155
Views
0
CrossRef citations to date
0
Altmetric
Review

Unlocking the Epigenetic Symphony: Histone Acetylation’s Impact on Neurobehavioral Change in Neurodegenerative Disorders

ORCID Icon &
Pages 331-358 | Received 04 Dec 2023, Accepted 23 Jan 2024, Published online: 07 Feb 2024

References

  • Basavarajappa BS , Shivakumar M , Joshi V , Subbanna S . Endocannabinoid system in neurodegenerative disorders. J. Neurochem. 142(5), 624–648 (2017).
  • Ferrari R , Kapogiannis D , Huey ED , Momeni P . FTD and ALS: a tale of two diseases. Curr. Alzheimer Res. 8(3), 273–294 (2011).
  • Gibson SB , Figueroa KP , Bromberg MB , Pulst SM , Cannon-Albright L . Familial clustering of ALS in a population-based resource. Neurology 82(1), 17–22 (2014).
  • Keller MF , Ferrucci L , Singleton AB et al. Genome-wide analysis of the heritability of amyotrophic lateral sclerosis. JAMA Neurol 71(9), 1123–1134 (2014).
  • Ridge PG , Mukherjee S , Crane PK , Kauwe JS . Alzheimer’s disease genetics C. Alzheimer’s disease: analyzing the missing heritability. PLOS ONE 8(11), e79771 (2013).
  • Singleton A , Hardy J . The evolution of genetics: Alzheimer’s and Parkinson’s diseases. Neuron 90(6), 1154–1163 (2016).
  • Aguzzi A , Kampmann M . Neurodegeneration enters the era of functional genomics. Science 381(6662), eadk5693 (2023).
  • Price DL , Sisodia SS , Borchelt DR . Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282(5391), 1079–1083 (1998).
  • Berson A , Nativio R , Berger SL , Bonini NM . Epigenetic regulation in neurodegenerative diseases. Trends Neurosci. 41(9), 587–598 (2018).
  • Lozupone M , Dibello V , Sardone R et al. The impact of apolipoprotein E (APOE) epigenetics on aging and sporadic Alzheimer’s disease. Biology (Basel) 12(12), (2023).
  • Wang K , Liu H , Hu Q et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct. Target Ther. 7(1), 374 (2022).
  • Zhou LT , Liu D , Kang HC et al. Tau pathology epigenetically remodels the neuron-glial cross-talk in Alzheimer’s disease. Sci. Adv. 9(16), eabq7105 (2023).
  • Waddington C . The epigenotype. Endeavour 1, 18–20 (1942).
  • Wood MA , Hawk JD , Abel T . Combinatorial chromatin modifications and memory storage: a code for memory? Learn. Mem. 13(3), 241–244 (2006).
  • Arrowsmith CH , Bountra C , Fish PV , Lee K , Schapira M . Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 11(5), 384–400 (2012).
  • Bernstein BE , Meissner A , Lander ES . The mammalian epigenome. Cell 128(4), 669–681 (2007).
  • Meaney MJ . Epigenetics and the biological definition of gene x environment interactions. Child Dev. 81(1), 41–79 (2010).
  • Portela A , Esteller M . Epigenetic modifications and human disease. Nat. Biotechnol. 28(10), 1057–1068 (2010).
  • Bonasio R , Tu S , Reinberg D . Molecular signals of epigenetic states. Science 330(6004), 612–616 (2010).
  • Wu C , Morris JR . Genes, genetics, and epigenetics: a correspondence. Science 293(5532), 1103–1105 (2001).
  • Migliore L , Coppede F . Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat. Res. 667(1–2), 82–97 (2009).
  • Migliore L , Coppede F . Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat. Rev. Neurol. 18(11), 643–660 (2022).
  • Bellver-Sanchis A , Pallas M , Grinan-Ferre C . The contribution of epigenetic inheritance processes on age-related cognitive decline and Alzheimer’s disease. Epigenomes 5(2), (2021).
  • Manna S , Mishra J , Baral T et al. Epigenetic signaling and crosstalk in regulation of gene expression and disease progression. Epigenomics doi: 10.2217/epi-2023-0235 (2023).
  • Mir FA , Amanullah A , Jain BP , Hyderi Z , Gautam A . Neuroepigenetics of ageing and neurodegeneration-associated dementia: an updated review. Ageing Res. Rev. doi:10.1016/j.arr.2023.102067 102067 (2023).
  • Basavarajappa BS , Subbanna S . Histone methylation regulation in neurodegenerative disorders. Int. J. Mol. Sci. 22(9), (2021).
  • Li Z , Wang X , Wang X et al. Research progress on the role of extracellular vesicles in neurodegenerative diseases. Transl. Neurodegener. 12(1), 43 (2023).
  • Liang Y , Zhong G , Ren M et al. The role of ubiquitin-proteasome system and mitophagy in the pathogenesis of Parkinson’s disease. Neuromolecular Med. doi: 10.1007/s12017-023-08755-0 (2023).
  • Pinky , Neha , Ali M et al. Unravelling of molecular biomarkers in synaptic plasticity of Alzheimer’s disease: critical role of the restoration of neuronal circuits. Ageing Res. Rev. doi:10.1016/j.arr.2023.102069 102069 (2023).
  • Choudhary C , Kumar C , Gnad F et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942), 834–840 (2009).
  • Kurdistani SK , Tavazoie S , Grunstein M . Mapping global histone acetylation patterns to gene expression. Cell 117(6), 721–733 (2004).
  • Marmorstein R . Protein modules that manipulate histone tails for chromatin regulation. Nat. Rev. Mol. Cell Biol. 2(6), 422–432 (2001).
  • Allfrey VG , Faulkner R , Mirsky AE . Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. USA 51(5), 786–794 (1964).
  • Katan-Khaykovich Y , Struhl K . Dynamics of global histone acetylation and deacetylation in vivo: rapid restoration of normal histone acetylation status upon removal of activators and repressors. Genes Dev. 16(6), 743–752 (2002).
  • Waterborg JH . Dynamics of histone acetylation in Saccharomyces cerevisiae . Biochemistry 40(8), 2599–2605 (2001).
  • Kurdistani SK , Grunstein M . Histone acetylation and deacetylation in yeast. Nat. Rev. Mol. Cell Biol. 4(4), 276–284 (2003).
  • Verdone L , Caserta M , Di Mauro E . Role of histone acetylation in the control of gene expression. Biochem. Cell Biol. 83(3), 344–353 (2005).
