136
Views
0
CrossRef citations to date
0
Altmetric
Review

Decoding Mitochondrial–Nuclear (epi)genome Interactions: The Emerging Role of ncRNAs

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1121-1136 | Received 08 Sep 2023, Accepted 30 Oct 2023, Published online: 21 Nov 2023

References

  • Guha M , AvadhaniNG. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion13(6), 577–591 (2013).
  • Soledad RB , CharlesS , SamarjitD. The secret messages between mitochondria and nucleus in muscle cell biology. Arch. Biochem. Biophys.666, 52–62 (2019).
  • Vega RB , HussJM , KellyDP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol.20(5), 1868–1876 (2000).
  • Fox SN , McMeekinLJ , SavageCHet al. Estrogen-related receptor gamma regulates mitochondrial and synaptic genes and modulates vulnerability to synucleinopathy. NPJ Parkinsons Dis.8(1), 106 (2022).
  • Yang D , KimJ. Mitochondrial retrograde signalling and metabolic alterations in the tumour microenvironment. Cells8(3), 275 (2019).
  • Hunt RJ , BatemanJM. Mitochondrial retrograde signaling in the nervous system. FEBS Lett.592(5), 663–678 (2018).
  • Butow RA , AvadhaniNG. Mitochondrial signaling. Mol. Cell14(1), 1–15 (2004).
  • Morin AL , WinPW , LinAZ , CastellaniCA. Mitochondrial genomic integrity and the nuclear epigenome in health and disease. Front. Endocrinol.13, (2022).
  • Sharma J , KumariR , BhargavaA , TiwariR , MishraPK. Mitochondrial-induced epigenetic modifications: from biology to clinical translation. CPD27(2), 159–176 (2021).
  • Wang P , CastellaniCA , YaoJet al. Epigenome-wide association study of mitochondrial genome copy number. Hum. Mol. Genet.31(2), 309–319 (2021).
  • Guantes R , RastrojoA , NevesR , LimaA , AguadoB , IborraFJ. Global variability in gene expression and alternative splicing is modulated by mitochondrial content. Genome Res.25(5), 633–644 (2015).
  • Castellani CA , LongchampsRJ , SumpterJAet al. Mitochondrial DNA copy number can influence mortality and cardiovascular disease via methylation of nuclear DNA CpGs. Genome Med.12(1), 84 (2020).
  • Kopinski PK , JanssenKA , SchaeferPMet al. Regulation of nuclear epigenome by mitochondrial DNA heteroplasmy. Proc. Natl Acad. Sci. USA116(32), 16028–16035 (2019).
  • Bellizzi D , D’AquilaP , GiordanoM , MontesantoA , PassarinoG. Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics4(1), 17–27 (2012).
  • Vivian CJ , BrinkerAE , GrawSet al. Mitochondrial genomic backgrounds affect nuclear DNA methylation and gene expression. Cancer Res.77(22), 6202–6214 (2017).
  • Lee WT , SunX , TsaiT-Set al. Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns. Cell Death Discov.3(1), 17062 (2017).
  • Huang J , WuS , WangP , WangG. Non-coding RNA regulated cross-talk between mitochondria and other cellular compartments. Front. Cell Dev. Biol.9, 688523 (2021).
  • Vendramin R , MarineJ , LeucciE. Non-coding RNAs: the dark side of nuclear–mitochondrial communication. EMBO J.36(9), 1123–1133 (2017).
  • Carden T , SinghB , MoogaV , BajpaiP , SinghKK. Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression. J. Biol. Chem.292(50), 20694–20706 (2017).
  • van der Giezen M , TovarJ. Degenerate mitochondria. EMBO Rep.6(6), 525–530 (2005).
  • Wallace DC . Diseases of the mitochondrial DNA. Annu. Rev. Biochem.61(1), 1175–1212 (1992).
  • Castellani CA , LongchampsRJ , SunJ , GuallarE , ArkingDE. Thinking outside the nucleus: mitochondrial DNA copy number in health and disease. Mitochondrion53, 214–223 (2020).
  • Riley JS , TaitSW. Mitochondrial DNA in inflammation and immunity. EMBO Rep.21(4), e49799 (2020).
  • Duarte-Hospital C , TêteA , BrialFet al. Mitochondrial dysfunction as a hallmark of environmental injury. Cells11(1), 110 (2021).
