426
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Methylation changes of liver DNA during the formation of gallstones

, , , , , , , , , , , , & show all
Pages 529-547 | Received 06 Nov 2023, Accepted 20 Feb 2024, Published online: 06 Mar 2024

References

  • Everhart JE, Ruhl CE. Burden of digestive diseases in the United States part III: liver, biliary tract, and pancreas. Gastroenterology 136(4), 1134–1144 (2009).
  • Lammert F, Gurusamy K, Ko CW et al. Gallstones. Nat. Rev. Dis. Primers 2, 16024 (2016).
  • Schafmayer C, Hartleb J, Tepel J et al. Predictors of gallstone composition in 1025 symptomatic gallstones from Northern Germany. BMC Gastroenterol. 6, 36 (2006).
  • Groen AK, Bloks VW, Verkade H, Kuipers F. Cross-talk between liver and intestine in control of cholesterol and energy homeostasis. Mol. Aspects Med. 37, 77–88 (2014).
  • Biswas S, Rao CM. Epigenetic tools (the writers, the readers and the erasers) and their implications in cancer therapy. Eur. J. Pharmacol. 837, 8–24 (2018).
  • Zhu H, Wu LF, Mo XB et al. Rheumatoid arthritis-associated DNA methylation sites in peripheral blood mononuclear cells. Ann. Rheum. Dis. 78(1), 36–42 (2019).
  • Imgenberg-Kreuz J, Carlsson Almlöf J, Leonard D et al. DNA methylation mapping identifies gene regulatory effects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 77(5), 736–743 (2018).
  • Płatek T, Polus A, Góralska J et al. DNA methylation microarrays identify epigenetically regulated lipid related genes in obese patients with hypercholesterolemia. Mol. Med. 26(1), 93 (2020).
  • Nikolac Perkovic M, Videtic Paska A, Konjevod M et al. Epigenetics of Alzheimer’s disease. Biomolecules 11(2), 195 (2021).
  • Hernandez-Meza G, von Felden J, Gonzalez-Kozlova EE et al. DNA methylation profiling of human hepatocarcinogenesis. Hepatology 74(1), 183–199 (2021).
  • Brägelmann J, Barahona Ponce C, Marcelain K et al. Epigenome-wide analysis of methylation changes in the sequence of gallstone disease, dysplasia, and gallbladder cancer. Hepatology 73(6), 2293–2310 (2021).
  • Baghel K, Kazmi HR, Chandra A, Raj S, Srivastava RN. Significance of methylation status of MASPIN gene and its protein expression in prognosis of gallbladder cancer. Asia Pac. J. Clin. Oncol. 15(5), e120–e125 (2019).
  • Tekcham DS, Gupta S, Shrivastav BR, Tiwari PK. Epigenetic downregulation of PTEN in gallbladder cancer. J. Gastrointest. Cancer 48(1), 110–116 (2017).
  • Bharti A, Kar AG, Singh D et al. Frequent promoter hypermethylation and down regulation of BNIP3: an early event during gallbladder cancer progression. Dig. Liver Dis. 54(9), 1257–1263 (2022).
  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(1), 10–12 (2011).
  • Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12(4), 357–360 (2015).
  • Pertea M, Pertea GM, Antonescu CM et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 33(3), 290–295 (2015).
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15(12), 550 (2014).
  • Yu G, Wang L, Han Y et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5), 284–287 (2012).
  • Hu X, Yuan J, Shi Y et al. pIRS: Profile-based Illumina pair-end reads simulator. Bioinformatics 28(11), 1533–1535 (2012).
  • Xi Y, Li W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232 (2009).
  • Jühling F, Kretzmer H, Bernhart SH et al. Metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Res. 26(2), 256–262 (2016).
  • Zhang D, Hu Q, Liu X et al. AllEnricher: a comprehensive gene set function enrichment tool for both model and non-model species. BMC Bioinformatics 21(1), 106 (2020).
  • Lister R, Pelizzola M, Dowen RH et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271), 315–322 (2009).
  • Wang D, Afdhal Q, H N. Gallstone Disease. In: Sleisenger and Fordtran's Gastrointestinal and Liver Disease (10th Edition). Mark Feldman ( Ed.). Saunders Elsevier Publishers, PA, US, 1100–1133 (2014).
  • Fu S, Deger T, Boers RG et al. Hypermethylation of DNA methylation markers in non-cirrhotic hepatocellular carcinoma. Cancers (Basel) 15(19), 4784 (2023).
  • Acha B, Corroza J, Sánchez-Ruiz de Gordoa J et al. Association of blood-based DNA methylation markers with late-onset Alzheimer disease: a potential diagnostic approach. Neurology 101(23), e2434–e2447 (2023).
  • Henningsson AJ, Hellberg S, Lerm M et al. Genome-wide DNA methylation profiling in Lyme neuroborreliosis reveals altered methylation patterns of HLA genes. J. Infect. Dis. jiad451 (2023).
  • Rudling M, Laskar A, Straniero S. Gallbladder bile supersaturated with cholesterol in gallstone patients preferentially develops from shortage of bile acids. J. Lipid Res. 60(3), 498–505 (2019).
  • Van Erpecum KJ. Pathogenesis of cholesterol and pigment gallstones: an update. Clin. Res. Hepatol. Gastroenterol. 35(4), 281–287 (2011).
  • Wolska A, Dunbar RL, Freeman LA et al. Apolipoprotein C-II: new findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 267, 49–60 (2017).