  • Timmermann S , Lehrmann H , Polesskaya A , Harel-Bellan A . Histone acetylation and disease. Cell. Mol. Life Sci. 58(5–6), 728–736 (2001).
  • Salah Ud-Din AI , Tikhomirova A , Roujeinikova A . Structure and functional diversity of GCN5-related N-acetyltransferases (GNAT). Int. J. Mol. Sci. 17(7), (2016).
  • Lafon A , Chang CS , Scott EM , Jacobson SJ , Pillus L . MYST opportunities for growth control: yeast genes illuminate human cancer gene functions. Oncogene 26(37), 5373–5384 (2007).
  • Graff J , Tsai LH . The potential of HDAC inhibitors as cognitive enhancers. Annu. Rev. Pharmacol. Toxicol. 53, 311–330 (2013).
  • Laurent L , Wong E , Li G et al. Dynamic changes in the human methylome during differentiation. Genome Res. 20(3), 320–331 (2010).
  • Wang J , Yu JT , Tan MS , Jiang T , Tan L . Epigenetic mechanisms in Alzheimer’s disease: implications for pathogenesis and therapy. Ageing Res. Rev. 12(4), 1024–1041 (2013).
  • Xu K , Dai XL , Huang HC , Jiang ZF . Targeting HDACs: a promising therapy for Alzheimer’s disease. Oxid. Med. Cell Longev. 2011, 143269 (2011).
  • Finnin MS , Donigian JR , Cohen A et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401(6749), 188–193 (1999).
  • Maolanon AR , Madsen AS , Olsen CA . Innovative strategies for selective inhibition of histone deacetylases. Cell Chem. Biol. 23(7), 759–768 (2016).
  • Shukla S , Tekwani BL . Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front. Pharmacol. 11, 537 (2020).
  • Peixoto L , Abel T . The role of histone acetylation in memory formation and cognitive impairments. Neuropsychopharmacology 38(1), 62–76 (2013).
  • Geng H , Chen H , Wang H , Wang L . The histone modifications of neuronal plasticity. Neural Plast. 2021, 6690523 (2021).
  • Lubin FD , Roth TL , Sweatt JD . Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J. Neurosci. 28(42), 10576–10586 (2008).
  • De La Fuente V , Federman N , Fustinana MS , Zalcman G , Romano A . Calcineurin phosphatase as a negative regulator of fear memory in hippocampus: control on nuclear factor-kappaB signaling in consolidation and reconsolidation. Hippocampus 24(12), 1549–1561 (2014).
  • Federman N , De La Fuente V , Zalcman G et al. Nuclear factor kappaB-dependent histone acetylation is specifically involved in persistent forms of memory. J. Neurosci. 33(17), 7603–7614 (2013).
  • Korzus E , Rosenfeld MG , Mayford M . CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42(6), 961–972 (2004).
  • Alarcon JM , Malleret G , Touzani K et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42(6), 947–959 (2004).
  • Wood MA , Kaplan MP , Park A et al. Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn. Mem. 12(2), 111–119 (2005).
  • Slaughter MJ , Shanle EK , Khan A et al. HDAC inhibition results in widespread alteration of the histone acetylation landscape and BRD4 targeting to gene bodies. Cell Rep. 34(3), 108638 (2021).
  • Fraga MF , Ballestar E , Paz MF et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102(30), 10604–10609 (2005).
  • Farris SP , Mayfield RD . Epigenetic and non-coding regulation of alcohol abuse and addiction. Int. Rev. Neurobiol. 156, 63–86 (2021).
  • Lardenoije R , Iatrou A , Kenis G et al. The epigenetics of aging and neurodegeneration. Prog. Neurobiol. 131, 21–64 (2015).
  • Basavarajappa BS , Subbanna S . Epigenetic mechanisms in developmental alcohol-induced neurobehavioral deficits. Brain Sci. 6(2), 12 (2016).
  • Mattson MP , Sherman M . Perturbed signal transduction in neurodegenerative disorders involving aberrant protein aggregation. Neuromolecular Med. 4(1–2), 109–132 (2003).
  • Robakis NK . An Alzheimer’s disease hypothesis based on transcriptional dysregulation. Amyloid 10(2), 80–85 (2003).
  • Yamada T , Yoshiyama Y , Kawaguchi N . Expression of activating transcription factor-2 (ATF-2), one of the cyclic AMP response element (CRE) binding proteins, in Alzheimer disease and non-neurological brain tissues. Brain Res. 749(2), 329–334 (1997).
  • Hai T , Curran T . Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl Acad. Sci. USA 88(9), 3720–3724 (1991).
  • Lee KA , Masson N . Transcriptional regulation by CREB and its relatives. Biochim. Biophys. Acta 1174(3), 221–233 (1993).
  • Tong L , Thornton PL , Balazs R , Cotman CW . Beta-amyloid-(1–42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival is not compromised. J. Biol. Chem. 276(20), 17301–17306 (2001).
  • Vitolo OV , Sant’angelo A , Costanzo V , Battaglia F , Arancio O , Shelanski M . Amyloid beta-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc. Natl Acad. Sci. USA 99(20), 13217–13221 (2002).
  • Duclot F , Meffre J , Jacquet C , Gongora C , Maurice T . Mice knock out for the histone acetyltransferase p300/CREB binding protein-associated factor develop a resistance to amyloid toxicity. Neuroscience 167(3), 850–863 (2010).
  • Park SY , Kim MJ , Kim YJ et al. Selective PCAF inhibitor ameliorates cognitive and behavioral deficits by suppressing NF-kappaB-mediated neuroinflammation induced by Abeta in a model of Alzheimer’s disease. Int. J. Mol. Med. 35(4), 1109–1118 (2015).
  • Creighton SD , Jardine KH , Desimone A et al. Age-dependent attenuation of spatial memory deficits by the histone acetyltransferase p300/CBP-associated factor (PCAF) in 3xTG Alzheimer’s disease mice. Learn. Mem. 29(3), 71–76 (2022).
  • Espana J , Valero J , Minano-Molina AJ et al. Beta-amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1. J. Neurosci. 30(28), 9402–9410 (2010).
  • Caccamo A , Maldonado MA , Bokov AF , Majumder S , Oddo S . CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 107(52), 22687–22692 (2010).
  • Saha RN , Ghosh A , Palencia CA , Fung YK , Dudek SM , Pahan K . TNF-alpha preconditioning protects neurons via neuron-specific up-regulation of CREB-binding protein. J. Immunol. 183(3), 2068–2078 (2009).