  • Helley MP , PinnellJ , SportelliC , TieuK. Mitochondria: a common target for genetic mutations and environmental toxicants in Parkinson’s disease. Front. Genet.8, 177 (2017).
  • Rath S , SharmaR , GuptaRet al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res.49(D1), D1541–D1547 (2021).
  • Ruiz-Pesini E , LottMT , ProcaccioVet al. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res.35(Suppl. 1), D823–D828 (2007).
  • Andrews RM , KubackaI , ChinneryPF , LightowlersRN , TurnbullDM , HowellN. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet.23(2), 147–147 (1999).
  • Nicholls TJ , MinczukM. In D-loop: 40 years of mitochondrial 7S DNA. Exp. Gerontol.56, 175–181 (2014).
  • Taylor RW , TurnbullDM. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet.6(5), 389–402 (2005).
  • Ro S , MaH-Y , ParkCet al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res.23(6), 759–774 (2013).
  • Doda JN , WrightCT , ClaytonDA. Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc. Natl Acad. Sci. USA78(10), 6116–6120 (1981).
  • Shadel GS , ClaytonDA. Mitochondrial DNA maintenance in vertebrates. Annu. Rev. Biochem.66(1), 409–435 (1997).
  • Mattick JS , MakuninIV. Non-coding RNA. Hum. Mol. Genet.15(Suppl. 1), R17–R29 (2006).
  • Angrand P-O , VenninC , LeBourhis X , AdriaenssensE. The role of long non-coding RNAs in genome formatting and expression. Front. Genet.6, (2015).
  • The ENCODE Project Consortium . An integrated encyclopedia of DNA elements in the human genome. Nature489(7414), 57–74 (2012).
  • Zhang P , WuW , ChenQ , ChenM. Non-coding RNAs and their integrated networks. J. Integr. Bioinform.16(3), 20190027 (2019).
  • Gusic M , ProkischH. ncRNAs: new players in mitochondrial health and disease?Front. Genet.11, 95 (2020).
  • Zhao W , HeX , HoadleyKA , ParkerJS , HayesDN , PerouCM. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics15(1), 419 (2014).
  • Pan T . Modifications and functional genomics of human transfer RNA. Cell Res.28(4), 395–404 (2018).
  • Liu B , CaoJ , WangX , GuoC , LiuY , WangT. Deciphering the tRNA-derived small RNAs: origin, development, and future. Cell Death Dis.13(1), 24 (2021).
  • Keam S , HutvagnerG. tRNA-derived fragments (tRFs): emerging new roles for an ancient RNA in the regulation of gene expression. Life5(4), 1638–1651 (2015).
  • Mattick JS , AmaralPP , CarninciPet al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol.24(6), 430–447 (2023).
  • Ender C , MeisterG. Argonaute proteins at a glance. J. Cell Sci.123(11), 1819–1823 (2010).
  • Greene J , BairdA-M , BradyLet al. Circular RNAs: biogenesis, function and role in human diseases. Front. Mol. Biosci.4, 38 (2017).
  • Zhou W-Y , CaiZ-R , LiuJ , WangD-S , JuH-Q , XuR-H. Circular RNA: metabolism, functions and interactions with proteins. Mol. Cancer19(1), 172 (2020).
  • Thai P , StattS , ChenCH , LiangE , CampbellC , WuR. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am. J. Respir. Cell Mol. Biol.49(2), 204–211 (2013).
  • Miguel V , LamasS , Espinosa-DiezC. Role of non-coding-RNAs in response to environmental stressors and consequences on human health. Redox Biol.37, 101580 (2020).
  • Santarelli L , GaetaniS , MonacoFet al. Four-miRNA signature to identify asbestos-related lung malignancies. Cancer Epidemiol. Biomarkers Prev.28(1), 119–126 (2019).
  • Sartor GC , StLaurent G , WahlestedtC. The emerging role of non-coding RNAs in drug addiction. Front. Genet.3, (2012).
  • Yang Q , ChenY , GuoRet al. Interaction of ncRNA and epigenetic modifications in gastric cancer: focus on histone modification. Front. Oncol.11, 822745 (2022).
  • Klinge C . Non-coding RNAs in breast cancer: intracellular and intercellular communication. ncRNA4(4), 40 (2018).
