253
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Signatures In Stem Cells And Cancer Stem Cells

, , &
Pages 261-280 | Published online: 03 Dec 2009

Bibliography

  • Bird A : Perceptions of epigenetics.Nature447(7143) , 396–398 (2007).
  • Ledford H : Language: disputed definitions.Nature455(7216) , 1023–1028 (2008).
  • Feinberg AP , OhlssonR, HenikoffS: The epigenetic progenitor origin of human cancer.Nat. Rev. Genet.7(1) , 21–33 (2006).
  • Takahashi K , TanabeK, OhnukiM et al.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell131(5) , 861–872 (2007).
  • Takahashi K , YamanakaS: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell126(4) , 663–676 (2006).
  • Wernig M , MeissnerA, ForemanR et al.: In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state.Nature448(7151) , 318–324 (2007).
  • Yu J , HuK, Smuga-OttoK et al.: Human induced pluripotent stem cells free of vector and transgene sequences.Science324(5928) , 797–801 (2009).
  • Yu J , VodyanikMA, Smuga-OttoK et al.: Induced pluripotent stem cell lines derived from human somatic cells.Science318(5858) , 1917–1920 (2007).
  • Park IH , ZhaoR, WestJA et al.: Reprogramming of human somatic cells to pluripotency with defined factors.Nature451(7175) , 141–146 (2008).
  • Maherali N , SridharanR, XieW et al.: Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution.Cell Stem Cell1(1) , 55–70 (2007).
  • Hajkova P , AncelinK, WaldmannT et al.: Chromatin dynamics during epigenetic reprogramming in the mouse germ line.Nature452(7189) , 877–881 (2008).
  • Shukla V , VaissiereT, HercegZ: Histone acetylation and chromatin signature in stem cell identity and cancer.Mutat. Res.637(1–2) , 1–15 (2008).
  • Visvader JE , IndemanGJ: Cancer stem cells in solid tumours: accumulating evidence and unresolved questions.Nat. Rev. Cancer8(10) , 755–768 (2008).
  • Evans MJ , KaufmanMH: Establishment in culture of pluripotential cells from mouse embryos.Nature292(5819) , 154–156 (1981).
  • Fuchs E , SegreJA: Stem cells: a new lease on life.Cell100(1) , 143–155 (2000).
  • Niwa H : Open conformation chromatin and pluripotency.Gen. Dev.21(21) , 2671–2676 (2007).
  • Cowan CA , AtienzaJ, MeltonDA, EgganK: Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells.Science309(5739) , 1369–1373 (2005).
  • Spivakov M , FisherAG: Epigenetic signatures of stem-cell identity.Nat. Rev. Genet.8(4) , 263–271 (2007).
  • Azuara V , PerryP, SauerS et al.: Chromatin signatures of pluripotent cell lines.Nat. Cell Biol.8 , 532–538 (2006).
  • Bibikova M , ChudinE, WuB et al.: Human embryonic stem cells have a unique epigenetic signature.Genome Res.16(9) , 1075–1083 (2006).
  • Bernstein BE , MikkelsenTS, XieX et al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells.Cell125(2) , 315–326 (2006).
  • Sparmann A , van Lohuizen M: Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer6(11) , 846–856 (2006).
  • Meshorer E , YellajoshulaD, GeorgeE et al.: Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells.Dev. Cell10(1) , 105–116 (2006).
  • Buszczak M , SpradlingAC: Searching chromatin for stem cell identity.Cell125(2) , 233–236 (2006).
  • Bartova E , KrejciJ, HarnicarovaA, KozubekS: Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci.Differentiation76(1) , 24–32 (2008).
  • Bartova E , GaliovaG, KrejciJ et al.: Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation.Dev. Dyn.237(12) , 3690–3702 (2008).
  • Levasseur DN , WangJ, DorschnerMO, StamatoyannopoulosJA, OrkinSH: Oct4 dependence of chromatin structure within the extended NANOG locus in ES cells.Genes Dev.22(5) , 575–580 (2008).
  • Tiwari VK , CopeL, McGarveyKM, OhmJE, BaylinSB: A novel 6C assay uncovers Polycomb-mediated higher order chromatin conformations.Genome Res.18(7) , 1171–1179 (2008).
  • Tiwari VK , McGarveyKM, LicchesiJD et al.: PcG proteins, DNA methylation, and gene repression by chromatin looping.PLoS Biol.6(12) , 2911–2927 (2008).