  • Saura CA , Choi SY , Beglopoulos V et al. Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42(1), 23–36 (2004).
  • Federman N , Fustinana MS , Romano A . Histone acetylation is recruited in consolidation as a molecular feature of stronger memories. Learn. Mem. 16(10), 600–606 (2009).
  • Wang YJ , Okutani F , Murata Y , Taniguchi M , Namba T , Kaba H . Histone acetylation in the olfactory bulb of young rats facilitates aversive olfactory learning and synaptic plasticity. Neuroscience 232, 21–31 (2013).
  • Levenson JM , O’Riordan KJ , Brown KD , Trinh MA , Molfese DL , Sweatt JD . Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 279(39), 40545–40559 (2004).
  • Vecsey CG , Hawk JD , Lattal KM et al. Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB:CBP-dependent transcriptional activation. J. Neurosci. 27(23), 6128–6140 (2007).
  • Roth SY , Denu JM , Allis CD . Histone acetyltransferases. Annu. Rev. Biochem. 70, 81–120 (2001).
  • Guan JS , Haggarty SJ , Giacometti E et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459(7243), 55–60 (2009).
  • Bredy TW , Wu H , Crego C , Zellhoefer J , Sun YE , Barad M . Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn. Mem. 14(4), 268–276 (2007).
  • Ding H , Dolan PJ , Johnson GV . Histone deacetylase 6 interacts with the microtubule-associated protein tau. J. Neurochem. 106(5), 2119–2130 (2008).
  • Francis YI , Fa M , Ashraf H et al. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J. Alzheimers Dis. 18(1), 131–139 (2009).
  • Majid T , Griffin D , Criss Z 2nd , Jarpe M , Pautler RG . Pharmacologic treatment with histone deacetylase 6 inhibitor (ACY-738) recovers Alzheimer’s disease phenotype in amyloid precursor protein/presenilin 1 (APP/PS1) mice. Alzheimers Dement. (NY) 1(3), 170–181 (2015).
  • Fan SJ , Huang FI , Liou JP , Yang CR . The novel histone deacetylase 6 inhibitor, MPT0G211, ameliorates tau phosphorylation and cognitive deficits in an Alzheimer’s disease model. Cell Death Dis. 9(6), 655 (2018).
  • Kilgore M , Miller CA , Fass DM et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35(4), 870–880 (2010).
  • Ricobaraza A , Cuadrado-Tejedor M , Marco S , Perez-Otano I , Garcia-Osta A . Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus 22(5), 1040–1050 (2012).
  • Govindarajan N , Agis-Balboa RC , Walter J , Sananbenesi F , Fischer A . Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J. Alzheimers Dis. 26(1), 187–197 (2011).
  • Cuadrado-Tejedor M , Ricobaraza AL , Torrijo R , Franco R , Garcia-Osta A . Phenylbutyrate is a multifaceted drug that exerts neuroprotective effects and reverses the Alzheimer’s disease-like phenotype of a commonly used mouse model. Curr. Pharm. Des. 19(28), 5076–5084 (2013).
  • Ricobaraza A , Cuadrado-Tejedor M , Garcia-Osta A . Long-term phenylbutyrate administration prevents memory deficits in Tg2576 mice by decreasing Abeta. Front. Biosci. (Elite Ed.) 3(4), 1375–1384 (2011).
  • Cao T , Zhou X , Zheng X et al. Histone deacetylase inhibitor alleviates the neurodegenerative phenotypes and histone dysregulation in presenilins-deficient mice. Front. Aging Neurosci. 10, 137 (2018).
  • Zhang K , Schrag M , Crofton A , Trivedi R , Vinters H , Kirsch W . Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease. Proteomics 12(8), 1261–1268 (2012).
  • Graff J , Rei D , Guan JS et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483(7388), 222–226 (2012).
  • Holtzman DM , Morris JC , Goate AM . Alzheimer’s disease: the challenge of the second century. Sci. Transl. Med. 3(77), 77sr71 (2011).
  • Frankland PW , Bontempi B . The organization of recent and remote memories. Nat. Rev. Neurosci. 6(2), 119–130 (2005).
  • Walker MP , Laferla FM , Oddo SS , Brewer GJ . Reversible epigenetic histone modifications and Bdnf expression in neurons with aging and from a mouse model of Alzheimer’s disease. Age (Dordr.) 35(3), 519–531 (2013).
  • Narayan PJ , Lill C , Faull R , Curtis MA , Dragunow M . Increased acetyl and total histone levels in post-mortem Alzheimer’s disease brain. Neurobiol. Dis. 74, 281–294 (2015).
  • Janczura KJ , Volmar CH , Sartor GC et al. Inhibition of HDAC3 reverses Alzheimer’s disease-related pathologies in vitro and in the 3xTg-AD mouse model. Proc. Natl Acad. Sci. USA 115(47), E11148–E11157 (2018).
  • Yao ZG , Liang L , Liu Y et al. Valproate improves memory deficits in an Alzheimer’s disease mouse model: investigation of possible mechanisms of action. Cell. Mol. Neurobiol. 34(6), 805–812 (2014).
  • Xuan AG , Pan XB , Wei P et al. Valproic acid alleviates memory deficits and attenuates amyloid-beta deposition in transgenic mouse model of Alzheimer’s disease. Mol. Neurobiol. 51(1), 300–312 (2015).
  • Wang C , Shen D , Hu Y et al. Selective targeting of class I HDAC reduces microglial inflammation in the entorhinal cortex of young APP/PS1 mice. Int. J. Mol. Sci. 24(5), (2023).
  • Santana DA , Bedrat A , Puga RD et al. The role of H3K9 acetylation and gene expression in different brain regions of Alzheimer’s disease patients. Epigenomics 14(11), 651–670 (2022).
  • Ramamurthy E , Welch G , Cheng J et al. Cell type-specific histone acetylation profiling of Alzheimer’s disease subjects and integration with genetics. Front. Mol. Neurosci. 15, 948456 (2022).
  • Kropf E , Fahnestock M . Effects of reactive oxygen and nitrogen species on TrkA expression and signalling: implications for proNGF in aging and Alzheimer’s disease. Cells 10(8), (2021).
  • Jiang Y , Alam JJ , Gomperts SN et al. Preclinical and randomized clinical evaluation of the p38alpha kinase inhibitor neflamapimod for basal forebrain cholinergic degeneration. Nat. Commun. 13(1), 5308 (2022).
