159
Views
1
CrossRef citations to date
0
Altmetric
Review

Environmental Regulation Of The Neural Epigenome

&
Pages 131-151 | Published online: 01 Oct 2009

Bibliography

  • Rutter M : Gene–environment interdependence.Dev. Sci.10 , 12–18 (2007).
  • Ebstein RP : The molecular genetic architecture of human personality: beyond self-report questionnaires.Mol. Psychiatry11 , 427–445 (2006).
  • Meyer-Lindenberg A , WeinbergerDR: Intermediate phenotypes and genetic mechanisms of psychiatric disorders.Nat. Rev. Neurosci.7 , 818–827 (2006).
  • Petronis A : Epigenetics and twins: three variations on the theme.Trends Genet.22, , 347–350 (2006).
  • Fraga MF , BallestarE, PazMF et al.: Epigenetic differences arise during the lifetime of monozygotic twins.Proc. Natl Acad. Sci. USA102 , 10604–10609 (2005).
  • Weksberg R , ShumanC, CaluseriuO et al.: Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith–Wiedemann syndrome.Hum. Mol. Genet.11 , 1317–1325 (2002).
  • Meaney MJ , SzyfM: Maternal effects as a model for environmentally-dependent chromatin plasticity.Trends Neurosci.28 , 456–463 (2005).
  • Meaney MJ , SzyfM, SecklJR: Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health.Trends Mol. Med.13 , 269–277 (2007).
  • Jirtle RL , SkinnerMK: Environmental epigenomics and disease susceptibility.Nat. Rev. Genet.8 , 253–262 (2007).
  • Tsankova N , RenthalW, KumarA, NestlerEJ: Epigenetic regulation in psychiatric disorders.Nat. Rev. Neurosci.8 , 355–367 (2007).
  • Sweatt JD : Experience-dependent epigenetic modifications in the central nervous system.Biol. Psychiatry65 , 191–197 (2009).
  • Ooi SKT , BestorTH: The colorful history of active demethylation.Cell133 , 1145–1148 (2008).
  • Bateson P , BarkerD, Clutton-BrockT et al.: Developmental plasticity and human health.Nature430 , 419–421 (2004).
  • Gluckman PD , HansonMA: Developmental plasticity and human disease: research directions.J. Int. Med.261 , 461–471 (2007).
  • Seckl JR , HolmesMC: Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming‘ of adult pathophysiology.Nat. Clin. Prac. Endocrinol. Metab.3 , 479–488 (2007).
  • Paulsen M , Ferguson-SmithAC: DNA methylation in genomic imprinting, development, and disease.J. Pathol.195 , 97–110 (2001).
  • Miller F , GauthierAS: Timing is everything: making neurons versus glia in the developing cortex.Neuron54 , 357–369 (2007).
  • Sun Y , Nadal-VicensM, MisonoS et al.: Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms.Cell104 , 365–376 (2001).
  • Meissner A . Mikkelsen TS. Gu H et al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature454 , 766–770 (2008).
  • Hatada I , MoritaS, KimuraM, HoriiT, YamashitaR, NakaiK: Genome-wide demethylation during neural differentiation of P19 embryonic carcinoma cells.J. Hum. Genet.53 , 185–191 (2008).
  • Heintzman ND , StuartRK, HonG et al.: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.Nat. Genet.39 , 311–318 (2007).
  • Shen Q , WangY, DimosJT et al.: The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells.Nat. Neurosci.6 , 743–751 (2006).
  • Namihira M , NakashimaK, Taga,T: Developmental stage dependent regulation of DNA methylation and chromatin modification in a immature astrocyte specific gene promoter. FEBS Lett.572 , 184–188 (2004).
  • Barnabé-Heider F , WasylnkaJA, FernandesKJ et al.: Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1.Neuron48 , 253–265 (2005).
  • Bonni A , SunY, Nadal-VicensM et al.: Regulation of gliogenesis in the central nervous system by the JAK–STAT signaling pathway.Science278 , 477–483 (1997).
  • Nakashima K , YanagisawaM, ArakawaH et al.: Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300.Science284 , 479–482 (1999).
  • Fan G , MartinowichK, ChinMH et al.: DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling.Development132 , 3345–3356 (2005).
  • Rajan P , McKayRD: Multiple routes to astrocytic differentiation in the CNS.J. Neurosci.18 , 3620–3629 (1998).
  • Bugga L , GadientRA, KwanK, StewartCL, PattersonPH: Analysis of neuronal and glial phenotypes in brains of mice deficient in leukemia inhibitory factor.J. Neurobiol.36 , 509–524 (1998).
