176
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetics and the neurodegenerative process

, , ORCID Icon, , , , , & ORCID Icon show all
Pages 473-491 | Received 25 Nov 2023, Accepted 29 Feb 2024, Published online: 21 Mar 2024

References

  • Iridoy Zulet M , PulidoFontes L, AyusoBlanco T, LacruzBescos F, MendiorozIriarte M. Epigenetic changes in neurology: DNA methylation in multiple sclerosis. Neurologia32(7), 463–468 (2017).
  • Landgrave-Gómez J , Mercado-GómezO, Guevara-GuzmánR. Epigenetic mechanisms in neurological and neurodegenerative diseases. Front. Cell Neurosci.9, 1–11 (2015).
  • Urdinguio RG , Sanchez-MutJV, EstellerM. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol.8(11), 1056–1072 (2009).
  • Jakovcevski M , AkbarianS. Epigenetic mechanisms in neurological disease. Nat. Med.18(8), 1194–1204 (2012).
  • Fagiolini M , JensenCL, ChampagneFA. Epigenetic influences on brain development and plasticity. Curr. Opin. Neurobiol.19(2), 207–212 (2009).
  • Komada M , NishimuraY. Epigenetics and neuroinflammation associated with neurodevelopmental disorders: a microglial perspective. Front. Cell Dev. Biol.10, 852752 (2022).
  • Jin B , LiY, RobertsonKD. DNA methylation: superior or subordinate in the epigenetic hierarchy?Genes Cancer2(6), 607–617 (2011).
  • Jin B , RobertsonKD. DNA methyltransferases, DNA damage repair, and cancer. Adv. Exp. Med. Biol.754, 3–29 (2023).
  • Rawłuszko-Wieczorek AA , SieraA, JagodzińskiPP. TET proteins in cancer: current ‘state of the art.’Crit. Rev. Oncol. Hematol.96(3), 425–436 (2015).
  • Breton-Larrivée M , ElderE, McGrawS. DNA methylation, environmental exposures and early embryo development. Anim. Reprod.16(3), 465–474 (2019).
  • Peters J . The role of genomic imprinting in biology and disease: an expanding view. Nat. Rev. Genet.15(8), 517–530 (2014).
  • Zhang Y , SunZ, JiaJ et al. Overview of histone modification. Adv. Exp. Med. Biol.1283, 1–16 (2021).
  • Rossetto D , AvvakumovN, CôtéJ. Histone phosphorylation: a chromatin modification involved in diverse nuclear events. Epigenetics7(10), 1098–1108 (2012).
  • Cao J , YanQ. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front. Oncol.2, 26 (2012).
  • Wei JW , HuangK, YangC, KangCS. Non-coding RNAs as regulators in epigenetics (review). Oncol. Rep.37(1), 3–9 (2017).
  • Varga-Weisz P . Chromatin remodeling factors and DNA replication. Prog. Mol. Subcell. Biol.38, 1–30 (2005).
  • Lacal I , VenturaR. Epigenetic inheritance: concepts, mechanisms and perspectives. Front. Mol. Neurosci.11, 292 (2018).
  • McGregor MM , NelsonAB. Circuit mechanisms of Parkinson's disease. Neuron101(6), 1042–1056 (2019).
  • Zhu B , YinD, ZhaoH, ZhangL. The immunology of Parkinson's disease. Semin. Immunopathol.44(5), 659–672 (2022).
  • Isik S , YemanKiyak B, AkbayirR, SeyhaliR, ArpaciT. Microglia mediated neuroinflammation in Parkinson's disease. Cells12(7), 1012 (2023).
  • De Miranda BR , GoldmanSM, MillerGW, GreenamyreJT, DorseyER. Preventing Parkinson's disease: an environmental agenda. J. Parkinsons Dis.12(1), 45–68 (2022).
  • Tolosa E , GarridoA, ScholzSW, PoeweW. Challenges in the diagnosis of Parkinson's disease. Lancet Neurol.20(5), 385–397 (2021).
  • Kalia LV , LangAE. Parkinson's disease. Lancet386(9996), 896–912 (2015).
  • Bloem BR , OkunMS, KleinC. Parkinson's disease. Lancet397(10291), 2284–2303 (2021).
