204
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Large-Scale Analysis of DNA Methylation In Chronic Lymphocytic Leukemia

, , , , , , , , , , , , & show all
Pages 39-61 | Published online: 01 Oct 2009

Bibliography

  • Zent CS , KayNE: Chronic lymphocytic leukemia: biology and current treatment.Curr. Oncol. Rep.9 , 345–352 (2007).
  • Krober A , SeilerT, BennerA et al.: V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia.Blood100 , 1410–1416 (2002).
  • Damle RN , WasilT, FaisF et al.: IgV gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia.Blood94 , 1840–1847 (1999).
  • Gentile M , MauroFR, CalabreseE et al.: The prognostic value of CD38 expression in chronic lymphocytic leukaemia patients studied prospectively at diagnosis: a single institute experience.Br. J Haematol.130 , 549–557 (2005).
  • Eisele L , HaddadT, SellmannL, DuhrsenU, DurigJ: Expression levels of CD38 on leukemic B cells but not on non-leukemic T cells are comparably stable over time and predict the course of disease in patients with chronic lymphocytic leukemia.Leuk. Res.33 , 775–778 (2009).
  • Hamblin TJ , OrchardJA, IbbotsonRE et al.: CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease.Blood99 , 1023–1029 (2002).
  • Tobin G , RosenquistR: Prognostic usage of VH gene mutation status and its surrogate markers and the role of antigen selection in chronic lymphocytic leukemia.Med. Oncol.22 , 217–228 (2005).
  • Pittner BT , ShanafeltTD, KayNE, JelinekDF: CD38 expression levels in chronic lymphocytic leukemia B cells are associated with activation marker expression and differential responses to interferon stimulation.Leukemia19 , 2264–2272 (2005).
  • Rahmatpanah FB , CarstensS, GuoJ et al.: Differential DNA methylation patterns of small B-cell lymphoma subclasses with different clinical behavior.Leukemia20 , 1855–1862 (2006).
  • Caldwell CW , PattersonWP: Relationship between CD45 antigen expression and putative stages of differentiation in B-cell malignancies.Am. J. Hematol.36 , 111–115 (1991).
  • Estecio MR , YanPS, IbrahimAE et al.: High-throughput methylation profiling by MCA coupled to CpG island microarray.Genome Res.17 , 1529–1536 (2007).
  • Walter SD : Point estimation of the odds ratio in sparse 2 × 2 contingency tables. In: Biostatistics. MacNeill IB, Umphrey GJ, Reidel D (Eds.), 71–102 (1987)
  • Taylor KH , KramerRS, DavisJW et al.: Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing.Cancer Res.67 , 8511–8518 (2007).
  • Rassenti LZ , JainS, KeatingMJ et al.: Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia.Blood112 , 1923–1930 (2008).
  • Lu D , ZhaoY, TawataoR et al.: Activation of the Wnt signaling pathway in chronic lymphocytic leukemia.Proc. Natl Acad. Sci. USA101 , 3118–3123 (2004).
  • Dennis G , Jr., Sherman BT, Hosack DA et al.: DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol.4 , 3 (2003).
  • Wahlfors J , HiltunenH, HeinonenK, HamalainenE, AlhonenL, JanneJ: Genomic hypomethylation in human chronic lymphocytic leukemia.Blood80 , 2074–2080 (1992).
  • Lipsanen V , LeinonenP, AlhonenL, JanneJ: Hypomethylation of ornithine decarboxylase gene and erb-A1 oncogene in human chronic lymphatic leukemia.Blood72 , 2042–2044 (1988).
  • Yuille MR , CondieA, StoneEM et al.: TCL1 is activated by chromosomal rearrangement or by hypomethylation.Genes Chromosomes Cancer30 , 336–341 (2001).
  • Hanada M , DeliaD, AielloA, StadtmauerE, ReedJC: BCL-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia.Blood82 , 1820–1828 (1993).
  • Raval A , TannerSM, ByrdJC et al.: Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell129 , 879–890 (2007).
  • Rush LJ , RavalA, FunchainP et al.: Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets.Cancer Res.64 , 2424–2433 (2004).
  • Deaglio S , VaisittiT, AydinS et al.: CD38 and ZAP-70 are functionally linked and mark CLL cells with high migratory potential.Blood110 , 4012–4021 (2007).
  • Damle RN , TemburniS, CalissanoC et al.: CD38 expression labels an activated subset within chronic lymphocytic leukemia clones enriched in proliferating B cells.Blood110 , 3352–3359 (2007).
  • Deaglio S , VaisittiT, BerguiL et al.: CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival.Blood105 , 3042–3050 (2005).
  • Malavasi F , DeaglioS, FerreroE et al.: CD38 and CD157 as receptors of the immune system: a bridge between innate and adaptive immunity.Mol.Med.12(11–12) , 334–341 (2006).
  • Morabito F , MangiolaM, StelitanoC, DeaglioS, CalleaV, MalavasiF: Simultaneous expression of CD38 and its ligand CD31 by chronic lymphocytic leukemia B-cells: anecdotal observation or pathogenetic hypothesis for the clinical outcome?Haematologica88 , 354–355 (2003).