  • Fernandes J , AcuñaS , AokiJ , Floeter-WinterL , MuxelS. Long non-coding RNAs in the regulation of gene expression: physiology and disease. ncRNA5(1), 17 (2019).
  • Zhou S , JinJ , WangJet al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin.39(7), 1073–1084 (2018).
  • Kumarswamy R , BautersC , VolkmannIet al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ. Res.114(10), 1569–1575 (2014).
  • Cao J , CowanDB , WangD-Z. tRNA-derived small RNAs and their potential roles in cardiac hypertrophy. Front. Pharmacol.11, 572941 (2020).
  • Gupta RA , ShahN , WangKCet al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature464(7291), 1071–1076 (2010).
  • Esteller M . Non-coding RNAs in human disease. Nat. Rev. Genet.12(12), 861–874 (2011).
  • Delás MJ , HannonGJ. lncRNAs in development and disease: from functions to mechanisms. Open Biol.7(7), 170121 (2017).
  • Kristensen LS , JakobsenT , HagerH , KjemsJ. The emerging roles of circRNAs in cancer and oncology. Nat. Rev. Clin. Oncol.19(3), 188–206 (2022).
  • Zhang M , HeP , BianZ. Long noncoding RNAs in neurodegenerative diseases: pathogenesis and potential implications as clinical biomarkers. Front. Mol. Neurosci.14, 685143 (2021).
  • Salta E , DeStrooper B. Noncoding RNAs in neurodegeneration. Nat. Rev. Neurosci.18(10), 627–640 (2017).
  • Wu Y-Y , KuoH-C. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J. Biomed. Sci.27(1), 49 (2020).
  • Greene CM . ncRNAs as biomarkers and therapeutic targets for bronchiectasis. Epigenomics15(15), 2023).
  • Chi T , LinJ , WangM , ZhaoY , LiaoZ , WeiP. Non-coding RNA as biomarkers for type 2 diabetes development and clinical management. Front. Endocrinol.12, 630032 (2021).
  • Dehghanbanadaki H , AsiliP , HajiGhadery Aet al. Diagnostic accuracy of circular RNA for diabetes mellitus: a systematic review and diagnostic meta-analysis. BMC Med. Genomics16(1), 48 (2023).
  • Pordzik J , JakubikD , Jarosz-PopekJet al. Significance of circulating microRNAs in diabetes mellitus type 2 and platelet reactivity: bioinformatic analysis and review. Cardiovasc. Diabetol.18(1), 113 (2019).
  • Drury RE , O’ConnorD , PollardAJ. The clinical application of microRNAs in infectious disease. Front. Immunol.8, 1182 (2017).
  • Tribolet L , KerrE , CowledCet al. MicroRNA biomarkers for infectious diseases: from basic research to biosensing. Front. Microbiol.11, 1197 (2020).
  • Liu W , DingC. Roles of lncRNAs in viral infections. Front. Cell. Infect. Microbiol.7, 205 (2017).
  • Rackham O , ShearwoodA-MJ , MercerTR , DaviesSMK , MattickJS , FilipovskaA. Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA17(12), 2085–2093 (2011).
  • Kumar J , MohammadG , AlkaK , KowluruRA. Mitochondrial genome-encoded long noncoding RNA and mitochondrial stability in diabetic retinopathy. Diabetes72(4), 520–531 (2023).
  • Gao S , TianX , ChangHet al. Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data. Mitochondrion38, 41–47 (2018).
  • Duroux-Richard I , ApparaillyF , KhouryM. Mitochondrial microRNAs contribute to macrophage immune functions including differentiation, polarization, and activation. Front. Physiol.12, 738140 (2021).
  • Bandiera S , RübergS , GirardMet al. Nuclear outsourcing of RNA interference components to human mitochondria. PLoS ONE6(6), e20746 (2011).
  • Kuthethur R , ShuklaV , MallyaSet al. Expression analysis and function of mitochondrial genome-encoded microRNAs. J. Cell Sci.135(8), jcs258937 (2022).
  • Larriba E , RialE , DelMazo J. The landscape of mitochondrial small non-coding RNAs in the PGCs of male mice, spermatogonia, gametes and in zygotes. BMC Genomics19(1), 634 (2018).
  • Liu X , WangX , LiJet al. Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Sci. China Life Sci.63(10), 1429–1449 (2020).
  • Kim S , LeeK , ChoiYSet al. Mitochondrial double-stranded RNAs govern the stress response in chondrocytes to promote osteoarthritis development. Cell Rep.40(6), 111178 (2022).