  • Kouzarides T : Chromatin modifications and their function.Cell128(4) , 693–705 (2007).
  • Strahl BD , AllisCD: The language of covalent histone modifications.Nature403(6765) , 41–45 (2000).
  • Ohm JE , McGarveyKM, YuX et al.: A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing.Nat. Genet.39(2) , 237–242 (2007).
  • Pan G , TianS, NieJ et al.: Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells.Cell Stem Cell1(3) , 299–312 (2007).
  • Pasini D , BrackenAP, JensenMR, Lazzerini Denchi E, Helin K: Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J.23(20) , 4061–4071 (2004).
  • Lee TI , JennerRG, BoyerLA et al.: Control of developmental regulators by Polycomb in human embryonic stem cells.Cell125(2) , 301–313 (2006).
  • Boyer LA , PlathK, ZeitlingerJ et al.: Polycomb complexes repress developmental regulators in murine embryonic stem cells.Nature441(7091) , 9–53 (2006).
  • Lee MG , VillaR, TrojerP et al.: Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination.Science318(5849) , 447–450 (2007).
  • Lan F , BaylissPE, RinnJL et al.: A histone H3 lysine 27 demethylase regulates animal posterior development.Nature449(7163) , 689–694 (2007).
  • Agger K , CloosPA, ChristensenJ et al.: UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development.Nature449(7163) , 731–734 (2007).
  • Sen GL , WebsterDE, BarraganDI, ChangHY, KhavariPA: Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3.Gen. Dev.22(14) , 1865–1870 (2008).
  • Torres-Padilla ME , ParfittDE, KouzaridesT, Zernicka-GoetzM: Histone arginine methylation regulates pluripotency in the early mouse embryo.Nature445(7124) , 214–218 (2007).
  • Henikoff S , AhmadK: Assembly of variant histones into chromatin.Annu. Rev. Cell Dev. Biol.21 , 133–153 (2005).
  • Hake SB , AllisCD: Histone H3 variants and their potential role in indexing mammalian genomes: the ‘H3 barcode hypothesis‘.Proc. Natl Acad. Sci. USA103(17) , 6428–6435 (2006).
  • Santenard A , Torres-PadillaME: Epigenetic reprogramming in mammalian reproduction: contribution from histone variants.Epigenetics4(2) , 80–84 (2009).
  • Dai B , RasmussenTP: Global epiproteomic signatures distinguish embryonic stem cells from differentiated cells.Stem Cells25(10) , 2567–2574 (2007).
  • Rangasamy D , BervenL, RidgwayP, TremethickDJ: Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development.EMBO J.22(7) , 1599–1607 (2003).
  • Rasmussen TP , MastrangeloMA, EdenA, PehrsonJR, JaenischR: Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation.J. Cell Biol.150(5) , 1189–1198 (2000).
  • Shaw ML , WilliamsEJ, HawesS, SafferyR: Characterisation of histone variant distribution in human embryonic stem cells by transfection of in vitro transcribed mRNA.Mol. Reprod. Dev.76(12) , 1128–1142 (2009).
  • Creyghton MP , MarkoulakiS, LevineSS et al.: H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment.Cell135(4) , 649–661 (2008).
  • Wong LH , RenH, WilliamsE et al.: Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells.Genome Res.19(3) , 404–414 (2009).
  • Bird A : DNA methylation patterns and epigenetic memory.Gen. Dev.16(1) , 6–21 (2002).
  • Monk M , BoubelikM, LehnertS: Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development.Development99(3) , 371–382 (1987).
  • Bernstein BE , MeissnerA, LanderES: The mammalian epigenome.Cell128(4) , 669–681 (2007).
  • Farthing CR , FiczG, NgRK et al.: Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes.PLoS Genet.4(6) , E1000116 (2008).
  • Irizarry RA , Ladd-AcostaC, WenB et al.: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores.Nat. Genet.41(2) , 178–186 (2009).
  • Reik W : Stability and flexibility of epigenetic gene regulation in mammalian development.Nature447(7143) , 425–432 (2007).
  • Kafri T , ArielM, BrandeisM et al.: Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line.Gen. Dev.6(5) , 705–714 (1992).
  • Freitag M , SelkerEU: Controlling DNA methylation: many roads to one modification.Curr. Opin. Genet. Dev.15(2) , 191–199 (2005).
