103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fatty Acid Metabolism-Related lncRNA Prognostic Signature for Serous Ovarian Carcinoma

ORCID Icon, , , , , , , , ORCID Icon, , & ORCID Icon show all
Pages 309-329 | Received 04 Nov 2023, Accepted 25 Jan 2024, Published online: 15 Feb 2024

References

  • Zheng A , Wei Y , Zhao Y , Zhang T , Ma X . The role of cancer-associated mesothelial cells in the progression and therapy of ovarian cancer. Front. Immunol. 13, 1013506 (2022).
  • Barnes BM , Nelson L , Tighe A et al. Distinct transcriptional programs stratify ovarian cancer cell lines into the five major histological subtypes. Genome Med. 13(1), 140 (2021).
  • Lu X , Ji C , Jiang L et al. Tumour microenvironment-based molecular profiling reveals ideal candidates for high-grade serous ovarian cancer immunotherapy. Cell Prolif. 54(3), e12979 (2021).
  • Gong J , Chehrazi-Raffle A , Reddi S , Salgia R . Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J. Immunother. Cancer 6(1), 8 (2018).
  • Galon J , Bruni D . Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18(3), 197–218 (2019).
  • Yang C , Xia BR , Zhang ZC , Zhang YJ , Lou G , Jin WL . Immunotherapy for ovarian cancer: adjuvant, combination, and neoadjuvant. Front. Immunol. 11, 577869 (2020).
  • Angell H , Galon J . From the immune contexture to the Immunoscore: the role of prognostic and predictive immune markers in cancer. Curr. Opin. Immunol. 25(2), 261–267 (2013).
  • James NE , Woodman M , Ribeiro JR . Prognostic immunologic signatures in epithelial ovarian cancer. Oncogene 41(10), 1389–1396 (2022).
  • Zhao H , Gu S , Bao S et al. Mechanistically derived patient-level framework for precision medicine identifies a personalized immune prognostic signature in high-grade serous ovarian cancer. Brief. Bioinform. 22(3), bbaa069 (2021).
  • Karagoz K , Mehta GA , Khella CA , Khanna P , Gatza ML . Integrative proteogenomic analyses of human tumours identifies ADNP as a novel oncogenic mediator of cell cycle progression in high-grade serous ovarian cancer with poor prognosis. EBioMedicine 50, 191–202 (2019).
  • Sun J , Yan C , Xu D et al. Immuno-genomic characterisation of high-grade serous ovarian cancer reveals immune evasion mechanisms and identifies an immunological subtype with a favourable prognosis and improved therapeutic efficacy. Br. J. Cancer 126(11), 1570–1580 (2022).
  • Yan C , Li K , Meng F et al. Integrated immunogenomic analysis of single-cell and bulk tissue transcriptome profiling unravels a macrophage activation paradigm associated with immunologically and clinically distinct behaviors in ovarian cancer. J. Adv. Res. 44, 149–160 (2023).
  • Reilly NA , Lutgens E , Kuiper J , Heijmans BT , Wouter Jukema J . Effects of fatty acids on T cell function: role in atherosclerosis. Nat. Rev. Cardiol. 18(12), 824–837 (2021).
  • Huang L , Gao L , Chen C . Role of medium-chain fatty acids in healthy metabolism: a clinical perspective. Trends Endocrinol. Metab. 32(6), 351–366 (2021).
  • Gimple RC , Kidwell RL , Kim LJY et al. Glioma stem cell-specific superenhancer promotes polyunsaturated fatty-acid synthesis to support EGFR signaling. Cancer Discov. 9(9), 1248–1267 (2019).
  • Qu YY , Zhao R , Zhang HL et al. Inactivation of the AMPK-GATA3-ECHS1 pathway induces fatty acid synthesis that promotes clear cell renal cell carcinoma growth. Cancer Res. 80(2), 319–333 (2020).
  • Zhu J , Wu G , Song L et al. NKX2–8 deletion-induced reprogramming of fatty acid metabolism confers chemoresistance in epithelial ovarian cancer. EBioMedicine 43, 238–252 (2019).