  • Pensalfini A , Kim S , Subbanna S et al. Endosomal dysfunction induced by directly overactivating Rab5 recapitulates prodromal and neurodegenerative features of Alzheimer’s disease. Cell Rep. 33(8), 108420 (2020).
  • Li X , Zhan Z , Zhang J , Zhou F , An L . Beta-hydroxybutyrate ameliorates Abeta-induced downregulation of TrkA expression by inhibiting HDAC1/3 in SH-SY5Y cells. Am J. Alzheimers Dis. Other Demen. 35, 1533317519883496 (2020).
  • Schueller E , Paiva I , Blanc F et al. Dysregulation of histone acetylation pathways in hippocampus and frontal cortex of Alzheimer’s disease patients. Eur. Neuropsychopharmacol. 33, 101–116 (2020).
  • Cai HB , Fan ZZ , Tian T et al. Diabetes-induced H3K9 hyperacetylation promotes development of Alzheimer’s disease through CDK5. J. Alzheimers Dis. 77(1), 75–84 (2020).
  • Klein HU , Mccabe C , Gjoneska E et al. Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. Nat. Neurosci. 22(1), 37–46 (2019).
  • Rustenhoven J , Smith AM , Smyth LC et al. PU.1 regulates Alzheimer’s disease-associated genes in primary human microglia. Mol. Neurodegener. 13(1), 44 (2018).
  • Huang KL , Marcora E , Pimenova AA et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat. Neurosci. 20(8), 1052–1061 (2017).
  • Ralvenius WT , Mungenast AE , Woolf H et al. A novel molecular class that recruits HDAC/MECP2 complexes to PU.1 motifs reduces neuroinflammation. J. Exp. Med. 220(11), (2023).
  • Patel PJ , Ren Y , Yan Z . Epigenomic analysis of Alzheimer’s disease brains reveals diminished CTCF binding on genes involved in synaptic organization. Neurobio. Dis. 184, 106192 (2023).
  • Denninger JW , Marletta MA . Guanylate cyclase and the NO/cGMP signaling pathway. Biochim. Biophys. Acta 1411(2–3), 334–350 (1999).
  • Tropea MR , Gulisano W , Vacanti V , Arancio O , Puzzo D , Palmeri A . Nitric oxide/cGMP/CREB pathway and amyloid-beta crosstalk: from physiology to Alzheimer’s disease. Free Radic. Biol. Med. 193(Pt 2), 657–668 (2022).
  • Fiorito J , Saeed F , Zhang H et al. Synthesis of quinoline derivatives: discovery of a potent and selective phosphodiesterase 5 inhibitor for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 60, 285–294 (2013).
  • Puzzo D , Staniszewski A , Deng SX et al. Phosphodiesterase 5 inhibition improves synaptic function, memory, and amyloid-beta load in an Alzheimer’s disease mouse model. J. Neurosci. 29(25), 8075–8086 (2009).
  • Zhang J , Guo J , Zhao X et al. Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice. Behav. Brain Res. 250, 230–237 (2013).
  • Cuadrado-Tejedor M , Garcia-Barroso C , Sanzhez-Arias J et al. Concomitant histone deacetylase and phosphodiesterase 5 inhibition synergistically prevents the disruption in synaptic plasticity and it reverses cognitive impairment in a mouse model of Alzheimer’s disease. Clin. Epigenetics 7, 108 (2015).
  • Platenik J , Fisar Z , Buchal R et al. GSK3beta, CREB, and BDNF in peripheral blood of patients with Alzheimer’s disease and depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 50, 83–93 (2014).
  • Cuadrado-Tejedor M , Garcia-Barroso C , Sanchez-Arias JA et al. A first-in-class small-molecule that acts as a dual inhibitor of HDAC and PDE5 and that rescues hippocampal synaptic impairment in Alzheimer’s disease mice. Neuropsychopharmacology 42(2), 524–539 (2017).
  • Pirooznia SK , Sarthi J , Johnson AA et al. Tip60 HAT activity mediates APP induced lethality and apoptotic cell death in the CNS of a Drosophila Alzheimer’s disease model. PLOS ONE 7(7), e41776 (2012).
  • Pirooznia SK , Chiu K , Chan MT , Zimmerman JE , Elefant F . Epigenetic regulation of axonal growth of Drosophila pacemaker cells by histone acetyltransferase tip60 controls sleep. Genetics 192(4), 1327–1345 (2012).
  • Xu S , Wilf R , Menon T , Panikker P , Sarthi J , Elefant F . Epigenetic control of learning and memory in Drosophila by Tip60 HAT action. Genetics 198(4), 1571–1586 (2014).
  • Beaver M , Karisetty BC , Zhang H et al. Chromatin and transcriptomic profiling uncover dysregulation of the Tip60 HAT/HDAC2 epigenomic landscape in the neurodegenerative brain. Epigenetics 17(7), 786–807 (2022).
  • Panikker P , Xu SJ , Zhang H et al. Restoring Tip60 HAT/HDAC2 balance in the neurodegenerative brain relieves epigenetic transcriptional repression and reinstates cognition. J. Neurosci. 38(19), 4569–4583 (2018).
  • Rabal O , Sanchez-Arias JA , Cuadrado-Tejedor M et al. Multitarget approach for the treatment of Alzheimer’s disease: inhibition of phosphodiesterase 9 (PDE9) and histone deacetylases (HDACs) covering diverse selectivity profiles. ACS Chem. Neurosci. 10(9), 4076–4101 (2019).
  • Cuadrado-Tejedor M , Perez-Gonzalez M , Garcia-Munoz C et al. Taking advantage of the selectivity of histone deacetylases and phosphodiesterase inhibitors to design better therapeutic strategies to treat Alzheimer’s disease. Front. Aging Neurosci. 11, 149 (2019).
  • Trzeciakiewicz H , Ajit D , Tseng JH et al. An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline. Nat. Commun. 11(1), 5522 (2020).
  • Patnaik D , Pao PC , Zhao WN et al. Exifone is a potent HDAC1 activator with neuroprotective activity in human neuronal models of neurodegeneration. ACS Chem. Neurosci. 12(2), 271–284 (2021).
  • Lang AE , Obeso JA . Time to move beyond nigrostriatal dopamine deficiency in Parkinson’s disease. Ann. Neurol. 55(6), 761–765 (2004).
  • Obeso JA , Stamelou M , Goetz CG et al. Past, present, and future of Parkinson’s disease: a special essay on the 200th anniversary of the shaking palsy. Mov. Disord. 32(9), 1264–1310 (2017).