  • Turek-Plewa J , JagodzinskiPP: The role of mammalian DNA methyltransferases in the regulation of gene expression.Cell. Mol. Biol. Lett.10(4) , 631–647 (2005).
  • Okano M , BellDW, HaberDA, LiE: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.Cell99(3) , 247–257 (1999).
  • Li E , BestorTH, JaenischR: Targeted mutation of the DNA methyltransferase gene results in embryonic lethality.Cell69(6) , 915–926 (1992).
  • Weih F , NitschD, ReikA, SchutzG, BeckerPB: Analysis of CpG methylation and genomic footprinting at the tyrosine aminotransferase gene: DNA methylation alone is not sufficient to prevent protein binding in vivo.EMBO J.10(9) , 2559–2567 (1991).
  • Campanero MR , ArmstrongMI, FlemingtonEK: CpG methylation as a mechanism for the regulation of E2F activity.Proc. Natl Acad. Sci. USA97(12) , 6481–6486 (2000).
  • Eden S , HashimshonyT, KeshetI, CedarH, ThorneAW: DNA methylation models histone acetylation.Nature394(6696) , 842 (1998).
  • Bird AP , WolffeAP: Methylation-induced repression – belts, braces and chromatin.Cell99(5) , 451–454 (1999).
  • Bannister AJ , ZegermanP, PartridgeJF et al.: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.Nature410(6824) , 120–124 (2001).
  • Lachner M , O‘CarrollD, ReaS, MechtlerK, JenuweinT: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins.Nature410(6824) , 116–120 (2001).
  • Golan-Mashiach M , DazardJE, Gerecht-NirS et al.: Design principle of gene expression used by human stem cells: implication for pluripotency.FASEB J.19(1) , 147–149 (2005).
  • Jackson M , KrassowskaA, GilbertN et al.: Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells.Mol. Cell. Biol.24(20) , 8862–8871 (2004).
  • Zvetkova I , ApedaileA, RamsahoyeB et al.: Global hypomethylation of the genome in XX embryonic stem cells.Nat. Genet.37(11) , 1274–1279 (2005).
  • Gangaraju VK , LinH: MicroRNAs: key regulators of stem cells.Nat. Rev. Mol. Cell Biol.10(2) , 116–125 (2009).
  • Wang Y , KeysDN, Au-YoungJK, ChenC: MicroRNAs in embryonic stem cells.J. Cell. Physiol.218(2) , 251–255 (2009).
  • Kim KS , KimJS, LeeMR, JeongHS, KimJ: A study of microRNAs in silico and in vivo: emerging regulators of embryonic stem cells.FEBS J.276(8) , 2140–2149 (2009).
  • Berezikov E , GuryevV, van de Belt J et al.: Phylogenetic shadowing and computational identification of human microRNA genes. Cell120(1) , 21–24 (2005).
  • Bartel DP : MicroRNAs: genomics, biogenesis, mechanism, function.Cell116(2) , 281–297 (2004).
  • John B , EnrightAJ, AravinA et al.: Human microRNA targets.PLoS Biol2(11) , E363 (2004).
  • Griffiths-Jones S : The microRNA registry.Nucleic Acids Res.32(Database issue) , D109–D111 (2004).
  • Landgraf P , RusuM, SheridanR et al.: A mammalian microRNA expression atlas based on small RNA library sequencing.Cell129(7) , 1401–1414 (2007).
  • Ketting RF , FischerSE, BernsteinE et al.: Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans.Genes Dev.15(20) , 2654–2659 (2001).
  • Bernstein E , KimSY, CarmellMA et al.: Dicer is essential for mouse development.Nat. Genet.35(3) , 215–217 (2003).
  • Wienholds E , KoudijsMJ, van Eeden FJ, Cuppen E, Plasterk RH: The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat. Genet.35(3) , 217–218 (2003).
  • Sinkkonen L , HugenschmidtT, BerningerP et al.: MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells.Nat. Struct. Mol. Biol.15(3) , 259–267 (2008).
  • Laurent LC , ChenJ, UlitskyI et al.: Comprehensive microRNA profiling reveals a unique human embryonic stem cell signature dominated by a single seed sequence.Stem Cells26(6) , 1506–1516 (2008).
  • Suh MR , LeeY, KimJY et al.: Human embryonic stem cells express a unique set of microRNAs.Dev. Biol.270(2) , 488–498 (2004).
