45
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Twin Study: Genotype-Dependent Epigenetic Factors Affecting Free Thyroxine Levels in the Normal Range

, , , , , , & ORCID Icon show all
Pages 147-158 | Received 23 Oct 2023, Accepted 09 Jan 2024, Published online: 24 Jan 2024

References

  • Visser WE , Friesema EC , Visser TJ . Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol. Endocrinol. 25(1), 1–14 (2011).
  • Bianco AC , Kim BW . Deiodinases: implications of the local control of thyroid hormone action. J. Clin. Invest. 116(10), 2571–2579 (2006).
  • Hansen PS , Brix TH , Sørensen TI , Kyvik KO , Hegedüs L . Major genetic influence on the regulation of the pituitary–thyroid axis: a study of healthy Danish twins. J. Clin. Endocrinol. Metab. 89(3), 1181–1187 (2004).
  • Panicker V , Wilson SG , Spector TD et al. Heritability of serum TSH, free T4 and free T3 concentrations: a study of a large UK twin cohort. Clin. Endocrinol. 68(4), 652–659 (2008).
  • Kuś A , Chaker L , Teumer A , Peeters RP , Medici M . The genetic basis of thyroid function: novel findings and new approaches. J. Clin. Endocrinol. Metab. 105(6), doi: 10.1210/clinem/dgz225 (2020).
  • Smith ZD , Meissner A . DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14(3), 204–220 (2013).
  • Kulis M , Esteller M . DNA methylation and cancer. Adv. Genet. 70, 27–56 (2010).
  • Feil R , Fraga MF . Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 13(2), 97–109 (2012).
  • Pan Y , Liu G , Zhou F , Su B , Li Y . DNA methylation profiles in cancer diagnosis and therapeutics. Clin. Exp. Med. 18(1), 1–14 (2018).
  • Honda C , Watanabe M , Tomizawa R , Sakai N . Update on Osaka University Twin Registry: an overview of multidisciplinary research resources and Biobank at Osaka University Center for Twin Research. Twin Res. Hum. Genet. 22(6), 597–601 (2019).
  • Jones MJ , Islam SA , Edgar RD , Kobor MS . Adjusting for cell type composition in DNA methylation data using a regression-based approach. Methods Mol. Biol. 1589, 99–106 (2017).
  • Reinius LE , Acevedo N , Joerink M et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLOS ONE 7(7), e41361 (2012).
  • Taniguchi J , Masuda T , Iwatani Y et al. Rigorous evaluation of genetic and epigenetic effects on clinical laboratory measurements using Japanese monozygotic twins. Clin. Genet. 105(2), 159–172 (2023).
  • Bottani M , Aarsand AK , Banfi G et al. European Biological Variation Study (EuBIVAS): within- and between-subject biological variation estimates for serum thyroid biomarkers based on weekly samplings from 91 healthy participants. Clin. Chem. Lab. Med. 60(4), 523–532 (2022).
  • Popovic M , Matana A , Torlak V et al. Genome-wide meta-analysis identifies novel loci associated with free triiodothyronine and thyroid-stimulating hormone. J. Endocrinol. Invest. 42(10), 1171–1180 (2019).
  • Pasquale EB . The Eph family of receptors. Curr. Opin. Cell Biol. 9(5), 608–615 (1997).
  • Drescher U . The Eph family in the patterning of neural development. Curr. Biol. 7(12), R799–807 (1997).
  • Brückner K , Klein R . Signaling by Eph receptors and their ephrin ligands. Curr. Opin. Neurobiol. 8(3), 375–382 (1998).
  • O’leary DD , Wilkinson DG . Eph receptors and ephrins in neural development. Curr. Opin. Neurobiol. 9(1), 65–73 (1999).
  • Park I , Lee HS . EphB/ephrinB signaling in cell adhesion and migration. Mol. Cells 38(1), 14–19 (2015).
