrol.55(6), 1557–1564 (2023).
  • Fabiano RCG , PinheiroSVB , SilvaACSE. Immunoglobulin A nephropathy: a pathophysiology view. Inflamm. Res.65(10), 757–770 (2016).
  • Wu W , JiangXY , ZhangQL , MoY , SunLZ , ChenSM. Expression and significance of TGF-beta1/Smad signaling pathway in children with IgA nephropathy. World J. Pediatr.5(3), 211–215 (2009).
  • Zhang Z , WuS , StenoienDL , Paa-ToliL. High-throughput proteomics. Annu. Rev. Anal. Chem. (Palo Alto Calif.)7(1), 427–454 (2014).
  • Bennett RL , LichtJD. Targeting epigenetics in cancer. Annu. Rev. Pharmacol. Toxicol.58(1), 187–207 (2018).
  • Wu H , WangX , YangZ , ZhaoQ , GaoR. Serum soluble CD89-IgA complexes are elevated in IgA nephropathy without immunosuppressant history. Dis. Markers2020(1), 1–6 (2020).
  • Qi S , SuiW , YangM , ChenJ , DaiY. CpG array analysis of histone H3 lysine 4 trimethylation by chromatin immunoprecipitation linked to microarrays analysis in peripheral blood mononuclear cells of IgA nephropathy patients. Yonsei Med. J.53(2), 377–385 (2012).
  • Thoden JB , HoldenHM. The molecular architecture of human N-acetylgalactosamine kinase. J. Biol. Chem.280(38), 32784–32791 (2005).
  • Yamada K , HuangZ , RaskaM , ReilyC , NovakJ. Leukemia inhibitory factor signaling enhances production of galactose-deficient IgA1 in IgA nephropathy. Kidney Dis.6(3), 1–13 (2020).
  • Noval Rivas M , WakitaD , FranklinMKet al. Intestinal permeability and IgA provoke immune vasculitis linked to cardiovascular inflammation. Immunity51(3), 508–521 (2019).
  • Lucas T , BonauerA , DimmelerS. RNA therapeutics in cardiovascular disease. Circ. Res.123(2), 205–220 (2018).
  • Serino G , SallustioF , CoxSN , PesceF , SchenaFP. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J. Am. Soc. Nephrol.23(5), 814–824 (2012).
  • Grazia S , FabioS , ClaudiaCet al. Role of let-7b in the regulation of N-acetylgalactosaminyltransferase 2 in IgA nephropathy. Nephrol. Dial. Transplant.30(7), 1132–1139 (2015).
  • Serino G , PesceF , SallustioFet al. In a retrospective international study, circulating miR-148b and let-7b were found to be serum markers for detecting primary IgA nephropathy. Kidney Int.89(3), 683–692 (2016).
  • Hu S , BaoH , XuXet al. Increased miR-374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy. FEBS Lett.589(24), 4019–4025 (2016).
  • Liu D , XiaM , LiuYet al. The upregulation of miR-98-5p affects the glycosylation of IgA1 through cytokines in IgA nephropathy. Int. Immunopharmacol.82(3), 106362 (2020).
  • Liang Y , ZhaoG , TangL , ZhangJ , LiT , LiuZ. MiR-100-3p and miR-877-3p regulate overproduction of IL-8 and IL-1β in mesangial cells activated by secretory IgA from IgA nephropathy patients. Exp. Cell Res.374(2), 312–321 (2016).
  • Xu BY , MengSJ , ShiSFet al. MicroRNA-21-5p participates in IgA nephropathy by driving T helper cell polarization. J. Nephrol.33(3), 551–560 (2020).
  • Pawluczyk IZ , DidangelosA , BarbourSJ , ErL , BarrattJ. Differential expression of microRNA miR-150-5p in IgA nephropathy as a potential mediator and marker of disease progression. Kidney Int.99(5), 1127–1139 (2021).
  • Xu S , KamatoD , LittlePJ , NakagawaS , PelisekJ , JinZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. Pharmacol. Ther.196(3), 15–43 (2019).
  • Kano T , SuzukiH , MakitaYet al. Mucosal immune system dysregulation in the pathogenesis of IgA nephropathy. Biomedicines10(12), 3027 (2022).
  • Barbachowska M , ArimondoPB. To target or not to target? The role of DNA and histone methylation in bacterial infections. Epigenetics18(1), 2242689 (2023).
  • Locatelli M , Faure-DupuyS. Virus hijacking of host epigenetic machinery to impair immune response. J. Virol.97(9), e0065823 (2023).
  • Cole J , AngyalA , EmesRD , MitchellTJ , DickmanMJ , DockrellDH. Pneumolysin is responsible for differential gene expression and modifications in the epigenetic landscape of primary monocyte derived macrophages. Front. Immunol.12(5), 573266 (2021).
  • Laval BD , MaurizioJ , KandallaPK , BrisouG , SiewekeMH. C/EBPβ-dependent epigenetic memory induces trained immunity in hematopoietic stem cells. Cell Stem Cell26(5), 793 (2020).
  • Ahmad A . Epigenetic regulation of inflammation. Semin. Cell Dev. Biol.S1084-9521(23), 163–165 (2023).
  • Mucha K , PacM , PaczekL. Omics are getting us closer to understanding IgA nephropathy. Arch. Immunol. Ther. Exp. (Warsz.)71(1), 12 (2023).
  • Ahmad S , ManzoorS , SiddiquiS , MariappanN , AhmadA. Epigenetic underpinnings of inflammation: connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin. Cancer Biol.83(2), 384–398 (2021).
  • Shu D , XuF , SuZet al. Risk factors of progressive IgA nephropathy which progress to end stage renal disease within ten years: a case–control study. BMC Nephrol.18(1), 11 (2017).
  • Duan Z-Y , CaiG-Y , ChenY-Zet al. Aging promotes progression of IgA nephropathy: a systematic review and meta-analysis. Am. J. Nephrol.38(3), 241–252 (2013).
  • Torre A , VecchioF , GrecoA. Epigenetic mechanisms of aging and aging-associated diseases. Cells12(8), 1163 (2023).
  • Wang W , YaoJ , LiWet al. Epigenome-wide association study in Chinese monozygotic twins identifies DNA methylation loci associated with blood pressure. Clin. Epigenetics15(1), 38 (2023).
  • Richard MA , HuanT , LigthartSet al. DNA methylation analysis identifies loci for blood pressure regulation. Am. J. Hum. Genet.101(6), 888–902 (2017).
  • Liang M . Epigenetic mechanisms and hypertension. Hypertension72(6), 1 (2018).
  • Pawluczyk IZA , SoaresMSF , BarrattWAet al. Macrophage interactions with collecting duct epithelial cells are capable of driving tubulointerstitial inflammation and fibrosis in immunoglobulin Anephropathy. Nephrol. Dial. Transplant.35(11), 1865–1877 (2020).
  • Patek T , PolusA , GóralskaJ , RanyU , Dembińska-KieA. DNA methylation microarrays identify epigenetically regulated lipid related genes in obese patients with hypercholesterolemia. Mol. Med.26(1), 93 (2020).
  • Kang JG , ParkJS , KoJH , KimYS. Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Sci. Rep.9(1), 11960 (2019).
  • Chau BN , XinC , HartnerJ , RenS , DuffieldJS. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med.4(121), 118–121 (2012).