  • Houbaviy HB , MurrayMF, SharpPA: Embryonic stem cell-specific microRNAs.Dev. Cell5(2) , 351–358 (2003).
  • Singh SK , KagalwalaMN, Parker-ThornburgJ, AdamsH, MajumderS: REST maintains self-renewal and pluripotency of embryonic stem cells.Nature453(7192) , 223–227 (2008).
  • Tay Y , ZhangJ, ThomsonAM, LimB, RigoutsosI: MicroRNAs to NANOG, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation.Nature455(7216) , 1124–1128 (2008).
  • Conaco C , OttoS, HanJJ, MandelG: Reciprocal actions of REST and a microRNA promote neuronal identity.Proc. Natl Acad. Sci. USA103(7) , 2422–2427 (2006).
  • Morin RD , O‘ConnorMD, GriffithM et al.: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells.Genome Res.18(4) , 610–621 (2008).
  • Li SS , YuSL, KaoLP et al.: Target identification of microRNAs expressed highly in human embryonic stem cells.J. Cell. Biochem.106(6) , 1020–1030 (2009).
  • Cao H , YangCS, RanaTM: Evolutionary emergence of microRNAs in human embryonic stem cells.PLoS ONE3(7) , E2820 (2008).
  • Bussing I , SlackFJ, GrosshansH: Let-7 microRNAs in development, stem cells and cancer.Trends Mol. Med.14(9) , 400–409 (2008).
  • Benetti R , GonzaloS, JacoI et al.: A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases.Nat. Struct. Mol. Biol.15(9) , 998 (2008).
  • Stingl J , CaldasC: Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis.Nat. Rev. Cancer7(10) , 791–799 (2007).
  • Lapidot T , SirardC, VormoorJ et al.: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.Nature367(6464) , 645–648 (1994).
  • Bonnet D , DickJE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.Nat. Med.3(7) , 730–737 (1997).
  • Sirard C , LapidotT, VormoorJ et al.: Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis.Blood87(4) , 1539–1548 (1996).
  • Kong Y , YoshidaS, SaitoY et al.: CD34+CD38+CD19+ as well as CD34+CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL.Leukemia22(6) , 1207–1213 (2008).
  • Krivtsov AV , ArmstrongSA: MLL translocations, histone modifications and leukaemia stem-cell development.Nature reviews7(11) , 823–833 (2007).
  • Al-Hajj M , WichaMS, Benito-HernandezA, MorrisonSJ, ClarkeMF: Prospective identification of tumorigenic breast cancer cells.Proc. Natl Acad. Sci. USA100(7) , 3983–3988 (2003).
  • Singh SK , HawkinsC, ClarkeID et al.: Identification of human brain tumour initiating cells.Nature432(7015) , 396–401 (2004).
  • Collins AT , BerryPA, HydeC, StowerMJ, MaitlandNJ: Prospective identification of tumorigenic prostate cancer stem cells.Cancer Res.65(23) , 10946–10951 (2005).
  • Fang D , NguyenTK, LeishearK et al.: A tumorigenic subpopulation with stem cell properties in melanomas.Cancer Res.65(20) , 9328–9337 (2005).
  • Schatton T , MurphyGF, FrankNY et al.: Identification of cells initiating human melanomas.Nature451(7176) , 345–349 (2008).
  • Kim CF , JacksonEL, WoolfendenAE et al.: Identification of bronchioalveolar stem cells in normal lung and lung cancer.Cell121(6) , 823–835 (2005).
  • Ma S , ChanKW, HuL et al.: Identification and characterization of tumorigenic liver cancer stem/progenitor cells.Gastroenterology132(7) , 2542–2556 (2007).
  • Yin S , LiJ, HuC et al.: CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity.Int. J. Cancer120(7) , 1444–1450 (2007).
  • Ricci-Vitiani L , LombardiDG, PilozziE et al.: Identification and expansion of human colon-cancer-initiating cells.Nature445(7123) , 111–115 (2007).
  • O‘Brien CA , PollettA, GallingerS, DickJE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice.Nature445(7123) , 106–110 (2007).
  • Prince ME , SivanandanR, KaczorowskiA et al.: Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma.Proc. Natl Acad. Sci. USA104(3) , 973–978 (2007).
  • Li C , HeidtDG, DalerbaP et al.: Identification of pancreatic cancer stem cells.Cancer Res.67(3) , 1030–1037 (2007).