  • Burke RE , O’Malley K . Axon degeneration in Parkinson’s disease. Exp. Neurol. 246, 72–83 (2013).
  • Cheng HC , Ulane CM , Burke RE . Clinical progression in Parkinson disease and the neurobiology of axons. Ann. Neurol. 67(6), 715–725 (2010).
  • Lang AE . A critical appraisal of the premotor symptoms of Parkinson’s disease: potential usefulness in early diagnosis and design of neuroprotective trials. Mov. Disord. 26(5), 775–783 (2011).
  • Dauer W , Przedborski S . Parkinson’s disease: mechanisms and models. Neuron 39(6), 889–909 (2003).
  • Bandres-Ciga S , Diez-Fairen M , Kim JJ , Singleton AB . Genetics of Parkinson’s disease: an introspection of its journey towards precision medicine. Neurobiol. Dis. 137, 104782 (2020).
  • Dulski J , Uitti RJ , Ross OA , Wszolek ZK . Genetic architecture of Parkinson’s disease subtypes–review of the literature. Front. Aging Neurosci. 14, 1023574 (2022).
  • Funayama M , Nishioka K , Li Y , Hattori N . Molecular genetics of Parkinson’s disease: contributions and global trends. J. Hum. Genet. 68(3), 125–130 (2023).
  • Li B , Zhao G , Zhou Q et al. Gene4PD: a comprehensive genetic database of Parkinson’s disease. Front. Neurosci. 15, 679568 (2021).
  • Nalls MA , Pankratz N , Lill CM et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 46(9), 989–993 (2014).
  • Muller-Nedebock AC , Dekker MCJ , Farrer MJ et al. Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson’s disease. NPJ Parkinsons Dis. 9(1), 110 (2023).
  • Goldman SM , Marek K , Ottman R et al. Concordance for Parkinson’s disease in twins: a 20-year update. Ann. Neurol. 85(4), 600–605 (2019).
  • Wirdefeldt K , Gatz M , Reynolds CA , Prescott CA , Pedersen NL . Heritability of Parkinson disease in Swedish twins: a longitudinal study. Neurobiol. Aging 32(10), 1923–1928 (2011).
  • Bjorklund G , Stejskal V , Urbina MA , Dadar M , Chirumbolo S , Mutter J . Metals and Parkinson’s disease: mechanisms and biochemical processes. Curr. Med. Chem. 25(19), 2198–2214 (2018).
  • Hsu YC , Chang CW , Lee HL et al. Association between history of dental amalgam fillings and risk of Parkinson’s disease: a population-based retrospective cohort study in Taiwan. PLOS ONE 11(12), e0166552 (2016).
  • Pamphlett R , Bishop DP . Mercury is present in neurons and oligodendrocytes in regions of the brain affected by Parkinson’s disease and co-localises with Lewy bodies. PLOS ONE 17(1), e0262464 (2022).
  • Willis AW , Evanoff BA , Lian M et al. Metal emissions and urban incident Parkinson disease: a community health study of Medicare beneficiaries by using geographic information systems. Am. J. Epidemiol. 172(12), 1357–1363 (2010).
  • GBDPSD Collaborators . Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17(11), 939–953 (2018).
  • Breen DP , Michell AW , Barker RA . Parkinson’s disease–the continuing search for biomarkers. Clin. Chem. Lab. Med. 49(3), 393–401 (2011).
  • Peng C , Trojanowski JQ , Lee VM . Protein transmission in neurodegenerative disease. Nat. Rev. Neurol. 16(4), 199–212 (2020).
  • Mezzaroba L , Alfieri DF , Colado Simao AN , Vissoci Reiche EM . The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 74, 230–241 (2019).
  • Puspita L , Chung SY , Shim JW . Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain 10(1), 53 (2017).
  • Przedborski S . The two-century journey of Parkinson disease research. Nat. Rev. Neurosci. 18(4), 251–259 (2017).
  • Abeliovich A , Gitler AD . Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature 539(7628), 207–216 (2016).
  • Ammal Kaidery N , Tarannum S , Thomas B . Epigenetic landscape of Parkinson’s disease: emerging role in disease mechanisms and therapeutic modalities. Neurotherapeutics 10(4), 698–708 (2013).
  • Kontopoulos E , Parvin JD , Feany MB . Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum. Mol. Genet. 15(20), 3012–3023 (2006).
  • Gardian G , Yang L , Cleren C , Calingasan NY , Klivenyi P , Beal MF . Neuroprotective effects of phenylbutyrate against MPTP neurotoxicity. Neuromolecular Med. 5(3), 235–241 (2004).
  • Chen PS , Peng GS , Li G et al. Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol. Psychiatry 11(12), 1116–1125 (2006).
  • Wu X , Chen PS , Dallas S et al. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int. J. Neuropsychopharmacol. 11(8), 1123–1134 (2008).
  • Airaksinen MS , Saarma M . The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3(5), 383–394 (2002).
  • Choong CJ , Sasaki T , Hayakawa H et al. A novel histone deacetylase 1 and 2 isoform-specific inhibitor alleviates experimental Parkinson’s disease. Neurobiol. Aging 37, 103–116 (2016).
  • Hegarty SV , O’Leary E , Solger F , Stanicka J , Sullivan AM , O’Keeffe GW . A small molecule activator of p300/CBP histone acetyltransferase promotes survival and neurite growth in a cellular model of Parkinson’s disease. Neurotox. Res. 30(3), 510–520 (2016).
  • Hegarty SV , O’Keeffe GW , Sullivan AM . Neurotrophic factors: from neurodevelopmental regulators to novel therapies for Parkinson’s disease. Neural Regen. Res. 9(19), 1708–1711 (2014).
  • Outeiro TF , Kontopoulos E , Altmann SM et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317(5837), 516–519 (2007).
  • Kanthasamy A , Jin H , Anantharam V et al. Emerging neurotoxic mechanisms in environmental factors-induced neurodegeneration. Neurotoxicology 33(4), 833–837 (2012).
  • Song C , Kanthasamy A , Anantharam V , Sun F , Kanthasamy AG . Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol. Pharmacol. 77(4), 621–632 (2010).
  • Song C , Kanthasamy A , Jin H , Anantharam V , Kanthasamy AG . Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology 32(5), 586–595 (2011).
  • Chen S , Bellew C , Yao X et al. Histone deacetylase (HDAC) activity is critical for embryonic kidney gene expression, growth, and differentiation. J. Biol. Chem. 286(37), 32775–32789 (2011).