  • Dorszewska J , KowalskaM, PrendeckiM, PiekutT, KozłowskaJ, KozubskiW. Oxidative stress factors in Parkinson's disease. Neural Regen. Res.16(7), 1383 (2021).
  • Blauwendraat C , NallsMA, SingletonAB. The genetic architecture of Parkinson's disease. Lancet Neurol.19(2), 170–178 (2020).
  • Morris HR , SpillantiniMG, SueCM, Williams-GrayCH. The pathogenesis of Parkinson's disease. Lancet403(10423), 293–304 (2024).
  • Vollstedt E-J , SchaakeS, LohmannK et al. Embracing monogenic Parkinson's disease: the MJFF Global Genetic PD Cohort. Mov. Disord.38(2), 286–303 (2023).
  • Oczkowska A , Florczak-WyspianskaJ, Permoda-OsipA et al. Analysis of PRKN variants and clinical features in Polish patients with Parkinson's disease. Curr. Genomics16(4), 215–223 (2015).
  • Ye H , RobakLA, YuM, CykowskiM, ShulmanJM. Genetics and pathogenesis of Parkinson's syndrome. Annu. Rev. Pathol.18, 95–121 (2023).
  • Li S , LeW, DengH. Editorial: genetic and epigenetic mechanisms of Parkinson's disease. Front. Neurosci.16, 842709 (2022).
  • Fedotova EY , IakovenkoEV, AbramychevaNY, IllarioshkinSN. SNCA gene methylation in Parkinson's disease and multiple system atrophy. Epigenomes7(1), 5 (2023).
  • Tan Y , WuL, ZhaoZ et al. Methylation of α-synuclein and leucine-rich repeat kinase 2 in leukocyte DNA of Parkinson's disease patients. Parkinsonism Relat. Disord.20(3), 308–313 (2014).
  • Navarro-Sánchez L , Águeda-GómezB, AparicioS, Pérez-TurJ. Epigenetic study in Parkinson's disease: a pilot analysis of DNA methylation in candidate genes in brain. Cells7(10), 150 (2018).
  • Polymeropoulos MH , LavedanC, LeroyE et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science276(5321), 2045–2047 (1997).
  • Desplats P , SpencerB, CoffeeE et al. α-Synuclein sequesters dnmt1 from the nucleus. J. Biol. Chem.286(11), 9031–9037 (2011).
  • Kaut O , SchmittI, WüllnerU. Genome-scale methylation analysis of Parkinson's disease patients' brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics13(1), 87–91 (2012).
  • Lin Q , DingH, ZhengZ et al. Promoter methylation analysis of seven clock genes in Parkinson's disease. Neurosci. Lett.507(2), 147–150 (2012).
  • Coupland KG , MellickGD, SilburnPA et al. DNA methylation of MAPT gene in Parkinson's disease cohorts and modulation by vitamin E in vitro. Mov. Disord.29(13), 1606–1614 (2014).
  • Yang X , XuS, QianY, HeX, ChenS, XiaoQ. Hypermethylation of the gene coding for PGC-1α in peripheral blood leukocytes of patients with Parkinson's disease. Front. Neurosci.14, 97 (2020).
  • Yang Y-N , ZhangM-Q, YuF-L et al. Peroxisom proliferator-activated receptor-γ coactivator-1α in neurodegenerative disorders: a promising therapeutic target. Biochem. Pharmacol.215, 115717 (2023).
  • Wu T-T , LiuT, LiX et al. TET2-mediated Cdkn2A DNA hydroxymethylation in midbrain dopaminergic neuron injury of Parkinson's disease. Hum. Mol. Genet.29(8), 1239–1252 (2020).
  • Li X , LiuT, WuT-T et al. SIRT1 deacetylates TET2 and promotes its ubiquitination degradation to achieve neuroprotection against Parkinson's disease. Front. Neurol.12, 652882 (2021).
  • Harrison IF , SmithAD, DexterDT. Pathological histone acetylation in Parkinson's disease: neuroprotection and inhibition of microglial activation through SIRT 2 inhibition. Neurosci. Lett.666, 48–57 (2018).
