74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

RUNX1 Methylation as a Cancer Biomarker in Differentiating Papillary Thyroid Cancer from Benign Thyroid Nodules

, , , , , , & ORCID Icon show all
Pages 1257-1272 | Received 26 Sep 2023, Accepted 05 Dec 2023, Published online: 21 Dec 2023

References

  • Cabanillas ME , McFaddenDG, DuranteC. Thyroid cancer. Lancet388(10061), 2783–2795 (2016).
  • Solis-Pazmino P , Salazar-VegaJ, Lincango-NaranjoEet al. Thyroid cancer overdiagnosis and overtreatment: a cross-sectional study at a thyroid cancer referral center in Ecuador. BMC Cancer21(1), 42 (2021).
  • Roman BR , MorrisLG, DaviesL. The thyroid cancer epidemic, 2017 perspective. Curr. Opin. Endocrinol. Diabetes Obes.24(5), 332–336 (2017).
  • Kitahara CM , SosaJA. The changing incidence of thyroid cancer. Nat. Rev. Endocrinol.12(11), 646–653 (2016).
  • Kim J , GosnellJE, RomanSA. Geographic influences in the global rise of thyroid cancer. Nat. Rev. Endocrinol.16(1), 17–29 (2020).
  • Cao W , ChenHD, YuYW, LiN, ChenWQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin. Med. J. (Engl.)134(7), 783–791 (2021).
  • Todsen T , BennedbaekFN, KissK, HegedusL. Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules. Head Neck43(3), 1009–1013 (2021).
  • Cibas ES , AliSZ. The Bethesda system for reporting thyroid cytopathology. Thyroid19(11), 1159–1165 (2009).
  • Wong LQ , BalochZW. Analysis of the Bethesda system for reporting thyroid cytopathology and similar precursor thyroid cytopathology reporting schemes. Adv. Anat. Pathol.19(5), 313–319 (2012).
  • Godazandeh G , KashiZ, ZargarnatajSet al. Evaluation the relationship between thyroid nodule size with malignancy and accuracy of fine needle aspiration biopsy (FNAB). Acta Inform. Med.24(5), 347–350 (2016).
  • Cap J , RyskaA, RehorkovaPet al. Sensitivity and specificity of the fine needle aspiration biopsy of the thyroid: clinical point of view. Clin. Endocrinol. (Oxf.)51(4), 509–515 (1999).
  • Jiang C , GuJ. History and current state of pathology in China. Virchows Arch.463(4), 599–608 (2013).
  • Provenzano E , DriskellOJ, O’ConnorDJet al. The important role of the histopathologist in clinical trials: challenges and approaches to tackle them. Histopathology76(7), 942–949 (2020).
  • Livhits MJ , ZhuCY, KuoEJet al. Effectiveness of molecular testing techniques for diagnosis of indeterminate thyroid nodules: a randomized clinical trial. JAMA Oncol.7(1), 70–77 (2021).
  • Hu MI , WaguespackSG, DosiouCet al. Afirma genomic sequencing classifier and xpression atlas molecular findings in consecutive Bethesda III–VI thyroid nodules. J. Clin. Endocrinol. Metab.106(8), 2198–2207 (2021).
  • Klutstein M , NejmanD, GreenfieldR, CedarH. DNA methylation in cancer and aging. Cancer Res.76(12), 3446–3450 (2016).
  • Zafon C , GilJ, Perez-GonzalezB, JordaM. DNA methylation in thyroid cancer. Endocr. Relat. Cancer26(7), R415–R439 (2019).
  • Hoffman RM . Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim. Biophys. Acta738(1–2), 49–87 (1984).
  • Ragoussis J , ElvidgeGP, KaurK, ColellaS. Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry in genomics research. PLoS Genet.2(7), e100 (2006).
  • Koziolek M , Binczak-KuletaA, StepaniukMet al. Frequency assessment of BRAF mutation, KRas mutation, and RASSF1A methylation in nodular goitre based on fine-needle aspiration cytology specimens Ocena czestosci wystepowania mutacji genow BRAF, KRas oraz. Endokrynol. Pol.66(5), 384–393 (2015).
  • Khatami F , LarijaniB, HeshmatRet al. Hypermethylated RASSF1 and SLC5A8 promoters alongside BRAF(V600E) mutation as biomarkers for papillary thyroid carcinoma. J. Cell. Physiol.235(10), 6954–6968 (2020).
  • Lamartina L , GraniG, ArvatEet al. 8th edition of the AJCC/TNM staging system of thyroid cancer: what to expect (ITCO#2). Endocr. Relat. Cancer25(3), L7–L11 (2018).
  • Yang R , StockerS, SchottSet al. The association between breast cancer and S100P methylation in peripheral blood by multicenter case–control studies. Carcinogenesis38(3), 312–320 (2017).
  • Livak KJ , SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods25(4), 402–408 (2001).
  • Rodriguez-Rodero S , Delgado-AlvarezE, FernandezAFet al. Epigenetic alterations in endocrine-related cancer. Endocr. Relat. Cancer21(4), R319–R330 (2014).
  • Barros-Filho MC , DosReis MB, BeltramiCMet al. DNA methylation-based method to differentiate malignant from benign thyroid lesions. Thyroid29(9), 1244–1254 (2019).