  • Ferrandina G , BonannoG, PierelliL et al.: Expression of CD133–1 and CD133–2 in ovarian cancer.Int. J. Gynecol. Cancer18(3) , 506–514 (2008).
  • Zhang S , BalchC, ChanMW et al.: Identification and characterization of ovarian cancer-initiating cells from primary human tumors.Cancer Res.68(11) , 4311–4320 (2008).
  • Fabian A , BarokM, VerebG, SzollosiJ: Die hard: are cancer stem cells the Bruce Willises of tumor biology?Cytometry A75(1) , 67–74 (2009).
  • Barnhart BC , SimonMC: Metastasis and stem cell pathways.Cancer Metastasis Rev.26(2) , 261–271 (2007).
  • Weissman IL : Normal and neoplastic stem cells.Novartis Found. Symp.265 , 35–50; discussion 50–54, 92–97 (2005).
  • Ivanova N , DobrinR, LuR et al.: Dissecting self-renewal in stem cells with RNA interference.Nature442(7102) , 533–538 (2006).
  • Ramalho-Santos M , YoonS, MatsuzakiY, MulliganRC, MeltonDA: ‘Stemness‘: transcriptional profiling of embryonic and adult stem cells.Science298(5593) , 597–600 (2002).
  • Ivanova NB , DimosJT, SchanielC et al.: A stem cell molecular signature.Science298(5593) , 601–604 (2002).
  • Sperger JM , ChenX, DraperJS et al.: Gene-expression patterns in human embryonic stem cells and human pluripotent germ cell tumors.Proc. Natl Acad. Sci. USA100(23) , 13350–13355 (2003).
  • Assou S , Le Carrour T, Tondeur S et al.: A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells25(4) , 961–973 (2007).
  • Muller FJ , LaurentLC, KostkaD et al.: Regulatory networks define phenotypic classes of human stem cell lines.Nature455(7211) , 401–405 (2008).
  • Tanaka TS , KunathT, KimberWL et al.: Gene expression profiling of embryo-derived stem cells reveals candidate genes associated with pluripotency and lineage specificity.Genome Res.12(12) , 1921–1928 (2002).
  • Skottman H , MikkolaM, LundinK et al.: Gene expression signatures of seven individual human embryonic stem cell lines.Stem cells23(9) , 1343–1356 (2005).
  • Ben-Porath I , ThomsonMW, CareyVJ et al.: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors.Nat. Genet.40(5) , 499–507 (2008).
  • Birnie R , BryceSD, RoomeC et al.: Gene-expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions.Genome Biol.9(5) , R83 (2008).
  • Klarmann GJ , HurtEM, MathewsLA et al.: Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature.Clin. Exp. Metastasis26(5) , 433–446 (2009).
  • Galie M , KonstantinidouG, PeroniD et al.: Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice.Oncogene27(18) , 2542–2551 (2008).
  • Charafe-Jauffret E , GinestierC, IovinoF et al.: Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature.Cancer Res.69(4) , 1302–1313 (2009).
  • Ke XS , QuY, RostadK et al.: Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.PLoS ONE4(3) , E4687 (2009).
  • Glinsky GV : ‘Stemness‘ genomics law governs clinical behavior of human cancer: implications for decision making in disease management.J. Clin. Oncol.26(17) , 2846–2853 (2008).
  • Yu J , YuJ, RhodesDR et al.: A polycomb repression signature in metastatic prostate cancer predicts cancer outcome.Cancer Res.67(22) , 10657–10663 (2007).
  • Metsuyanim S , Pode-ShakkedN, Schmidt-OttKM et al.: Accumulation of malignant renal stem cells is associated with epigenetic changes in normal renal progenitor genes.Stem Cells26(7) , 1808–1817 (2008).
  • Calvisi DF , LaduS, GordenA et al.: Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma.J. Clin. Invest.117(9) , 2713–2722 (2007).
  • Suzuki K , SuzukiI, LeodolterA et al.: Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage.Cancer Cell9(3) , 199–207 (2006).
  • Jones PA , BaylinSB: The fundamental role of epigenetic events in cancer.Nat. Rev. Genet.3(6) , 415–428 (2002).
  • Baylin SB , OhmJE: Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction?Nat. Rev. Cancer6(2) , 107–116 (2006).
  • Issa JP : CpG island methylator phenotype in cancer.Nat. Rev. Cancer4(12) , 988–993 (2004).