  • Kontopoulos E , ParvinJD, FeanyMB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum. Mol. Genet.15(20), 3012–3023 (2006).
  • Sharma S , SarathlalKC, TaliyanR. Epigenetics in neurodegenerative diseases: the role of histone deacetylases. CNS Neurol. Disord. Drug Targets18(1), 11–18 (2019).
  • Gebremedhin KG , RademacherDJ. Histone H3 acetylation in the postmortem Parkinson's disease primary motor cortex. Neurosci. Lett.627, 121–125 (2016).
  • Toker L , TranGT, SundaresanJ et al. Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson's disease brain. Mol. Neurodegener.16(1), 31 (2021).
  • Jia F , FellnerA, KumarKR. Monogenic Parkinson's disease: genotype, phenotype, pathophysiology, and genetic testing. Genes (Basel)13(3), 471 (2022).
  • Choi H-K , ChoiY, KangH et al. PINK1 positively regulates HDAC3 to suppress dopaminergic neuronal cell death. Hum. Mol. Genet.24(4), 1127–1141 (2015).
  • Luo Q , SunW, WangY-F, LiJ, LiD-W. Association of p53 with neurodegeneration in Parkinson's disease. Parkinsons Dis.2022, 6600944 (2022).
  • Bretaud S , AllenC, InghamPW, BandmannO. P53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson's disease. J. Neurochem.100(6), 1626–1635 (2007).
  • Han KA , ShinWH, JungS et al. Leucine-rich repeat kinase 2 exacerbates neuronal cytotoxicity through phosphorylation of histone deacetylase 3 and histone deacetylation. Hum. Mol. Genet.26(1), 1–18 (2017).
  • Jin H , KanthasamyA, HarischandraDS et al. Histone hyperacetylation up-regulates protein kinase Cδ in dopaminergic neurons to induce cell death: relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease. J. Biol. Chem.289(50), 34743–34767 (2014).
  • Liu H , DehestaniM, BlauwendraatC et al. Polygenic resilience modulates the penetrance of Parkinson disease genetic risk factors. Ann. Neurol.92(2), 270–278 (2022).
  • Sugeno N , JäckelS, VoigtA, WassoufZ, Schulze-HentrichJ, KahlePJ. α-Synuclein enhances histone H3 lysine-9 dimethylation and H3K9me2-dependent transcriptional responses. Sci. Rep.6, 36328 (2016).
  • Dong L , GaoL. JMJD3 and SNAI2 synergistically protect against Parkinson's disease by mediating the YAP/HIF1α signaling pathway in a mouse model. Hum. Mol. Genet.32(21), 3040–3052 (2023).
  • Yang X , ZhangY, ChenY et al. LncRNA HOXA-AS2 regulates microglial polarization via recruitment of PRC2 and epigenetic modification of PGC-1α expression. J. Neuroinflammation18, 197 (2021).
  • Wever I , von OerthelL, WagemansCMRJ, SmidtMP. EZH2 influences mdDA neuronal differentiation, maintenance and survival. Front. Mol. Neurosci.11, 491 (2018).
  • Mu M-D , QianZ-M, YangS-X, RongK-L, YungW-H, KeY. Therapeutic effect of a histone demethylase inhibitor in Parkinson's disease. Cell Death Dis.11(10), 927 (2020).
  • Lin D , ZhangH, ZhangJ et al. α-Synuclein induces neuroinflammation injury through the IL6ST-AS/STAT3/HIF-1α axis. Int. J. Mol. Sci.24(2), 1436 (2023).
  • Cai L-J , TuL, HuangX-M et al. LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson's disease. Mol. Brain13(1), 130 (2020).
  • Schulze M , SommerA, PlötzS et al. Sporadic Parkinson's disease derived neuronal cells show disease-specific mRNA and small RNA signatures with abundant deregulation of piRNAs. Acta Neuropathol. Commun.6(1), 58 (2018).
  • Shen L , WangC, ChenL, WongG. Dysregulation of microRNAs and PIWI-interacting RNAs in a Caenorhabditis elegans Parkinson's disease model overexpressing human α-synuclein and influence of tdp-1. Front. Neurosci.15, 600462 (2021).