  • Van Heesbeen HJ , Smidt MP . Entanglement of genetics and epigenetics in Parkinson’s disease. Front. Neurosci. 13, 277 (2019).
  • Toker L , Tran GT , Sundaresan J et al. Genome-wide histone acetylation analysis reveals altered transcriptional regulation in the Parkinson’s disease brain. Mol. Neurodegener. 16(1), 31 (2021).
  • Nicholas AP , Lubin FD , Hallett PJ et al. Striatal histone modifications in models of levodopa-induced dyskinesia. J. Neurochem. 106(1), 486–494 (2008).
  • Patel VP , Chu CT . Decreased SIRT2 activity leads to altered microtubule dynamics in oxidatively-stressed neuronal cells: implications for Parkinson’s disease. Exp. Neurol. 257, 170–181 (2014).
  • Chiu S , Terpstra KJ , Bureau Y et al. Liposomal-formulated curcumin [Lipocurc] targeting HDAC (histone deacetylase) prevents apoptosis and improves motor deficits in Park 7 (DJ-1)-knockout rat model of Parkinson’s disease: implications for epigenetics-based nanotechnology-driven drug platform. J. Complement. Integr. Med. 10, 75–88 (2013).
  • Sharma S , Taliyan R , Singh S . Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: modulation of histone deacetylase activity. Behav. Brain Res. 291, 306–314 (2015).
  • St Laurent R , O’Brien LM , Ahmad ST . Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience 246, 382–390 (2013).
  • Liu J , Wang F , Liu S et al. Sodium butyrate exerts protective effect against Parkinson’s disease in mice via stimulation of glucagon like peptide-1. J. Neurol. Sci. 381, 176–181 (2017).
  • Paiva I , Pinho R , Pavlou MA et al. Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. Hum. Mol. Genet. 26(12), 2231–2246 (2017).
  • Zhou W , Bercury K , Cummiskey J , Luong N , Lebin J , Freed CR . Phenylbutyrate up-regulates the DJ-1 protein and protects neurons in cell culture and in animal models of Parkinson disease. J. Biol. Chem. 286(17), 14941–14951 (2011).
  • Roy A , Ghosh A , Jana A et al. Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson’s disease. PLOS ONE 7(6), e38113 (2012).
  • Chen SH , Wu HM , Ossola B et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage. Br. J. Pharmacol. 165(2), 494–505 (2012).
  • Kidd SK , Schneider JS . Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition. Brain Res. 1354, 172–178 (2010).
  • Suo H , Wang P , Tong J et al. NRSF is an essential mediator for the neuroprotection of trichostatin A in the MPTP mouse model of Parkinson’s disease. Neuropharmacology 99, 67–78 (2015).
  • Monti B , Gatta V , Piretti F , Raffaelli SS , Virgili M , Contestabile A . Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: involvement of alpha-synuclein. Neurotox. Res. 17(2), 130–141 (2010).
  • Kidd SK , Schneider JS . Protective effects of valproic acid on the nigrostriatal dopamine system in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neuroscience 194, 189–194 (2011).
  • Pan T , Li X , Xie W , Jankovic J , Le W . Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells. FEBS Lett. 579(30), 6716–6720 (2005).
  • Khan N , Jeffers M , Kumar S et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem. J. 409(2), 581–589 (2008).
  • Kim T , Song S , Park Y , Kang S , Seo H . HDAC inhibition by valproic acid induces neuroprotection and improvement of PD-like behaviors in LRRK2 R1441G transgenic mice. Exp. Neurobiol. 28(4), 504–515 (2019).
  • Mazzocchi M , Goulding SR , Wyatt SL , Collins LM , Sullivan AM , O’Keeffe GW . LMK235, a small molecule inhibitor of HDAC4/5, protects dopaminergic neurons against neurotoxin- and alpha-synuclein-induced degeneration in cellular models of Parkinson’s disease. Mol. Cell. Neurosci. 115, 103642 (2021).
  • Mazzocchi M , Goulding SR , Morales-Prieto N et al. Peripheral administration of the Class-IIa HDAC inhibitor MC1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-OHDA rat model of Parkinson’s disease. Brain Behav. Immun. 102, 151–160 (2022).
  • Harrison IF , Smith AD , Dexter DT . Pathological histone acetylation in Parkinson’s disease: neuroprotection and inhibition of microglial activation through SIRT 2 inhibition. Neurosci. Lett. 666, 48–57 (2018).
  • Guan Q , Wang M , Chen H , Yang L , Yan Z , Wang X . Aging-related 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurochemical and behavioral deficits and redox dysfunction: improvement by AK-7. Exp. Gerontol. 82, 19–29 (2016).
  • Wang Y , Xu H , Fu Q , Ma R , Xiang J . Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in Parkinsonian rats. J. Neurol. Sci. 304(1–2), 29–34 (2011).
  • Blanchet J , Longpre F , Bureau G et al. Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 32(5), 1243–1250 (2008).
  • Albani D , Polito L , Batelli S et al. The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1–42) peptide. J. Neurochem. 110(5), 1445–1456 (2009).
  • Lee MK , Kang SJ , Poncz M , Song KJ , Park KS . Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp. Mol. Med. 39(3), 376–384 (2007).
  • Bournival J , Quessy P , Martinoli MG . Protective effects of resveratrol and quercetin against MPP+-induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell. Mol. Neurobiol. 29(8), 1169–1180 (2009).
  • Lin TK , Chen SD , Chuang YC et al. Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int. J. Mol. Sci. 15(1), 1625–1646 (2014).
  • Chen HH , Chang PC , Chen C , Chan MH . Protective and therapeutic activity of honokiol in reversing motor deficits and neuronal degeneration in the mouse model of Parkinson’s disease. Pharmacol. Rep. 70(4), 668–676 (2018).
  • Zhang S , Ma Y , Feng J . Neuroprotective mechanisms of epsilon-viniferin in a rotenone-induced cell model of Parkinson’s disease: significance of SIRT3-mediated FOXO3 deacetylation. Neural Regen. Res. 15(11), 2143–2153 (2020).
  • Pinho BR , Reis SD , Guedes-Dias P et al. Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: therapeutic implications for Parkinson’s disease. Pharmacol. Res. 103, 328–339 (2016).
  • Park G , Tan J , Garcia G , Kang Y , Salvesen G , Zhang Z . Regulation of histone acetylation by autophagy in Parkinson disease. J. Biol. Chem. 291(7), 3531–3540 (2016).