  • Mevel R , DraperJE, LieALM, KouskoffV, LacaudG. RUNX transcription factors: orchestrators of development. Development146(17), dev148296 (2019).
  • Sood R , KamikuboY, LiuP. Role of RUNX1 in hematological malignancies. Blood129(15), 2070–2082 (2017).
  • Wang L , HuangG, ZhaoXet al. Post-translational modifications of Runx1 regulate its activity in the cell. Blood Cells Mol. Dis.43(1), 30–34 (2009).
  • Liu C , XuD, XueBet al. Upregulation of RUNX1 suppresses proliferation and migration through repressing VEGFA expression in hepatocellular carcinoma. Pathol. Oncol. Res.26(2), 1301–1311 (2020).
  • Zhuang M , GaoW, XuJ, WangP, ShuY. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochem. Biophys. Res. Commun.448(3), 315–322 (2014).
  • Kim Y , LeeBB, KimDet al. Clinicopathological significance of RUNX1 in non-small cell lung cancer. J. Clin. Med.9(6), 1694 (2020).
  • Planaguma J , GonzalezM, DollAet al. The up-regulation profiles of p21WAF1/CIP1 and RUNX1/AML1 correlate with myometrial infiltration in endometrioid endometrial carcinoma. Hum. Pathol.37(8), 1050–1057 (2006).
  • Tang CY , WuM, ZhaoDet al. Runx1 is a central regulator of osteogenesis for bone homeostasis by orchestrating BMP and WNT signaling pathways. PLoS Genet.17(1), e1009233 (2021).
  • Xu J , ZhengG, GuoHet al. Bioinformatics analysis of downstream circRNAs and miRNAs regulated by runt-related transcription factor 1 in papillary thyroid carcinoma. Gland Surg.11(5), 868–881 (2022).
  • Chu J , TaoL, YaoTet al. Circular RNA circRUNX1 promotes papillary thyroid cancer progression and metastasis by sponging miR-296-3p and regulating DDHD2 expression. Cell Death Dis.12(1), 112 (2021).
  • Zitti B , HofferE, ZhengWet al. Human skin-resident CD8(+) T cells require RUNX2 and RUNX3 for induction of cytotoxicity and expression of the integrin CD49a. Immunity56(6), 1285–1302 e1287 (2023).
  • Matsumura T , Nakamura-IshizuA, MuddineniSet al. Hematopoietic stem cells acquire survival advantage by loss of RUNX1 methylation identified in familial leukemia. Blood136(17), 1919–1932 (2020).
  • Gao L , ZhouF. Comprehensive analysis of RUNX and TGF-beta mediated regulation of immune cell infiltration in breast cancer. Front. Cell Dev. Biol.9, 730380 (2021).
  • Papanicolau-Sengos A , AldapeK. DNA methylation profiling: an emerging paradigm for cancer diagnosis. Annu. Rev. Pathol.17, 295–321 (2022).
  • Saghafinia S , MinaM, RiggiN, HanahanD, CirielloG. Pan-cancer landscape of aberrant DNA methylation across human tumors. Cell Rep.25(4), 1066–1080 e1068 (2018).
  • Han R , SunW, HuangJ, ShaoL, ZhangH. Sex-biased DNA methylation in papillary thyroid cancer. Biomark. Med.15(2), 109–120 (2021).
  • Boks MP , DerksEM, WeisenbergerDJet al. The relationship of DNA methylation with age, gender and genotype in twins and healthy controls. PLOS ONE4(8), e6767 (2009).
  • Zeng H , ChenW, ZhengRet al. Changing cancer survival in China during 2003–15: a pooled analysis of 17 population-based cancer registries. Lancet Glob. Health6(5), e555–e567 (2018).
  • La Vecchia C , MalvezziM, BosettiCet al. Thyroid cancer mortality and incidence: a global overview. Int. J. Cancer136(9), 2187–2195 (2015).
  • Kondakova EV , VershininaOS, LopatenkoMVet al. Sex-specific age-related changes in methylation of certain genes. Sovrem. Tekhnologii Med.13(3), 26–31 (2021).
  • Ulisse S , BaldiniE, LauroAet al. Papillary thyroid cancer prognosis: an evolving field. Cancers (Basel)13(21), 5567 (2021).
  • Shaha AR . TNM classification of thyroid carcinoma. World J. Surg.31(5), 879–887 (2007).
  • Xu H , ZhangY, WuHet al. High diagnostic accuracy of epigenetic imprinting biomarkers in thyroid nodules. J. Clin. Oncol.41(6), 1296–1306 (2023).
  • Ruiz EML , NiuT, ZerfaouiMet al. A novel gene panel for prediction of lymph-node metastasis and recurrence in patients with thyroid cancer. Surgery167(1), 73–79 (2020).
  • Ying T , WangX, YaoYet al. Integrative methylome and transcriptome characterization identifies SERINC2 as a tumor-driven gene for papillary thyroid carcinoma. Cancers (Basel)15(1), 243 (2022).
  • Krajewska J , KukulskaA, Oczko-WojciechowskaMet al. Early diagnosis of low-risk papillary thyroid cancer results rather in overtreatment than a better survival. Front. Endocrinol. (Lausanne)11, 571421 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.