  • Zhang T , WongG. Dysregulation of human somatic piRNA expression in Parkinson's disease subtypes and stages. Int. J. Mol. Sci.23(5), 2469 (2022).
  • Sato K , TakayamaK-I, InoueS. Role of piRNA biogenesis and its neuronal function in the development of neurodegenerative diseases. Front. Aging Neurosci.15, 1157818 (2023).
  • Wakisaka KT , ImaiY. The dawn of pirna research in various neuronal disorders. Front. Biosci.24(8), 1440–1451 (2019).
  • Rajasethupathy P , AntonovI, SheridanR et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell149(3), 693–707 (2012).
  • He L , ZhangF, ZhuY, LuM. A crosstalk between circular RNA, microRNA, and messenger RNA in the development of various brain cognitive disorders. Front. Mol. Neurosci.15, 960657 (2022).
  • Duan Y , WangY, LiuY et al. Circular RNAs in Parkinson's disease: reliable biological markers and targets for rehabilitation. Mol. Neurobiol.60(6), 3261–3276 (2023).
  • D'Anca M , BuccellatoFR, FenoglioC, GalimbertiD. Circular RNAs: emblematic players of neurogenesis and neurodegeneration. Int. J. Mol. Sci.23(8), 4134 (2022).
  • Zhou M , LiS, HuangC. Physiological and pathological functions of circular RNAs in the nervous system. Neural. Regen. Res.19(2), 342–349 (2024).
  • Liu Q , LiQ, ZhangR et al. Circ-Pank1 promotes dopaminergic neuron neurodegeneration through modulating miR-7a-5p/α-syn pathway in Parkinson's disease. Cell Death Dis.13(5), 477 (2022).
  • Zhang Y-J , ZhuW-K, QiF-Y, CheF-Y. CircHIPK3 promotes neuroinflammation through regulation of the miR-124-3p/STAT3/NLRP3 signaling pathway in Parkinson's disease. Adv. Clin. Exp. Med.32(3), 315–329 (2023).
  • Selvakumar SC , PreethiKA, TusubiraD, SekarD. MicroRNAs in the epigenetic regulation of disease progression in Parkinson's disease. Front. Cell Neurosci.16, 995997 (2022).
  • Paccosi E , Proietti-De-SantisL. Parkinson's disease: from genetics and epigenetics to treatment, a miRNA-based strategy. Int. J. Mol. Sci.24(11), 9547 (2023).
  • Xing R-X , LiL-G, LiuX-W, TianB-X, ChengY. Down regulation of miR-218, miR-124, and miR-144 relates to Parkinson's disease via activating NF-κB signaling. Kaohsiung J. Med. Sci.36(10), 786–792 (2020).
  • Tatura R , KrausT, GieseA et al. Parkinson's disease: SNCA-, PARK2-, and LRRK2- targeting microRNAs elevated in cingulate gyrus. Parkinsonism Relat. Disord.33, 115–121 (2016).
  • Huang H , ZhengS, LuM. Downregulation of lncRNA MEG3 is involved in Parkinson's disease. Metab. Brain Dis.36(8), 2323–2328 (2021).
  • Lin D , LiY, HuangK et al. Exploration of the α-syn/T199678/miR-519-3p/KLF9 pathway in a PD-related α-syn pathology. Brain Res. Bull.186, 50–61 (2022).
  • Bu L-L , XieY-Y, LinD-Y et al. LncRNA-T199678 mitigates α-synuclein-induced dopaminergic neuron injury via miR-101-3p. Front. Aging Neurosci.12, 599246 (2020).
  • Xylaki M , PaivaI, Al-AzzaniM et al. MiR-101a-3p impairs synaptic plasticity and contributes to synucleinopathy. J. Parkinsons Dis.13(2), 179–196 (2023).
  • Zago E , DalMolin A, DimitriGM et al. Early downregulation of hsa-miR-144-3p in serum from drug-naive Parkinson's disease patients. Sci. Rep.12(1), 1330 (2022).
  • Zhang H-Q , WangJ-Y, LiZ-F et al. DNA methyltransferase 1 is dysregulated in Parkinson's disease via mediation of miR-17. Mol. Neurobiol.58(6), 2620–2633 (2021).