  • Choi HK , Choi Y , Kang H et al. PINK1 positively regulates HDAC3 to suppress dopaminergic neuronal cell death. Hum. Mol. Genet. 24(4), 1127–1141 (2015).
  • Wu Q , Yang X , Zhang L , Zhang Y , Feng L . Nuclear accumulation of histone deacetylase 4 (HDAC4) exerts neurotoxicity in models of Parkinson’s disease. Mol. Neurobiol. 54(9), 6970–6983 (2017).
  • Lang C , Campbell KR , Ryan BJ et al. Single-cell sequencing of iPSC-dopamine neurons reconstructs disease progression and identifies HDAC4 as a regulator of Parkinson cell phenotypes. Cell Stem Cell 24(1), 93–106e106 (2019).
  • Hourani M , Berretta R , Mendes A , Moscato P . Genetic signatures for a rodent model of Parkinson’s disease using combinatorial optimization methods. Methods Mol. Biol. 453, 379–392 (2008).
  • Collins LM , Adriaanse LJ , Theratile SD , Hegarty SV , Sullivan AM , O’Keeffe GW . Class-IIa histone deacetylase inhibition promotes the growth of neural processes and protects them against neurotoxic insult. Mol. Neurobiol. 51(3), 1432–1442 (2015).
  • Mazzocchi M , Wyatt SL , Mercatelli D et al. Gene co-expression analysis identifies histone deacetylase 5 and 9 expression in midbrain dopamine neurons and as regulators of neurite growth via bone morphogenetic protein signaling. Front. Cell. Dev. Biol. 7, 191 (2019).
  • Pandey UB , Nie Z , Batlevi Y et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447(7146), 859–863 (2007).
  • Gonzalez-Alegre P . Recent advances in molecular therapies for neurological disease: triplet repeat disorders. Hum. Mol. Genet. 28(R1), R80–R87 (2019).
  • Nopoulos PC . Huntington disease: a single-gene degenerative disorder of the striatum. Dialogues Clin. Neurosci. 18(1), 91–98 (2016).
  • Paulson H . Repeat expansion diseases. Handb. Clin. Neurol. 147, 105–123 (2018).
  • Jimenez-Sanchez M , Licitra F , Underwood BR , Rubinsztein DC . Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb. Perspect. Med. 7(7), a024240 (2017).
  • Novak MJ , Tabrizi SJ . Huntington’s disease. BMJ 340, c3109 (2010).
  • Bassi S , Tripathi T , Monziani A , Di Leva F , Biagioli M . Epigenetics of Huntington’s disease. Adv. Exp. Med. Biol. 978, 277–299 (2017).
  • Wang F , Fischhaber PL , Guo C , Tang TS . Epigenetic modifications as novel therapeutic targets for Huntington’s disease. Epigenomics 6(3), 287–297 (2014).
  • Kim SH , Thomas CA , Andre VM et al. Forebrain striatal-specific expression of mutant huntingtin protein in vivo induces cell-autonomous age-dependent alterations in sensitivity to excitotoxicity and mitochondrial function. ASN Neuro. 3(3), e00060 (2011).
  • Landles C , Bates GP . Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep. 5(10), 958–963 (2004).
  • Becanovic K , Pouladi MA , Lim RS et al. Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis. Hum. Mol. Genet. 19(8), 1438–1452 (2010).
  • Malla B , Guo X , Senger G , Chasapopoulou Z , Yildirim F . A systematic review of transcriptional dysregulation in Huntington’s disease studied by RNA sequencing. Front. Genet. 12, 751033 (2021).
  • Ferrante RJ , Kubilus JK , Lee J et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J. Neurosci. 23(28), 9418–9427 (2003).
  • Gardian G , Browne SE , Choi DK et al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem. 280(1), 556–563 (2005).
  • Mcfarland KN , Das S , Sun TT et al. Genome-wide histone acetylation is altered in a transgenic mouse model of Huntington’s disease. PLOS ONE 7(7), e41423 (2012).
  • Valor LM , Guiretti D . What’s wrong with epigenetics in Huntington’s disease? Neuropharmacology 80, 103–114 (2014).
  • Yeh HH , Young D , Gelovani JG et al. Histone deacetylase class II and acetylated core histone immunohistochemistry in human brains with Huntington’s disease. Brain Res. 1504, 16–24 (2013).
  • Sadri-Vakili G , Bouzou B , Benn CL et al. Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Hum. Mol. Genet. 16(11), 1293–1306 (2007).
  • Han H , Cho JW , Lee S et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 46(D1), D380–D386 (2018).
  • Sasi M , Vignoli B , Canossa M , Blum R . Neurobiology of local and intercellular BDNF signaling. Pflugers Arch. 469(5–6), 593–610 (2017).
  • Nucifora FC Jr , Sasaki M , Peters MF et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291(5512), 2423–2428 (2001).
  • Steffan JS , Kazantsev A , Spasic-Boskovic O et al. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl Acad. Sci. USA 97(12), 6763–6768 (2000).
  • Paldino E , Cardinale A , D’Angelo V , Sauve I , Giampa C , Fusco FR . Selective sparing of striatal interneurons after poly (ADP-ribose) polymerase 1 inhibition in the R6/2 mouse model of Huntington’s disease. Front. Neuroanat. 11, 61 (2017).
  • Jiang H , Nucifora FC Jr , Ross CA , Defranco DB . Cell death triggered by polyglutamine-expanded huntingtin in a neuronal cell line is associated with degradation of CREB-binding protein. Hum. Mol. Genet. 12(1), 1–12 (2003).
  • Kazantsev A , Preisinger E , Dranovsky A , Goldgaber D , Housman D . Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc. Natl Acad. Sci. USA 96(20), 11404–11409 (1999).
  • Cong SY , Pepers BA , Evert BO et al. Mutant huntingtin represses CBP, but not p300, by binding and protein degradation. Mol. Cell. Neurosci. 30(1), 12–23 (2005).
  • Steffan JS , Bodai L , Pallos J et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila . Nature 413(6857), 739–743 (2001).
  • Igarashi S , Morita H , Bennett KM et al. Inducible PC12 cell model of Huntington’s disease shows toxicity and decreased histone acetylation. Neuroreport 14(4), 565–568 (2003).
  • Hockly E , Richon VM , Woodman B et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl Acad. Sci. USA 100(4), 2041–2046 (2003).
  • Mielcarek M , Benn CL , Franklin SA et al. SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington’s disease. PLOS ONE 6(11), e27746 (2011).