  • Bloushtain-Qimron N , YaoJ, SnyderEL et al.: Cell type-specific DNA methylation patterns in the human breast.Proc. Natl Acad. Sci. USA105(37) , 14076–14081 (2008).
  • Shipitsin M , CampbellLL, ArganiP et al.: Molecular definition of breast tumor heterogeneity.Cancer Cell11(3) , 259–273 (2007).
  • Mohinta S , WuH, ChaurasiaP, WatabeK: Wnt pathway and breast cancer.Front. Biosci.12 , 4020–4033 (2007).
  • Klarmann GJ , DeckerA, FarrarWL: Epigenetic gene silencing in the Wnt pathway in breast cancer.Epigenetics3(2) , 59 (2008).
  • Lindvall C , BuW, WilliamsBO, LiY: Wnt signaling, stem cells, and the cellular origin of breast cancer.Stem Cell Rev.3(2) , 157–168 (2007).
  • Cheng AS , CulhaneAC, ChanMW et al.: Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome.Cancer Res.68(6) , 1786–1796 (2008).
  • Calvanese V , HorrilloA, HmadchaA et al.: Cancer genes hypermethylated in human embryonic stem cells.PLoS ONE3(9) , E3294 (2008).
  • Meissner A , MikkelsenTS, GuH et al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells.Nature454(7205) , 766–770 (2008).
  • Widschwendter M , FieglH, EgleD et al.: Epigenetic stem cell signature in cancer.Nat. Genet.39(2) , 157–158 (2007).
  • Schuebel K , ChenW, BaylinSB: CIMPle origin for promoter hypermethylation in colorectal cancer?Nat. Genet.38(7) , 738–740 (2006).
  • Brunner AL , JohnsonDS, KimSW et al.: Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver.Genome Res.19(6) , 1044–1056 (2009).
  • Hahn MA , HahnT, LeeDH et al.: Methylation of polycomb target genes in intestinal cancer is mediated by inflammation.Cancer Res.68(24) , 10280–10289 (2008).
  • McGarvey KM , Van Neste L, Cope L et al.: Defining a chromatin pattern that characterizes DNA-hypermethylated genes in colon cancer cells. Cancer Res.68(14) , 5753–5759 (2008).
  • Gartel AL , KandelES: RNA interference in cancer.Biomol. Eng.23(1) , 17–34 (2006).
  • Nimmo RA , SlackFJ: An elegant miRror: microRNAs in stem cells, developmental timing and cancer.Chromosoma118(4) , 405–418 (2009).
  • Calin GA , SevignaniC, DumitruCD et al.: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc. Natl Acad. Sci. USA101(9) , 2999–3004 (2004).
  • Lu J , GetzG, MiskaEA et al.: MicroRNA expression profiles classify human cancers.Nature435(7043) , 834–838 (2005).
  • Takamizawa J , KonishiH, YanagisawaK et al.: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival.Cancer Res.64(11) , 3753–3756 (2004).
  • Thomson JM , NewmanM, ParkerJS et al.: Extensive post-transcriptional regulation of microRNAs and its implications for cancer.Genes Dev.20(16) , 2202–2207 (2006).
  • Lujambio A , CalinGA, VillanuevaA et al.: A microRNA DNA methylation signature for human cancer metastasis.Proc. Natl Acad. Sci. USA105(36) , 13556–13561 (2008).
  • Wang Y , BlellochR: Cell cycle regulation by MicroRNAs in embryonic stem cells.Cancer Res.69(10) , 4093–4096 (2009).
  • Yu F , YaoH, ZhuP et al.: Let-7 regulates self renewal and tumorigenicity of breast cancer cells.Cell131(6) , 1109–1123 (2007).
  • Iorio MV , FerracinM, LiuCG et al.: MicroRNA gene expression deregulation in human breast cancer.Cancer Res.65(16) , 7065–7070 (2005).
  • Shell S , ParkSM, RadjabiAR et al.: Let-7 expression defines two differentiation stages of cancer.Proc. Natl Acad. Sci. USA104(27) , 11400–11405 (2007).
  • Park SM , ShellS, RadjabiAR et al.: Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2.Cell Cycle6(21) , 2585–2590 (2007).
  • Shimono Y , ZabalaM, ChoRW et al.: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells.Cell138(3) , 592–603 (2009).