  • Küçükali CI , SalmanB, YüceerH et al. Small ubiquitin-related modifier (SUMO) 3 and SUMO4 gene polymorphisms in Parkinson's disease. Neurol. Res.42(6), 451–457 (2020).
  • Kim H , ShinJ-Y, JoA et al. Parkin interacting substrate phosphorylation by c-Abl drives dopaminergic neurodegeneration. Brain144(12), 3674–3691 (2021).
  • Srivastava AK , ChoudhurySR, KarmakarS. Neuronal Bmi-1 is critical for melatonin induced ubiquitination and proteasomal degradation of α-synuclein in experimental Parkinson's disease models. Neuropharmacology194, 108372 (2021).
  • Maloney B , LahiriDK. Epigenetics of dementia: understanding the disease as a transformation rather than a state. Lancet Neurol.15(7), 760–774 (2016).
  • Lane CA , HardyJ, SchottJM. Alzheimer's disease. Eur. J. Neurol.25(1), 59–70 (2018).
  • Li Y . Modern epigenetics methods in biological research. Methods187, 104–113 (2021).
  • Yuan BF . 5-Methylcytosine and its derivatives. Adv. Clin. Chem.67, 151–187 (2014).
  • Coppieters N , DieriksBV, LillC, FaullRL, CurtisMA, DragunowM. Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol. Aging35(6), 1334–1344 (2014).
  • Cheng Y , BernsteinA, ChenD, JinP. 5-Hydroxymethylcytosine: a new player in brain disorders?Exp. Neurol.268, 3–9 (2015).
  • Zhang Y , ZhangZ, LiL et al. Selective loss of 5hmC promotes neurodegeneration in the mouse model of Alzheimer's disease. FASEB J.34(12), 16364–16382 (2020).
  • Mposhi A , Vander Wijst MG, FaberKN, RotsMG. Regulation of mitochondrial gene expression, the epigenetic enigma. Front. Biosci.22(7), 1099–1113 (2017).
  • Ramazi S , AllahverdiA, ZahiriJ. Evaluation of post-translational modifications in histone proteins: a review on histone modification defects in developmental and neurological disorders. J. Biosci.45, 135 (2020).
  • Cheung I , ShulhaHP, JiangY et al. Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc. Natl Acad. Sci. USA107(19), 8824–8829 (2010).
  • Mastroeni D , DelvauxE, NolzJ et al. Aberrant intracellular localization of H3k4me3 demonstrates an early epigenetic phenomenon in Alzheimer's disease. Neurobiol. Aging36(12), 3121–3129 (2015).
  • Peixoto L , AbelT. The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology38(1), 62–76 (2013).
  • Plagg B , EhrlichD, KniewallnerKM, MarksteinerJ, HumpelC. Increased acetylation of histone H4 at lysine 12 (H4K12) in monocytes of transgenic Alzheimer's mice and in human patients. Curr. Alzheimer Res.12(8), 752–760 (2015).
  • Marzi SJ , LeungSK, RibarskaT et al. A histone acetylome-wide association study of Alzheimer's disease identifies disease-associated H3K27ac differences in the entorhinal cortex. Nat. Neurosci.21(11), 1618–1627 (2018).
  • Nativio R , DonahueG, BersonA et al. Dysregulation of the epigenetic landscape of normal aging in Alzheimer's disease. Nat. Neurosci.21(4), 497–505 (2018).
  • Ogawa O , ZhuX, LeeHG et al. Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe? Acta Neuropathol. 105(5), 524–528 (2003).
  • Myung NH , ZhuX, KrumanII et al. Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes. Age (Dordr.)30(4), 209–215 (2008).
  • Anderson KW , TurkoIV. Histone post-translational modifications in frontal cortex from human donors with Alzheimer's disease. Clin. Proteomics12, 26 (2015).
  • David G , NeptuneMA, DePinhoRA. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J. Biol. Chem.277(26), 23658–23663 (2002).
  • Yang G , SongY, ZhouX et al. MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol. Med. Rep.12(2), 3081–3088 (2015).
  • Schipper HM , MaesOC, ChertkowHM, WangE. MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul. Syst. Bio.1, 263–274 (2007).