  • Wohlfahrt JG , Karagiannidis C , Kunzmann S et al. Ephrin-A1 suppresses Th2 cell activation and provides a regulatory link to lung epithelial cells. J. Immunol. 172(2), 843–850 (2004).
  • Kawano H , Katayama Y , Minagawa K , Shimoyama M , Henkemeyer M , Matsui T . A novel feedback mechanism by ephrin-B1/B2 in T-cell activation involves a concentration-dependent switch from costimulation to inhibition. Eur. J. Immunol. 42(6), 1562–1572 (2012).
  • Nguyen TM , Arthur A , Hayball JD , Gronthos S . EphB and ephrin-B interactions mediate human mesenchymal stem cell suppression of activated T-cells. Stem Cells Dev. 22(20), 2751–2764 (2013).
  • Hodkinson CF , Simpson EE , Beattie JH et al. Preliminary evidence of immune function modulation by thyroid hormones in healthy men and women aged 55–70 years. J. Endocrinol. 202(1), 55–63 (2009).
  • Blazev R , Carl CS , Ng YK et al. Phosphoproteomics of three exercise modalities identifies canonical signaling and C18ORF25 as an AMPK substrate regulating skeletal muscle function. Cell Metab. 34(10), 1561–1577.e1569 (2022).
  • Pasquini LA , Marta CB , Adamo AM , Pasquini JM , Soto EF . Relationship between the ubiquitin-dependent pathway and apoptosis in different cells of the central nervous system: effect of thyroid hormones. Neurochem. Res. 25(5), 627–635 (2000).
  • Barbi J , Pardoll DM , Pan F . Ubiquitin-dependent regulation of Foxp3 and Treg function. Immunol. Rev. 266(1), 27–45 (2015).
  • Harbour JW , Luo RX , Dei Santi A , Postigo AA , Dean DC . Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98(6), 859–869 (1999).
  • Xie B , Tan G , Ren J et al. RB1 is an immune-related prognostic biomarker for ovarian cancer. Front. Oncol. 12, 830908 (2022).
  • Lagou V , Garcia-Perez JE , Smets I et al. Genetic architecture of adaptive immune system identifies key immune regulators. Cell Rep. 25(3), 798–810.e796 (2018).
  • Zhang Y , Li Z , Chen M et al. lncRNA TCL6 correlates with immune cell infiltration and indicates worse survival in breast cancer. Breast Cancer 27(4), 573–585 (2020).
  • Ha H , Debnath B , Neamati N . Role of the CXCL8–CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 7(6), 1543–1588 (2017).
  • Cui S , Qiao L , Yu S et al. The antagonist of CXCR1 and CXCR2 protects db/db mice from metabolic diseases through modulating inflammation. Am. J. Physiol. Endocrinol. Metab. 317(6), E1205–e1217 (2019).
  • Li L , Yee C , Beavo JA . CD3- and CD28-dependent induction of PDE7 required for T cell activation. Science 283(5403), 848–851 (1999).
  • Dubiel W , Chaithongyot S , Dubiel D , Naumann M . The COP9 signalosome: a multi-DUB complex. Biomolecules 10(7), (2020).
  • Tomer Y , Hasham A , Davies TF et al. Fine mapping of loci linked to autoimmune thyroid disease identifies novel susceptibility genes. J. Clin. Endocrinol. Metab. 98(1), E144–152 (2013).
  • Lafontaine N , Campbell PJ , Castillo-Fernandez JE et al. Epigenome-wide association study of thyroid function traits identifies novel associations of fT3 With KLF9 and DOT1L . J. Clin. Endocrinol. Metab. 106(5), e2191–e2202 (2021).
  • Weihs A , Chaker L , Martin TC et al. Epigenome-wide association study reveals CpG sites associated with thyroid function and regulatory effects on KLF9 . Thyroid 33(3), 301–311 (2023).
  • International Hapmap C . The International HapMap Project. Nature 426(6968), 789–796 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.