  • Dhir A , DhirS , BorowskiLSet al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature560(7717), 238–242 (2018).
  • Maniataki E , MourelatosZ. Human mitochondrial tRNAMet is exported to the cytoplasm and associates with the Argonaute 2 protein. RNA11(6), 849–852 (2005).
  • Zhu X , XieX , DasHet al. Non-coding 7S RNA inhibits transcription via mitochondrial RNA polymerase dimerization. Cell185(13), 2309–2323.e24 (2022).
  • Liang H , LiuJ , SuS , ZhaoQ. Mitochondrial noncoding RNAs: new wine in an old bottle. RNA Biol.18(12), 2168–2182 (2021).
  • Dong Y , YoshitomiT , HuJ-F , CuiJ. Long noncoding RNAs coordinate functions between mitochondria and the nucleus. Epigenetics Chromatin10(1), 41 (2017).
  • Liu X , ShanG. Mitochondria encoded non-coding RNAs in cell physiology. Front. Cell Dev. Biol.9, 713729 (2021).
  • Zhao Y , ZhouL , LiHet al. Nuclear-encoded lncRNA MALAT1 epigenetically controls metabolic reprogramming in HCC cells through the mitophagy pathway. Mol. Ther. Nucleic Acids23, 264–276 (2021).
  • Gong W , XuJ , WangYet al. Nuclear genome-derived circular RNA circPUM1 localizes in mitochondria and regulates oxidative phosphorylation in esophageal squamous cell carcinoma. Sig. Transduct. Target. Ther.7(1), 40 (2022).
  • Villegas J , BurzioV , VillotaCet al. Expression of a novel non-coding mitochondrial RNA in human proliferating cells. Nucleic Acids Res.35(21), 7336–7347 (2007).
  • Villota C , CamposA , VidaurreSet al. Expression of mitochondrial non-coding RNAs (ncRNAs) Is modulated by high risk human papillomavirus (HPV) oncogenes. J. Biol. Chem.287(25), 21303–21315 (2012).
  • Landerer E , VillegasJ , BurzioVAet al. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells. Cell Oncol.34(4), 297–305 (2011).
  • Burzio VA , VillotaC , VillegasJet al. Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells. Proc. Natl Acad. Sci. USA106(23), 9430–9434 (2009).
  • Vidaurre S , FitzpatrickC , BurzioVAet al. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy. J. Biol. Chem.289(39), 27182–27198 (2014).
  • Fitzpatrick C , BendekMF , BrionesMet al. Mitochondrial ncRNA targeting induces cell cycle arrest and tumor growth inhibition of MDA-MB-231 breast cancer cells through reduction of key cell cycle progression factors. Cell Death Dis.10(6), 423 (2019).
  • Lobos-González L , SilvaV , ArayaMet al. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors. Oncotarget7(36), 58331–58350 (2016).
  • Blumental-Perry A , JobavaR , BedermanIet al. Retrograde signaling by a mtDNA-encoded non-coding RNA preserves mitochondrial bioenergetics. Commun. Biol.3(1), 626 (2020).
  • Mathuram TL , TownsendDM , LynchVJet al. A synthetic small RNA homologous to the D-Loop transcript of mtDNA enhances mitochondrial bioenergetics. Front. Physiol.13, 772313 (2022).
  • Höck J , MeisterG. The Argonaute protein family. Genome Biol.9(2), 210 (2008).
  • Müller M , FaziF , CiaudoC. Argonaute proteins: from structure to function in development and pathological cell fate determination. Front. Cell Dev. Biol.7, 360 (2020).
  • Huang V , LiL-C. Demystifying the nuclear function of Argonaute proteins. RNA Biol.11(1), 18–24 (2014).
  • Meseguer S . MicroRNAs and tRNA-derived small fragments: key messengers in nuclear–mitochondrial communication. Front. Mol. Biosci.8, 643575 (2021).
  • Shen Y , YuX , ZhuL , LiT , YanZ , GuoJ. Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases. J. Mol. Med.96(11), 1167–1176 (2018).
  • Anderson P , IvanovP. tRNA fragments in human health and disease. FEBS Lett.588(23), 4297–4304 (2014).
  • Garcia-Silva MR , Cabrera-CabreraF , GüidaMC , CayotaA. Hints of tRNA-derived small RNAs role in RNA silencing mechanisms. Genes3(4), 603–614 (2012).