  • Guedes JR , CustódiaCM, SilvaRJ et al. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer's disease triple transgenic mouse model. Hum. Mol. Genet.23(23), 6286–6301 (2014).
  • Kalaria RN , MaestreGE, ArizagaR et al.; World Federation of Neurology Dementia Research Group. Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol.7(9), 812–826 (2008).
  • Sun JH , TanL, WangHF et al. Genetics of vascular dementia: systematic review and meta-analysis. J. Alzheimers Dis.46(3), 611–629 (2015).
  • Venkat P , ChoppM, ChenJ. Models and mechanisms of vascular dementia. Exp. Neurol.272, 97–108 (2015).
  • Park JM , KimYJ, SongMK, LeeJM, KimYJ. Genome-wide DNA methylation profiling in a rat model with vascular dementia. Mol. Med. Rep.18(1), 123–130 (2018).
  • Belmonte KCD , HolmgrenEB, WillsTA, GiddayJM. Epigenetic conditioning induces intergenerational resilience to dementia in a mouse model of vascular cognitive impairment. Alzheimers Dement.18(10), 1711–1720 (2022).
  • Stanzione R , CotugnoM, BianchiF et al. Pathogenesis of ischemic stroke: role of epigenetic mechanisms. Genes11(1), 89 (2020).
  • Peng J , GhoshD, ZhangF et al. Advancement of epigenetics in stroke. Front. Neurosci.16, 981726 (2022).
  • Tang J , ZhuangS. Histone acetylation and DNA methylation in ischemia/reperfusion injury. Clin. Sci.133(4), 597–609 (2019).
  • Ng GYQ , Yun-AnL, SobeyCG, DheenT, FannDYW, ArumugamTV. Epigenetic regulation of inflammation in stroke. Ther. Adv. Neurol. Disord.11, 1756286418771815 (2018).
  • Nikolic D , JankovicM, PetrovicB, NovakovicI. Genetic aspects of inflammation and immune response in stroke. Int. J. Mol. Sci.21(19), 7409 (2020).
  • Ciarambino T , CrispinoP, MastrolorenzoE, VicecontiA, GiordanoM. Stroke and etiopathogenesis: what is known?Genes13(6), 978 (2022).
  • Lin HF , HsiE, HuangLC, LiaoYC, JuoSHH, LinRT. Methylation in the matrix metalloproteinase-2 gene is associated with cerebral ischemic stroke. J. Investig. Med.65(4), 794–799 (2017).
  • Giralt-Steinhauer E , Jiménez-BaladoJ, Fernández-PérezI et al. Genetics and epigenetics of spontaneous intracerebral hemorrhage. Int. J. Mol. Sci.23(12), 6479 (2022).
  • Kobow K , JeskeI, HildebrandtM et al. Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J. Neuropathol. Exp. Neurol.68(4), 356–364 (2009).
  • Miller-Delaney SFC , DasS, SanoT et al. Differential DNA methylation patterns define status epilepticus and epileptic tolerance. J. Neurosci.32(5), 1577–1588 (2012).
  • Pathak S , MillerJ, MorrisEC, StewartWCL, GreenbergDA. DNA methylation of the BRD2 promoter is associated with juvenile myoclonic epilepsy in Caucasians. Epilepsia59(5), 1011–1019 (2018).
  • Zhang W , WangH, LiuB et al. Differential DNA methylation profiles in patients with temporal lobe epilepsy and hippocampal sclerosis ILAE type I. J. Mol. Neurosci.71(9), 1951–1966 (2021).
  • Yu S , LinZ, LiuL et al. Long-term outcome of epilepsy surgery: a retrospective study in a population of 379 cases. Epilepsy Res.108(3), 555–564 (2014).
  • Martins-Ferreira R , LealB, ChavesJ et al. Epilepsy progression is associated with cumulative DNA methylation changes in inflammatory genes. Prog. Neurobiol.209, 102207 (2022).
  • Tao H , ChenZ, WuJ et al. DNA methylation signature of epileptic encephalopathy-related pathogenic genes encoding ion channels in temporal lobe epilepsy. Front. Neurol.12, 692412 (2021).
  • Martins-Ferreira R , LealBG, ChavesJ et al. DNA methylation screening suggests brain origin of cell-free DNA in epilepsy. J. Neurol. Sci.429, 119143 (2021).