  • Yoon H , Lee S . Fatty acid metabolism in ovarian cancer: therapeutic implications. Int. J. Mol. Sci. 23(4), 2170 (2022).
  • Xuan Y , Wang H , Yung MM et al. SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic activity and redox-driven ferroptosis in ascites-derived ovarian cancer cells. Theranostics 12(7), 3534–3552 (2022).
  • Cao T , Dong J , Huang J , Tang Z , Shen H . Identification of fatty acid signature to predict prognosis and guide clinical therapy in patients with ovarian cancer. Front. Oncol. 12, 979565 (2022).
  • Peck B , Schulze A . Lipid metabolism at the nexus of diet and tumor microenvironment. Trends Cancer 5(11), 693–703 (2019).
  • He Q , Yang C , Xiang Z et al. LINC00924-induced fatty acid metabolic reprogramming facilitates gastric cancer peritoneal metastasis via hnRNPC-regulated alternative splicing of Mnk2 . Cell Death Dis. 13(11), 987 (2022).
  • Jia Y , Yan Q , Zheng Y et al. Long non-coding RNA NEAT1 mediated RPRD1B stability facilitates fatty acid metabolism and lymph node metastasis via c-Jun/c-Fos/SREBP1 axis in gastric cancer. J. Exp. Clin. Cancer Res. 41(1), 287 (2022).
  • Chang CY , Yang L , Tse J et al. Genetic variations in UCA1, a lncRNA functioning as a miRNA sponge, determine endometriosis development and the potential associated infertility via regulating lipogenesis. PLOS ONE 17(7), e0271616 (2022).
  • Shang C , Wang W , Liao Y et al. LNMICC promotes nodal metastasis of cervical cancer by reprogramming fatty acid metabolism. Cancer Res. 78(4), 877–890 (2018).
  • Lang X , Huang C , Cui H . Prognosis analysis and validation of fatty acid metabolism-related lncRNAs and tumor immune microenvironment in cervical cancer. J. Immunol. Res. 2022, 4954457 (2022).
  • Wang H , Cui J , Yu J , Huang J , Li M . Identification of fatty acid metabolism-related lncRNAs as biomarkers for clinical prognosis and immunotherapy response in patients with lung adenocarcinoma. Front. Genet. 13, 855940 (2022).
  • Chen E , Yi J , Jiang J et al. Identification and validation of a fatty acid metabolism-related lncRNA signature as a predictor for prognosis and immunotherapy in patients with liver cancer. BMC Cancer 22(1), 1037 (2022).
  • Xu F , Huang XL , Li YY , Chen YS , Lin L . m6A-related lncRNAs are potential biomarkers for predicting prognoses and immune responses in patients with LUAD. Mol. Ther. Nucleic Acids 24, 780–791 (2021).
  • Ye LL , Pan K , Fang S et al. Four types of RNA modification writer-related lncRNAs are effective predictors of prognosis and immunotherapy response in serous ovarian carcinoma. Front. Immunol. 13, 863484 (2022).
  • Keum N , Giovannucci E . Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 16(12), 713–732 (2019).
  • Zhang Z , Zhang C , Yang Z et al. m6A regulators as predictive biomarkers for chemotherapy benefit and potential therapeutic targets for overcoming chemotherapy resistance in small-cell lung cancer. J. Hematol. Oncol. 14(1), 190 (2021).
  • Subramanian A , Tamayo P , Mootha VK et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102(43), 15545–15550 (2005).
  • Hanzelmann S , Castelo R , Guinney J . GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013).
  • Aran D , Hu Z , Butte AJ . xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 18(1), 220 (2017).
  • Becht E , Giraldo NA , Lacroix L et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17(1), 218 (2016).
  • Newman AM , Liu CL , Green MR et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12(5), 453–457 (2015).
  • Maeser D , Gruener RF , Huang RS . oncoPredict: an R package for predicting or cancer patient drug response and biomarkers from cell line screening data. Brief. Bioinform. 22(6), bbab260 (2021).