  • Kuscu C , KumarP , KiranM , SuZ , MalikA , DuttaA. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA24(8), 1093–1105 (2018).
  • Burroughs AM , AndoY , de HoonMLet al. Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol.8(1), 158–177 (2011).
  • Maute RL , SchneiderC , SumazinPet al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc. Natl Acad. Sci. USA110(4), 1404–1409 (2013).
  • Meseguer S , RubioM-P. mt tRFs, new players in MELAS disease. Front. Physiol.13, 800171 (2022).
  • Chen YG , HurS. Cellular origins of dsRNA, their recognition and consequences. Nat. Rev. Mol. Cell Biol.23(4), 286–301 (2022).
  • Young PG , AttardiG. Characterization of double-stranded RNA from HeLa cell mitochondria. Biochem. Biophys. Res. Commun.65(4), 1201–1207 (1975).
  • Aloni Y , AttardiG. Symmetrical in vivo transcription of mitochondrial DNA in HeLa cells. Proc. Natl Acad. Sci. USA68(8), 1757–1761 (1971).
  • Cameron TA , MatzLM , DeLay NR. Polynucleotide phosphorylase: not merely an RNase but a pivotal post-transcriptional regulator. PLoS Genet.14(10), e1007654 (2018).
  • Kim S , KuY , KuJ , KimY. Evidence of aberrant immune response by endogenous double-stranded RNAs: attack from within. BioEssays41(7), 1900023 (2019).
  • Lee J-H , ShimY-R , SeoWet al. Mitochondrial double-stranded RNA in exosome promotes interleukin-17 production through toll-like receptor 3 in alcohol-associated liver injury. Hepatology72(2), 609–625 (2020).
  • Levin DH , PetryshynR , LondonIM. Characterization of double-stranded-RNA-activated kinase that phosphorylates α subunit of eukaryotic initiation factor 2 (eIF-2α) in reticulocyte lysates. Proc. Natl Acad. Sci. USA77(2), 832–836 (1980).
  • Tam CL , HofbauerM , TowleCA. Requirement for protein kinase R in interleukin-1α-stimulated effects in cartilage. Biochem. Pharmacol.74(11), 1636–1641 (2007).
  • Burnett SB , VaughnLS , SharmaN , KulkarniR , PatelRC. Dystonia 16 (DYT16) mutations in PACT cause dysregulated PKR activation and eIF2α signaling leading to a compromised stress response. Neurobiol. Dis.146, 105135 (2020).
  • Hugon J , Mouton-LigerF , DumurgierJ , PaquetC. PKR involvement in Alzheimer’s disease. Alzheimers Res. Ther.9(1), 83 (2017).
  • Bando Y , OnukiR , KatayamaTet al. Double-strand RNA dependent protein kinase (PKR) is involved in the extrastriatal degeneration in Parkinson’s disease and Huntington’s disease. Neurochem. Int.46(1), 11–18 (2005).
  • Yan L , ZhangY , WangM , WangL , ZhangW , GeZ-R. Circulating LIPCAR is a potential biomarker of heart failure in patients post-acute myocardial infarction. Exp. Biol. Med. (Maywood)246(24), 2589–2594 (2021).
  • Zhang Z , GaoW , LongQ-Qet al. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci. Rep.7(1), 7491 (2017).
  • de Gonzalo-Calvo D , KennewegF , BangCet al. Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes. Sci. Rep.6(1), 37354 (2016).
  • Sharma B , JohnS. Nonalcoholic steatohepatitis (NASH). In: StatPearls.StatPearls Publishing, FL, USA (2023).
  • Yan L , ChenYG. One ring to rule them all: mitochondrial circular RNAs control mitochondrial function. Cell183(1), 11–13 (2020).
  • Maghsoudnia N , BaradaranEftekhari R , NaderiSohi Aet al. Mitochondrial delivery of microRNA mimic let-7b to NSCLC cells by PAMAM-based nanoparticles. J. Drug Target.28(7–8), 818–830 (2020).
  • Zhao Q , LiuJ , DengHet al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell183(1), 76–93.e22 (2020).
  • Rinaldi C , WoodMJA. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol.14(1), 9–21 (2018).
  • Muntoni F , WoodMJA. Targeting RNA to treat neuromuscular disease. Nat. Rev. Drug Discov.10(8), 621–637 (2011).