  • Fu X, Gong K, Shao X. The relationship between serum lipids, apolipoproteins level and bile lipids level, chemical type of stone. Zhonghua Yi Xue Za Zhi 75(11), 656–659; 708 (1995).
  • Hubacek JA, Bobkova D. Role of cholesterol 7alpha-hydroxylase (CYP7A1) in nutrigenetics and pharmacogenetics of cholesterol lowering. Mol. Diagn. Ther. 10(2), 93–100 (2006).
  • Chiang JY. Bile acids: regulation of synthesis. J. Lipid Res. 50(10), 1955–1966 (2009).
  • Li T, Matozel M, Boehme S et al. Overexpression of cholesterol 7α-hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis. Hepatology 53(3), 996–1006 (2011).
  • Heuman DM, Hylemon PB, Vlahcevic ZR. Regulation of bile acid synthesis. III. correlation between biliary bile salt hydrophobicity index and the activities of enzymes regulating cholesterol and bile acid synthesis in the rat. J. Lipid Res. 30(8), 1161–1171 (1989).
  • Fang S, Miao J, Xiang L et al. Coordinated recruitment of histone methyltransferase G9a and other chromatin-modifying enzymes in SHP-mediated regulation of hepatic bile acid metabolism. Mol. Cell. Biol. 27(4), 1407–1424 (2007).
  • Nigam SK. What do drug transporters really do? Nat. Rev. Drug Discov. 14(1), 29–44 (2015).
  • Rius M, Nies AT, Hummel-Eisenbeiss J, Jedlitschky G, Keppler D. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 38(2), 374–384 (2003).
  • Berge KE, Tian H, Graf GA et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290(5497), 1771–1775 (2000).
  • Yu L, Li-Hawkins J, Hammer RE et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J. Clin. Invest. 110(5), 671–680 (2002).
  • Wang W, Seward DJ, Li L, Boyer JL, Ballatori N. Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proc. Natl Acad. Sci. USA 98(16), 9431–9436 (2001).
  • Lee H, Cho S, Kang A et al. Combination treatment of arazyme and soy leaf extract attenuates hyperglycemia and hepatic steatosis in high-fat diet-fed C57BL/6J mice. Life 11(7), 645 (2021).
  • Burckhardt G, Burckhardt BC. In vitro and in vivo evidence of the importance of organic anion transporters (OATs) in drug therapy. In: Handbook of Experimental Pharmacology. Martin F. Fromm ( Ed.). Springer, Berlin, Heidelberg, 201, 29–104 (2011).
  • Wang Y, Hu H, Nie J et al. Inhibiting uptake activity of organic anion transporter 2 by bile acids. Drug Metab. Pharmacokinet. 43, 100448 (2022).
  • Liu Y, Pu QH, Wu MJ, Yu C. Proteomic analysis for the impact of hypercholesterolemia on expressions of hepatic drug transporters and metabolizing enzymes. Xenobiotica 46(10), 940–947 (2016).
  • Chen G, Wu S. Role of baicalin and liver X receptor alpha in the formation of cholesterol gallstones in mice. Gastroenterol. Res. Pract. 2020, 1343969 (2020).
  • Gazali Z, Gupta V, Kumar T et al. Effect of mineral elements on the formation of gallbladder stones using spectroscopic techniques. Anal. Bioanal. Chem. 415(25), 6279–6289 (2023).
  • Frincu MC, Fleming SD, Rohl AL, Swift JA. The epitaxial growth of cholesterol crystals from bile solutions on calcite substrates. J. Am. Chem. Soc. 126(25), 7915–7924 (2004).
  • Bygrave FL, Karjalainen A, Hamada Y. Crosstalk between calcium- and cyclic AMP-mediated signalling systems and the short-term modulation of bile flow in normal and cholestatic rat liver. Cell. Signal. 6(1), 1–9 (1994).
  • Tamasawa N, Yoneda M, Makino I et al. The effect of biliary bile acid concentration and composition on the calcium level in human gallbladder bile. Tohoku J. Exp. Med. 171(4), 297–307 (1993).
  • Song KH, Chiang JY. Glucagon and cAMP inhibit cholesterol 7alpha-hydroxylase (CYP7A1) gene expression in human hepatocytes: discordant regulation of bile acid synthesis and gluconeogenesis. Hepatology 43(1), 117–125 (2006).
  • Pathak P, Li T, Chiang JY. Retinoic acid-related orphan receptor α regulates diurnal rhythm and fasting induction of sterol 12α-hydroxylase in bile acid synthesis. J. Biol. Chem. 288(52), 37154–37165 (2013).
  • Biddinger SB, Haas JT, Yu BB et al. Hepatic insulin resistance directly promotes formation of cholesterol gallstones. Nat. Med. 14(7), 778–782 (2008).
  • Yeung F, Ramírez CM, Mateos-Gomez PA et al. Nontelomeric role for Rap1 in regulating metabolism and protecting against obesity. Cell Rep. 3(6), 1847–1856 (2013).
  • Matsumoto K, Imasato M, Yamazaki Y et al. Claudin 2 deficiency reduces bile flow and increases susceptibility to cholesterol gallstone disease in mice. Gastroenterology 147(5), 1134–45.e10 (2014).
  • de la Porte PL, Lafont H, Domingo N et al. Composition and immunofluorescence studies of biliary ‘sludge’ in patients with cholesterol or mixed gallstones. J. Hepatol. 33(3), 352–360 (2000).
  • Lammert F, Südfeld S, Busch N, Matern S. Cholesterol crystal binding of biliary immunoglobulin A: visualization by fluorescence light microscopy. World J Gastroenterol. 7(2), 198–202 (2001).