  • Quinti L , Chopra V , Rotili D et al. Evaluation of histone deacetylases as drug targets in Huntington’s disease models. Study of HDACs in brain tissues from R6/2 and CAG140 knock-in HD mouse models and human patients and in a neuronal HD cell model. PLoS Curr. 2, 1–42 (2010).
  • Hoshino M , Tagawa K , Okuda T et al. Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. J. Neurochem. 87(1), 257–267 (2003).
  • Oliveira JM , Chen S , Almeida S et al. Mitochondrial-dependent Ca2+ handling in Huntington’s disease striatal cells: effect of histone deacetylase inhibitors. J. Neurosci. 26(43), 11174–11186 (2006).
  • Jia H , Pallos J , Jacques V et al. Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol. Dis. 46(2), 351–361 (2012).
  • Hecklau K , Mueller S , Koch SP et al. The effects of selective inhibition of histone deacetylase 1 and 3 in Huntington’s disease mice. Front. Mol. Neurosci. 14, 616886 (2021).
  • Thomas EA , Coppola G , Desplats PA et al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc. Natl Acad. Sci. USA 105(40), 15564–15569 (2008).
  • Jia H , Kast RJ , Steffan JS , Thomas EA . Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington’s disease mice: implications for the ubiquitin-proteasomal and autophagy systems. Hum. Mol. Genet. 21(24), 5280–5293 (2012).
  • Mielcarek M , Landles C , Weiss A et al. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol. 11(11), e1001717 (2013).
  • Macabuag N , Esmieu W , Breccia P et al. Developing HDAC4-selective protein degraders to investigate the role of HDAC4 in Huntington’s disease pathology. J. Med. Chem. 65(18), 12445–12459 (2022).
  • Federspiel JD , Greco TM , Lum KK , Cristea IM . HDAC4 interactions in Huntington’s disease viewed through the prism of multiomics. Mol. Cell. Proteomics 18(1 Suppl. 8), S92–S113 (2019).
  • Mano T , Suzuki T , Tsuji S , Iwata A . Differential effect of HDAC3 on cytoplasmic and nuclear huntingtin aggregates. PLOS ONE 9(11), e111277 (2014).
  • Chopra V , Quinti L , Khanna P et al. LBH589, a hydroxamic acid-derived HDAC inhibitor, is neuroprotective in mouse models of Huntington’s disease. J. Huntingtons Dis. 5(4), 347–355 (2016).
  • Siebzehnrubl FA , Raber KA , Urbach YK et al. Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible by HDAC inhibition. Proc. Natl Acad. Sci. USA 115(37), E8765–E8774 (2018).
  • Dompierre JP , Godin JD , Charrin BC et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J. Neurosci. 27(13), 3571–3583 (2007).
  • Hu Y , Chopra V , Chopra R et al. Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Proc. Natl Acad. Sci. USA 108(41), 17141–17146 (2011).
  • Chopra V , Quinti L , Kim J et al. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models. Cell Rep. 2(6), 1492–1497 (2012).
  • Jia H , Wang Y , Morris CD et al. The effects of pharmacological inhibition of histone deacetylase 3 (HDAC3) in Huntington’s disease mice. PLOS ONE 11(3), e0152498 (2016).
  • Narayan P , Reid S , Scotter EL et al. Inconsistencies in histone acetylation patterns among different HD model systems and HD post-mortem brains. Neurobiol. Dis. 146, 105092 (2020).
  • Beaver M , Bhatnagar A , Panikker P et al. Disruption of Tip60 HAT mediated neural histone acetylation homeostasis is an early common event in neurodegenerative diseases. Sci. Rep. 10(1), 18265 (2020).
  • Stott AJ , Maillard MC , Beaumont V et al. Evaluation of 5-(trifluoromethyl)-1,2,4-oxadiazole-based class IIa HDAC inhibitors for Huntington’s disease. ACS Med. Chem. Lett. 12(3), 380–388 (2021).
  • Farago A , Zsindely N , Farkas A et al. Acetylation state of lysine 14 of histone H3.3 affects mutant huntingtin induced pathogenesis. Int. J. Mol. Sci. 23(23), (2022).
  • Alcala-Vida R , Lotz C , Brule B et al. Altered activity-regulated H3K9 acetylation at TGF-beta signaling genes during egocentric memory in Huntington’s disease. Prog. Neurobiol. 219, 102363 (2022).
  • Arancibia-Opazo S , Contreras-Riquelme JS , Sanchez M et al. Transcriptional and histone acetylation changes associated with CRE elements expose key factors governing the regulatory circuit in the early stage of Huntington’s disease models. Int. J. Mol. Sci. 24(13), (2023).
  • Li E , Choi J , Sim HR et al. A novel HDAC6 inhibitor, CKD-504, is effective in treating preclinical models of Huntington’s disease. BMB Rep. 56(2), 178–183 (2023).
  • Bobrowska A , Paganetti P , Matthias P , Bates GP . Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington’s disease. PLOS ONE 6(6), e20696 (2011).
  • Benn CL , Butler R , Mariner L et al. Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington’s disease. PLOS ONE 4(6), e5747 (2009).
  • Ma C , D’Mello SR . Neuroprotection by histone deacetylase-7 (HDAC7) occurs by inhibition of c-jun expression through a deacetylase-independent mechanism. J. Biol. Chem. 286(6), 4819–4828 (2011).
  • Jeong H , Cohen DE , Cui L et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med. 18(1), 159–165 (2011).
  • Duan W . Targeting sirtuin-1 in Huntington’s disease: rationale and current status. CNS Drugs 27(5), 345–352 (2013).
  • Tulino R , Benjamin AC , Jolinon N et al. Correction: SIRT1 activity is linked to its brain region-specific phosphorylation and is impaired in Huntington’s disease mice. PLOS ONE 11(2), e0150682 (2016).
  • Pallos J , Bodai L , Lukacsovich T et al. Inhibition of specific HDACs and sirtuins suppresses pathogenesis in a Drosophila model of Huntington’s disease. Hum. Mol. Genet. 17(23), 3767–3775 (2008).
  • Sussmuth SD , Haider S , Landwehrmeyer GB et al. An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington’s disease. Br. J. Clin. Pharmacol. 79(3), 465–476 (2015).
  • Wossner N , Alhalabi Z , Gonzalez J et al. Sirtuin 1 inhibiting thiocyanates (S1th)–a new class of isotype selective inhibitors of NAD(+) dependent lysine deacetylases. Front. Oncol. 10, 657 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.