  • Wang C , Zhang CX , Yang SM , Xiang JD , Zhou DM , Xi XW . Identification and validation of m5c-related lncRNA risk model for ovarian cancer. J. Ovarian Res. 16(1), 96 (2023).
  • Geng R , Chen T , Zhong ZH , Ni SM , Bai JL , Liu JH . The m6A-related long noncoding RNA signature predicts prognosis and indicates tumor immune infiltration in ovarian cancer. Cancers 14(16), 4056 (2022).
  • Zheng JF , Guo JL , Cao BB , Zhou Y , Tong JY . Identification and validation of lncRNAs involved in m6A regulation for patients with ovarian cancer. Cancer Cell Int. 21(1), 363 (2021).
  • Nie X , Tan JC . N6-methyladenosine-related lncRNAs is a potential marker for predicting prognosis and immunotherapy in ovarian cancer. Hereditas 159(1), 17 (2022).
  • Hu XQ , Zhang XC , Li ST , Hua T . Construction and validation of a histone acetylation-related lncRNA prognosis signature for ovarian cancer. Front. Genet. 13, 934246 (2022).
  • Yang SY , J, i J , Wang M , Nie JF , Wang SJ . Construction of ovarian cancer prognostic model based on the investigation of ferroptosis-related lncRNA. Biomolecules 13(2), 306 (2023).
  • Wang KL , Mei SS , Cai MC et al. Ferroptosis-related long noncoding RNAs as prognostic biomarkers for ovarian cancer. Front. Oncol. 12, 888699 (2022).
  • Zheng JF , Guo JL , Wang YH , Zheng YL , Zhang K , Tong JY . Bioinformatic analyses of the ferroptosis-related lncRNAs signature for ovarian cancer. Front. Mol. Biosci. 8, 735871 (2022).
  • Gao J , Pang XA , Ren F , Zhu LC . Identification of a ferroptosis-related long non-coding RNA signature for prognosis prediction of ovarian cancer. Carcinogenesis 44(1), 80–92 (2023).
  • Wang YC , Liang Q , Xu L et al. Cuproptosis-related lncRNAs ovarian cancer: multi-omics analysis of molecular mechanisms and potential therapeutic targets. Environ. Toxicol. doi: 10.1002/tox.24067 (2023) ( Epub ahead of print).
  • Liu L , Wang Q , Zhou JY , Zhang B . Developing four cuproptosis-related lncRNAs signature to predict prognosis and immune activity in ovarian cancer. J. Ovarian Res. 16(1), 88 (2023).
  • Li Y , Wang J , Wang F , Gao CZ , Cao YY , Wang JH . Development and verification of an autophagy-related lncRNA signature to predict clinical outcomes and therapeutic responses in ovarian cancer. Front. Med. 8, 715250 (2021).
  • Wang XF , Dai CY , Ye MQ , Wang JY , Lin WZ , Li RM . Prognostic value of an autophagy-related long-noncoding-RNA signature for endometrial cancer. Aging 13(4), 5104–5119 (2021).
  • Zhang ZY , Xu ZJ , Yan YL . Role of a pyroptosis-related lncRNA signature in risk stratification and immunotherapy of ovarian cancer. Front. Med. 8, 793515 (2022).
  • He YB , Fang LW , Hu D et al. Necroptosis-associated long noncoding RNAs can predict prognosis and differentiate between cold and hot tumors in ovarian cancer. Front. Oncol. 12, 999654 (2022).
  • Chen L , Gao WJ , Lin L et al. A methylation- and immune-related lncRNA signature to predict ovarian cancer outcome and uncover mechanisms of chemoresistance. J. Ovarian Res. 16(1), (2023).
  • Feng J , Yu YP , Yin W , Qian SM . Development and verification of a 7-lncRNA prognostic model based on tumor immunity for patients with ovarian cancer. J. Ovarian Res. 16(1), (2023).
  • Li H , Liu ZY , Chen YC , Zhang XY , Wu NYY , Wang J . Identification and validation of an immune-related lncRNAs signature to predict the overall survival of ovarian cancer. Front. Oncol. 12 (2022).