  • Moreno-Garcia ME , Lopez-BojorquesLN, ZentellaA, HumphriesLA, RawlingsDJ, Santos-ArgumedoL: CD38 signaling regulates B lymphocyte activation via a phospholipase C (PLC)-γ 2-independent, protein kinase C, phosphatidylcholine-PLC, and phospholipase D-dependent signaling cascade.J. Immunol.174 , 2687–2695 (2005).
  • Batra S , ShiY, KuchenbeckerKM et al.: Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural mesothelioma.Biochem. Biophys. Res. Commun.342 , 1228–1232 (2006).
  • Chim CS , PangR, FungTK, ChoiCL, LiangR: Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma.Leukemia21 , 2527–2536 (2007).
  • Dhir M , MontgomeryEA, GlocknerSC et al.: Epigenetic regulation of WNT signaling pathway genes in inflammatory bowel disease (IBD) associated neoplasia.J. Gastrointest. Surg.12 , 1745–1753 (2008).
  • Gelebart P , AnandM, ArmaniousH et al.: Constitutive activation of the Wnt canonical pathway in mantle cell lymphoma.Blood112 , 5171–5179 (2008).
  • Khan NI , BendallLJ: Role of WNT signaling in normal and malignant hematopoiesis.Histol. Histopathol.21 , 761–774 (2006).
  • Martin V , AgirreX, Jimenez-VelascoA et al.: Methylation status of Wnt signaling pathway genes affects the clinical outcome of Philadelphia-positive acute lymphoblastic leukemia.Cancer Sci.99(9) , 1865–1868 (2008).
  • Qiang YW , EndoY, RubinJS, RudikoffS: Wnt signaling in B-cell neoplasia.Oncogene22 , 1536–1545 (2003).
  • Roman-Gomez J , Jimenez-VelascoA, CordeuL et al.: WNT5A, a putative tumour suppressor of lymphoid malignancies, is inactivated by aberrant methylation in acute lymphoblastic leukaemia.Eur. J. Cancer43 , 2736–2746 (2007).
  • Schmidt M , SieversE, EndoT, LuD, CarsonD, Schmidt-WolfIG: Targeting Wnt pathway in lymphoma and myeloma cells.Br. J. Haematol.144(5) , 796–798 (2008).
  • Sengupta A , BanerjeeD, ChandraS et al.: Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression.Leukemia21 , 949–955 (2007).
  • Wohrle S , WallmenB, HechtA: Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors.Mol. Cell Biol.27 , 8164–8177 (2007).
  • Chim CS , FungTK, WongKF, LauJS, LiangR: Infrequent Wnt inhibitory factor-1 (Wif-1) methylation in chronic lymphocytic leukemia.Leuk. Res.30(9) , 1135–1139 (2006).
  • Chim CS , PangR, LiangR: Epigenetic dysregulation of the Wnt signalling pathway in chronic lymphocytic leukaemia.J. Clin. Pathol.61 , 1214–1219 (2008).
  • Howe D , BromidgeT: Variation of LEF-1 mRNA expression in low-grade B-cell non-Hodgkin‘s lymphoma.Leuk. Res.30 , 29–32 (2006).
  • Liu TH , RavalA, ChenSS, MatkovicJJ, ByrdJC, PlassC: CpG island methylation and expression of the secreted frizzled-related protein gene family in chronic lymphocytic leukemia.Cancer Res.66 , 653–658 (2006).
  • Raval A , LucasDM, MatkovicJJ et al.: TWIST2 demonstrates differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic lymphocytic leukemia.J. Clin. Oncol.23 , 3877–3885 (2005).
  • Jin G , LuD, YaoS et al.: Amide derivatives of ethacrynic acid: synthesis and evaluation as antagonists of Wnt/β-catenin signaling and CLL cell survival.Bioorg. Med. Chem. Lett.19 , 606–609 (2009).
  • Geretti E , ShimizuA, KlagsbrunM: Neuropilin structure governs VEGF and semaphorin binding and regulates angiogenesis.Angiogenesis.11 , 31–39 (2008).
  • Kay NE : Angiogenesis revisited in CLL.Leuk. Res.31 , 1459–1460 (2007).
  • Molica S , CutronaG, VitelliG et al.: Markers of increased angiogenesis and their correlation with biological parameters identifying high-risk patients in early B-cell chronic lymphocytic leukemia.Leuk. Res.31 , 1575–1578 (2007).
  • Hammarsund M , CorcoranMM, WilsonW et al.: Characterization of a novel B-CLL candidate gene – DLEU7 – located in the 13q14 tumor suppressor locus.FEBS Lett.556(1–3) , 75–80 (2004).
  • Heisler LE , TortiD, BoutrosPC et al.: CpG Island microarray probe sequences derived from a physical library are representative of CpG Islands annotated on the human genome.Nucleic Acids Res.33 , 2952–2961 (2005).
  • Laux DE , CurranEM, WelshonsWV, LubahnDB, HuangTH: Hypermethylation of the Wilms‘ tumor suppressor gene CpG island in human breast carcinomas.Breast Cancer Res. Treat.56 , 35–43 (1999).
  • Garcia-Manero G , KantarjianHM, Sanchez-GonzalezB et al.: Phase 1/2 study of the combination of 5-aza-2‘-deoxycytidine with valproic acid in patients with leukemia.Blood108 , 3271–3279 (2006).
  • Issa JP : Optimizing therapy with methylation inhibitors in myelodysplastic syndromes: dose, duration, and patient selection.Nat. Clin. Pract. Oncol.2(Suppl. 1) , S24–S29 (2005).
  • Flotho C , ClausR, BatzC et al.: The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells.Leukemia23 , 1019–1028 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.