  • Martins-Ferreira R , LealB, ChavesJ et al. Circulating cell-free DNA methylation mirrors alterations in cerebral patterns in epilepsy. Clin. Epigenetics14(1), 1–12 (2022).
  • Kobow K , ZiemannM, KaipananickalH et al. Genomic DNA methylation distinguishes subtypes of human focal cortical dysplasia. Epilepsia60(6), 1091–1103 (2019).
  • Aizawa S , YamamuroY. Valproate administration to mice increases hippocampal p21 expression by altering genomic DNA methylation. Neuroreport26(15), 915–920 (2015).
  • Mello MLS . Sodium valproate-induced chromatin remodeling. Front. Cell Dev. Biol.9, 645518 (2021).
  • Wang L , FuX, PengX et al. DNA methylation profiling reveals correlation of differential methylation patterns with gene expression in human epilepsy. J. Mol. Neurosci.59(1), 68–77 (2016).
  • Caramaschi D , HatcherC, MulderRH et al. Epigenome-wide association study of seizures in childhood and adolescence. Clin. Epigenetics12(1), 1–13 (2020).
  • Wang X , HuZ, ZhongK. The role of brain-derived neurotrophic factor in epileptogenesis: an update. Front. Pharmacol.12, 758232 (2021).
  • Sng JCG , TaniuraH, YonedaY. Histone modifications in kainate-induced status epilepticus. Eur. J. Neurosci.23(5), 1269–1282 (2006).
  • Huang Y , DohertyJJ, DingledineR. Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. J. Neurosci.22(19), 8422–8428 (2002).
  • Jagirdar R , DrexelM, BukovacA, TasanRO, SperkG. Expression of class II histone deacetylases in two mouse models of temporal lobe epilepsy. J. Neurochem.136(4), 717–730 (2016).
  • Manna I , FortunatoF, DeBenedittis S et al. Non-coding RNAs: new biomarkers and therapeutic targets for temporal lobe epilepsy. Int. J. Mol. Sci.23(6), 3063 (2022).
  • Hu K , XieYY, ZhangC et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci.13(1), 1–14 (2012).
  • He F , LiuB, MengQ, SunY, WangW, WangC. Modulation of miR-146a/complement factor H-mediated inflammatory responses in a rat model of temporal lobe epilepsy. Biosci. Rep.36(6), 433 (2016).
  • Raoof R , BauerS, ElNaggar H et al. Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine38, 127 (2018).
  • Wang J , TanL, TanL et al. Circulating microRNAs are promising novel biomarkers for drug-resistant epilepsy. Sci. Rep.5, 10201 (2015).
  • Leontariti M , AvgerisM, KatsarouMS et al. Circulating miR-146a and miR-134 in predicting drug-resistant epilepsy in patients with focal impaired awareness seizures. Epilepsia61(5), 959–970 (2020).
  • Nomair AM , MekkyJF, El-HamsharySA, NomeirHM. Circulating miR-146a-5p and miR-132-3p as potential diagnostic biomarkers in epilepsy. Epilepsy Res.191, 107089(2023).
  • Blumcke I , SpreaficoR, HaakerG et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N. Engl. J. Med.377(17), 1648–1656 (2017).
  • Redell JB , ZhaoJ, DashPK. Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J. Neurosci. Res.89(2), 212–221 (2011).
  • McKiernan RC , Jimenez-MateosEM, BrayI et al. Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS One7(5), e35921 (2012).
  • Korotkov A , BroekaartDWM, BanchaewaL et al. MicroRNA-132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro-epileptogenic factors in human cultured astrocytes. Glia68(1), 60–75 (2020).
  • Garcia-Manteiga JM , D'alessandroR, MeldolesiJ. News about the role of the transcription factor REST in neurons: from physiology to pathology. Int. J. Mol. Sci.21(1), 235 (2019).
  • Navarrete-Modesto V , Orozco-SuárezS, Alonso-VanegasM, Feria-RomeroIA, RochaL. REST/NRSF transcription factor is overexpressed in hippocampus of patients with drug-resistant mesial temporal lobe epilepsy. Epilepsy Behav.94, 118–123 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.