  • Pan X , Bi FF . A potential immune-related long non-coding RNA prognostic signature for ovarian cancer. Front. Genet. 12, 694009 (2021).
  • Sun XY , Li S , Lv XM et al. Immune-related long non-coding RNA constructs a prognostic signature of ovarian cancer. Biol. Proced. Online 23(1), 24 (2021).
  • Peng Y , Wang H , Huang Q , Wu JJ , Zhang MJ . A prognostic model based on immune-related long noncoding RNAs for patients with epithelial ovarian cancer. J. Ovarian Res. 15(1), 8 (2022).
  • Wang J , Zhang XC , Zheng F , Yang Q , Bi FF . Mitophagy-related long non-coding RNA signature predicts prognosis and drug response in ovarian cancer. J. Ovarian Res. 16(1), 177 (2023).
  • Zheng JF , Guo JL , Zhu LL , Zhou Y , Tong JY . Comprehensive analyses of glycolysis-related lncRNAs for ovarian cancer patients. J. Ovarian Res. 14(1), 124 (2021).
  • Hua T , Zhang XC , Wang W , Tian YJ , Chen SB . Deciphering the expression patterns of homologous recombination-related lncRNAs identifies new molecular subtypes and emerging therapeutic opportunities in epithelial ovarian cancer. Front. Genet. 13, 901424 (2022).
  • Guo QY , He Y , Sun LY et al. Identification of potential prognostic TF-associated lncRNAs for predicting survival in ovarian cancer. J. Cell. Mol. Med. 23(3), 1840–1851 (2019).
  • Xu L , Zhu S , Lan Y et al. Revealing the contribution of somatic gene mutations to shaping tumor immune microenvironment. Brief. Bioinform. 23(3), bbac064 (2022).
  • Matsuda T , Leisegang M , Park JH et al. Induction of neoantigen-specific cytotoxic T cells and construction of T-cell receptor-engineered T cells for ovarian cancer. Clin. Cancer Res. 24(21), 5357–5367 (2018).
  • Lang F , Schrors B , Lower M , Tureci O , Sahin U . Identification of neoantigens for individualized therapeutic cancer vaccines. Nat. Rev. Drug Discov. 21(4), 261–282 (2022).
  • Yang W , Soares J , Greninger P et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41(Database issue), D955–961 (2013).
  • Lheureux S , Braunstein M , Oza AM . Epithelial ovarian cancer: evolution of management in the era of precision medicine. CA Cancer J. Clin. 69(4), 280–304 (2019).
  • Want MY , Lugade AA , Battaglia S , Odunsi K . Nature of tumour rejection antigens in ovarian cancer. Immunology 155(2), 202–210 (2018).
  • Kurnit KC , Fleming GF , Lengyel E . Updates and new options in advanced epithelial ovarian cancer treatment. Obstet. Gynecol. 137(1), 108–121 (2021).
  • Kuroki L , Guntupalli SR . Treatment of epithelial ovarian cancer. BMJ 371, m3773 (2020).
  • Ray-Coquard I , Pautier P , Pignata S et al. Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. N. Engl. J. Med. 381(25), 2416–2428 (2019).
  • Gonzalez-Martin A , Pothuri B , Vergote I et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 381(25), 2391–2402 (2019).
  • Pujade-Lauraine E , Fujiwara K , Ledermann JA et al. Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study. Lancet Oncol. 22(7), 1034–1046 (2021).
  • Vivot A , Crequit P , Porcher R . Use of late-life expectancy for assessing the long-term benefit of immune checkpoint inhibitors. J. Natl Cancer Inst. 111(5), 519–521 (2019).
  • Lheureux S , Gourley C , Vergote I , Oza AM . Epithelial ovarian cancer. Lancet 393(10177), 1240–1253 (2019).
  • He W , Liang B , Wang C et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene 38(23), 4637–4654 (2019).
  • Cui M , Xiao Z , Wang Y et al. Long noncoding RNA HULC modulates abnormal lipid metabolism in hepatoma cells through an miR-9-mediated RXRA signaling pathway. Cancer Res. 75(5), 846–857 (2015).