  • Koblar SA Turnley AM, Classon BJ et al.: Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor. Proc. Natl Acad. Sci. USA95 , 3178–3181 (1998).
  • He F , GeW, ZhuW, Becker-CataniaS et al.: A positive autoregulation loop of JAK–STAT signaling is part of the clock mechanism regulating astrogliogenesis.Nat. Neurosci.8 , 616–625 (2005).
  • Sauvageot CM , StilesCD: Molecular mechanisms controlling cortical gliogenesis.Curr. Opin. Neurobiol.12 , 244–249 (2002).
  • Takizawa T , NakashimaK, NamihiraM et al.: DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain.Dev. Cell1 , 749–758 (2001).
  • Teter B , RozovskyI, KrohnK, AndersonC, OsterburgH, FinchC: Methylation of the glial fibrillary acidic protein gene shows novel biphasic changes during brain development.Glia17 , 195–205 (1996).
  • Sun YE , MartinowichK, GeW: Making and repairing the mammalian brain – signaling toward neurogenesis and gliogenesis.Sem. Cell. Dev. Biol.14 , 161–168 (2003).
  • Fan G , MartinowichK, ChinMH et al.: DNA methylation controls the timing of astrogliogenesis through regulation of JAK–STAT signaling.Development132 , 3345–3356 (2005).
  • Repetti RL , TaylorSE, SeemanTE: Risky families: family social environments and the mental and physical health of offspring.Psychol. Bull.128 , 330–366 (2002).
  • Rossiter MC : The role of environmental variation in parental effects expression. In: Maternal Effects as Adaptations. (Mousseau TA, Fox CW, Eds). Oxford University Press, Oxford, UK, 112–136 (1998).
  • Mousseau TA , FoxCW: The adaptive significance of maternal effects.Trends Ecol. Evol.13 , 403–407 (1998).
  • Cameron N , ParentC, ChampagneFA, FishE, Ozaki-KurodaK, MeaneyMJ: The programming of individual differences in defensive responses and reproductive strategies in the rat through variations in maternal care.Neurosci. Biobehav. Rev.29 , 843–865 (2005).
  • West-Eberhardt MJ : Developmental Plasticity and Evolution. Oxford University Press, Oxford, UK (2003).
  • Gilbert SF , EpelD: Ecological developmental biology. Sinauer Associates, MA, USA (2009).
  • Meaney MJ : The development of individual differences in behavioral and endocrine responses to stress.Annu. Rev. Neurosci.24 , 1161–1192 (2001).
  • Champagne FA , FrancisDD, MarA, MeaneyMJ: Naturally-occurring variations in maternal care in the rat as a mediating influence for the effects of environment on the development of individual differences in stress reactivity.Physiol. Behav.79 , 359–371 (2003).
  • Champagne FA : Epigenetic mechanisms and the transgenerational effects of maternal care.Front. Neuroendocrinol.29 , 386–397 (2008).
  • Schanberg SM , EvoniukG, KuhnCM: Tactile and nutritional aspects of maternal care: specific regulators of neuroendocrine function and cellular development.Proc. Soc. Exp. Biol. Med.175 , 135–146 (1984).
  • Levine S : The ontogeny of the hypothalamic–pituitary–adrenal axis. The influence of maternal factors.Ann. NY Acad. Sci.746 , 275–288 (1994).
  • Hofer MA : The psychobiology of early attachment.Clin. Neurosci. Res.4 , 291–300 (2005).
  • Liu D , DiorioJ, TannenbaumB, CaldjiC et al.: Maternal care, hippocampal glucocorticoid receptors and HPA responses to stress.Science277 , 1659–1662 (1977).
  • Caldji C , TannenbaumB, SharmaS, FrancisDD, PlotskyPM, MeaneyMJ: Maternal care during infancy regulates the development of neural systems mediating the expression of behavioral fearfulness in adulthood in the rat.Proc. Natl Acad. Sci. USA95 , 5335–5340 (1998).
  • Francis DD , DiorioJ, LiuD, MeaneyMJ: Nongenomic transmission across generations in maternal behavior and stress responses in the rat.Science286 , 1155–1158 (1999).
  • Weaver ICG , CervoniN, D‘AlessioAC et al.: Epigenetic programming through maternal behavior.Nat. Neurosci.7 , 847–854 (2004).
  • Weaver ICG , ChampagneFA, BrownSE et al.: Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life.J. Neurosci.25 , 11045–11054 (2005).
  • Menard J , ChampagneD, MeaneyMJ: Maternal care alters behavioral and neural activity patterns in the defensive burying paradigm.Neuroscience129 , 297–308 (2004).