  • Su X , GopalakrishnanV, StearnsD et al.: Abnormal expression of REST/NRSF and Myc in neural stem/progenitor cells causes cerebellar tumors by blocking neuronal differentiation.Mol. Cell. Biol.26(5) , 1666–1678 (2006).
  • Purdue MP , DevesaSS, SigurdsonAJ, McGlynnKA: International patterns and trends in testis cancer incidence.Int. J. Cancer115(5) , 822–827 (2005).
  • Bray F , RichiardiL, EkbomA et al.: Trends in testicular cancer incidence and mortality in 22 European countries: continuing increases in incidence and declines in mortality.Int. J. Cancer118(12) , 3099–3111 (2006).
  • Sokoloff MH , JoyceGF, WiseM: Testis cancer.J. Urol.177(6) , 2030–2041 (2007).
  • van de Geijn GJ , HersmusR, LooijengaLH: Recent developments in testicular germ cell tumor research.Birth Defects Res C Embryo Today87(1) , 96–113 (2009).
  • Bulic-Jakus F , UlamecM, VlahovicM et al.: Of mice and men: teratomas and teratocarcinomas.Coll. Antropol.30(4) , 921–924 (2006).
  • Korkola JE , HeckS, OlshenAB et al.: In vivo differentiation and genomic evolution in adult male germ cell tumors.Genes Chromosomes Cancer47(1) , 43–55 (2008).
  • Korkola JE , HouldsworthJ, ChadalavadaRS et al.: Downregulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors.Cancer Res.66(2) , 820–827 (2006).
  • Netto GJ , NakaiY, NakayamaM et al.: Global DNA hypomethylation in intratubular germ cell neoplasia and seminoma, but not in nonseminomatous male germ cell tumors.Mod. Pathol.21(11) , 1337–1344 (2008).
  • Pierce GB : Neoplasms, differentiations and mutations.Am. J. Pathol.77(1) , 103–118 (1974).
  • Kleinsmith LJ , PierceGB Jr: Multipotentiality of single embryonal carcinoma cells. Cancer Res.24 , 1544–1551 (1964).
  • Damjanov I : From stem cells to germ cell tumors and back.Verh. Dtsch. Ges. Pathol.88 , 39–44 (2004).
  • Andrews PW : From teratocarcinomas to embryonic stem cells.Philos. Trans. R. Soc. Lond. B Biol. Sci.357(1420) , 405–417 (2002).
  • Solter D , SkrebN, DamjanovI: Extrauterine growth of mouse egg-cylinders results in malignant teratoma.Nature227(5257) , 503–504 (1970).
  • Mintz B , IllmenseeK: Normal genetically mosaic mice produced from malignant teratocarcinoma cells.Proc. Natl Acad. Sci. USA72(9) , 3585–3589 (1975).
  • Lind GE , SkotheimRI, FragaMF et al.: Novel epigenetically deregulated genes in testicular cancer include homeobox genes and SCGB3A1 (HIN-1).J. Pathol.210(4) , 441–449 (2006).
  • Honorio S , AgathanggelouA, WernertN et al.: Frequent epigenetic inactivation of the RASSF1A tumour suppressor gene in testicular tumours and distinct methylation profiles of seminoma and nonseminoma testicular germ cell tumours.Oncogene22(3) , 461–466 (2003).
  • Kawakami T , OkamotoK, KataokaA et al.: Multipoint methylation analysis indicates a distinctive epigenetic phenotype among testicular germ cell tumors and testicular malignant lymphomas.Genes Chromosomes Cancer38(1) , 97–101 (2003).
  • De Jong J , WeedaS, GillisAJ, OosterhuisJW, LooijengaLH: Differential methylation of the OCT3/4 upstream region in primary human testicular germ cell tumors.Oncol. Rep.18(1) , 127–132 (2007).
  • Santagata S , LigonKL, HornickJL: Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors.Am. J. Surg. Pathol.31(6) , 836–845 (2007).
  • de Jong J , LooijengaLH: Stem cell marker OCT3/4 in tumor biology and germ cell tumor diagnostics: history and future.Crit. Rev. Oncog.12(3–4) , 171–203 (2006).
  • West JA , ViswanathanSR, YabuuchiA et al.: A role for Lin28 in primordial germ-cell development and germ-cell malignancy.Nature460(7257) , 909–913 (2009).
  • Glinsky GV , BerezovskaO, GlinskiiAB: Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer.J. Clin. Invest.115(6) , 1503–1521 (2005)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.