  • Fang H , Li H , Zhang H et al. Short-chain L-3-hydroxyacyl-CoA dehydrogenase: a novel vital oncogene or tumor suppressor gene in cancers. Front. Pharmacol. 13, 1019312 (2022).
  • Motohara T , Masuda K , Morotti M et al. An evolving story of the metastatic voyage of ovarian cancer cells: cellular and molecular orchestration of the adipose-rich metastatic microenvironment. Oncogene 38(16), 2885–2898 (2019).
  • Park EG , Pyo SJ , Cui Y , Yoon SH , Nam JW . Tumor immune microenvironment lncRNAs. Brief. Bioinform. 23(1), bbab504 (2022).
  • Zhu L , Zhu X , Wu Y . Effects of glucose metabolism, lipid metabolism, and glutamine metabolism on tumor microenvironment and clinical implications. Biomolecules 12(4), 580 (2022).
  • Roche J . The epithelial-to-mesenchymal transition in cancer. Cancers (Basel) 10(2), 52 (2018).
  • Kao KC , Vilbois S , Tsai CH , Ho PC . Metabolic communication in the tumour-immune microenvironment. Nat. Cell Biol. 24(11), 1574–1583 (2022).
  • Corn KC , Windham MA , Rafat M . Lipids in the tumor microenvironment: from cancer progression to treatment. Prog. Lipid Res. 80, 101055 (2020).
  • Gajewski TF , Schreiber H , Fu YX . Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14(10), 1014–1022 (2013).
  • Schumacher TN , Thommen DS . Tertiary lymphoid structures in cancer. Science 375(6576), eabf9419 (2022).
  • Li K , Shi H , Zhang B et al. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct. Target. Ther. 6(1), 362 (2021).
  • Knochelmann HM , Dwyer CJ , Bailey SR et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell. Mol. Immunol. 15(5), 458–469 (2018).
  • Pan Y , Yu Y , Wang X , Zhang T . Tumor-associated macrophages in tumor immunity. Front. Immunol. 11, 583084 (2020).
  • Chen YJ , Li GN , Li XJ et al. Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy. Sci. Adv. 9(17), eadg0654 (2023).
  • Addeo A , Friedlaender A , Banna GL , Weiss GJ . TMB or not TMB as a biomarker: that is the question. Crit. Rev. Oncol. Hematol. 163, 103374 (2021).
  • Jardim DL , Goodman A , De Melo Gagliato D , Kurzrock R . The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39(2), 154–173 (2021).
  • Bieging KT , Mello SS , Attardi LD . Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer 14(5), 359–370 (2014).
  • Muller PA , Vousden KH . Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 25(3), 304–317 (2014).
  • Freed-Pastor WA , Prives C . Mutant p53: one name, many proteins. Genes Dev. 26(12), 1268–1286 (2012).
  • Ren YA , Mullany LK , Liu Z , Herron AJ , Wong KK , Richards JS . Mutant p53 promotes epithelial ovarian cancer by regulating tumor differentiation, metastasis, and responsiveness to steroid hormones. Cancer Res. 76(8), 2206–2218 (2016).
  • Yarchoan M , Hopkins A , Jaffee EM . Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377(25), 2500–2501 (2017).
  • Hellmann MD , Nathanson T , Rizvi H et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell 33(5), 843–852; e844 (2018).
  • Rizvi H , Sanchez-Vega F , La K et al. Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J. Clin. Oncol. 36(7), 633–641 (2018).
  • Hellmann MD , Callahan MK , Awad MM et al. Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer. Cancer Cell 33(5), 853–861; e854 (2018).
  • Fan S , Gao X , Qin Q , Li H , Yuan Z , Zhao S . Association between tumor mutation burden and immune infiltration in ovarian cancer. Int. Immunopharmacol. 89(Pt A), 107126 (2020).
  • Goodman AM , Piccioni D , Kato S et al. Prevalence of PDL1 amplification and preliminary response to immune checkpoint blockade in solid tumors. JAMA Oncol. 4(9), 1237–1244 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.