  • Shah MY , FerrajoliA , SoodAK , Lopez-BeresteinG , CalinGA. microRNA therapeutics in cancer – an emerging concept. EBioMedicine12, 34–42 (2016).
  • Garzon R , MarcucciG , CroceCM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat. Rev. Drug Discov.9(10), 775–789 (2010).
  • Li M , DingX , ZhangYet al. Antisense oligonucleotides targeting lncRNA AC104041.1 induces antitumor activity through Wnt2B/β-catenin pathway in head and neck squamous cell carcinomas. Cell Death Dis.11(8), 672 (2020).
  • Zhou T , KimY , MacLeodAR. Targeting long noncoding RNA with antisense oligonucleotide technology as cancer therapeutics. In: Long Non-Coding RNAs.FengY, ZhangL ( Eds). Springer New York, NY, USA, 199–213 (2016).
  • Ideue T , HinoK , KitaoS , YokoiT , HiroseT. Efficient oligonucleotide-mediated degradation of nuclear noncoding RNAs in mammalian cultured cells. RNA15(8), 1578–1587 (2009).
  • Egli M , ManoharanM. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res.51(6), 2529–2573 (2023).
  • Stein CA , CastanottoD. FDA-approved oligonucleotide therapies in 2017. Mol. Ther.25(5), 1069–1075 (2017).
  • Yamada Y , AkitaH , KamiyaHet al. MITO-Porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim. Biophys. Acta1778(2), 423–432 (2008).
  • Furukawa R , YamadaY , KawamuraE , HarashimaH. Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria. Biomaterials57, 107–115 (2015).
  • Kawamura E , HibinoM , HarashimaH , YamadaY. Targeted mitochondrial delivery of antisense RNA-containing nanoparticles by a MITO-Porter for safe and efficient mitochondrial gene silencing. Mitochondrion49, 178–188 (2019).
  • Kawamura E , MaruyamaM , AbeJet al. Validation of gene therapy for mutant mitochondria by delivering mitochondrial RNA using a MITO-Porter. Mol. Ther. Nucleic Acids20, 687–698 (2020).
  • Yamada Y , MaruyamaM , KitaT , UsamiS , KitajiriS , HarashimaH. The use of a MITO-Porter to deliver exogenous therapeutic RNA to a mitochondrial disease’s cell with a A1555G mutation in the mitochondrial 12S rRNA gene results in an increase in mitochondrial respiratory activity. Mitochondrion55, 134–144 (2020).
  • Lam JKW , ChowMYT , ZhangY , LeungSWS. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids4, e252 (2015).
  • Mocellin S , ProvenzanoM. RNA interference: learning gene knock-down from cell physiology. J. Transl. Med.2(1), 39 (2004).
  • Gao K , ChengM , ZuoXet al. Active RNA interference in mitochondria. Cell Res.31(2), 219–228 (2021).
  • Wei Y , LiZ , XuKet al. Mitochondrial base editor DdCBE causes substantial DNA off-target editing in nuclear genome of embryos. Cell Discov.8(1), 27 (2022).
  • Mok BY , de MoraesMH , ZengJet al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature583(7817), 631–637 (2020).
  • Chen X , LiangD , GuoJet al. DdCBE-mediated mitochondrial base editing in human 3PN embryos. Cell Discov.8(1), 8 (2022).
  • Guo J , ZhangX , ChenXet al. Precision modeling of mitochondrial diseases in zebrafish via DdCBE-mediated mtDNA base editing. Cell Discov.7(1), 78 (2021).
  • Qi X , ChenX , GuoJet al. Precision modeling of mitochondrial disease in rats via DdCBE-mediated mtDNA editing. Cell Discov.7(1), 95 (2021).
  • Guo J , ChenX , LiuZet al. DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome. Mol. Ther. Nucleic Acids27, 73–80 (2022).
  • Lim K , ChoS-I , KimJ-S. Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. Nat. Commun.13(1), 366 (2022).
  • Cho S-I , LeeS , MokYGet al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell185(10), 1764–1776.e12 (2022).
  • Yi Z , ZhangX , TangWet al. Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nat. Biotechnol. doi: 10.1038/s41587-023-01791-y2023) ( Online).
  • Murphy MP , HartleyRC. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug Discov.17(12), 865–886 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.