  • Toki S , MorinobuS, ImanakaA, YamamotoS, YamawakiS, HonmaK: Importance of early lighting conditions in maternal care by dam as well as anxiety and memory later in life of offspring.Eur. J. Neurosci.25 , 815–829 (2007).
  • Caldji C , DiorioJ, MeaneyMJ: Variations in maternal care alter GABAA receptor subunit expression in brain regions associated with fear.Neuropsychopharmacology28 , 150–159 (2003).
  • Plotsky PM , CunninghamET Jr, Widmaier EP: Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr. Rev.10 , 437–458 (1989).
  • Koob GF , HeinrichsSC, MenzaghiF, PichEM, BrittonKT: Corticotropin-releasing factor, stress and behavior.Sem. Neurosci.6 , 221–229 (1994).
  • Bale TL , ValeWW: CRF and CRF receptors: role in stress responsivity and other behaviors.Annu. Rev. Pharm. Toxicol.44 , 525–557 (2004).
  • Jutapakdeegul N , CasalottiSO, GovitrapongP, KotchabhakdiN: Postnatal touch stimulation acutely alters corticosterone levels and glucocorticoid receptor gene expression in the neonatal rat.Dev. Neurosci.25 , 26–33 (2003).
  • Burton CL , ChatterjeeD, Chatterjee-ChakrabortyM et al.: Prenatal restraint stress and motherless rearing disrupts expression of plasticity markers and stress-induced corticosterone release in adult female Sprague-Dawley rats.Brain Res.1158 , 28–38 (2007).
  • Gonzalez A , LovicV, WardGR, WainwrightPE, FlemingAS: Intergenerational effects of complete maternal deprivation and replacement stimulation on maternal behavior and emotionality in female rats.Dev. Psychobiol.38 , 11–32 (2001).
  • Fenoglio KA , BrunsonKL, Avishai-ElinerS, StoneBA, KapadiaBJ, BaramTZ: Enduring, handling-evoked enhancement of hippocampal memory function and glucocorticoid receptor expression involves activation of the corticotropin-releasing factor type 1 receptor.Endocrinology146 , 4090–4096 (2005).
  • Lippmann M , BressA, NemeroffCB, PlotskyPM, Monteggia, Lisa M: Long-term behavioural and molecular alterations associated with maternal separation in rats. Eur. J. Neurosci.25 , 3091–3098 (2007).
  • Plotsky PM , ThrivikramanKV, NemeroffCB, CaldjiC, SharmaS, MeaneyMJ: Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring.Neuropsychopharmacology30 , 2192–2204 (2005).
  • Champagne FA , MeaneyMJ: Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model.Biol. Psychiatry59 , 1227–1235 (2006).
  • Bird A : Perceptions of epigenetics.Nature447 , 396–398 (2007).
  • Waterland RA , JirtleRL: Transposable elements: targets for early nutritional effects on epigenetic gene regulation.Mol. Cell. Biol.23 , 5293–5300 (2003).
  • Waterland RA , LinJR, SmithCA, JirtleRL: Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (IGF2) locus.Hum. Mol. Genet.15 , 705–716 (2006).
  • Cooney CA , DaveAA, WolffGL: Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring.J. Nutrition132 , S2393–S2400 (2002).
  • Whitelaw NC , WhitelawE: How lifetimes shape epigenotype within and across generations.Hum. Mol. Genet.15 , R131–R137 (2006).
  • Bruniquel D , SchwartzRH: Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process.Nat. Immunol.4 , 235–240 (2003).
  • Murayama A , SakuraK, NakamaM et al.: A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory.EMBO J.25 , 1081–1092 (2006).
  • Martinowich K , HattoriD, WuH et al.: DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation.Science302 , 890–893 (2003).
  • Weaver ICG , DiAlessioAC, BrownSE et al.: The transcription factor NGFI-A mediates epigenetic programming: altering epigenetic marking through immediate early genes.J. Neurosci.27 , 1756–1768 (2007).
  • Champagne FA , WeaverICG, DiorioJ, DymovS, SzyfM, MeaneyMJ: Maternal care regulates methylation of the estrogen receptor a 1b promoter and estrogen receptor a expression in the medial preoptic area of female offspring.Endocrinology147 , 2909–2915 (2006).
  • Lubin FD , RothTL, SweattJD: Epigenetic regulation of bdnf gene transcription in the consolidation of fear memory.J. Neurosci.28 , 10576–10586 (2008).
  • Meaney MJ . Diorio J, Donaldson L, Yau J, Chapman K, Seckl JR: Handling alters the expression of messenger RNAs for AP-2, NGFI-A and NGFI-B in the hippocampus of neonatal rats. J. Neurosci.20 , 3936–3945 (2000).
  • Brandeis M , FrankD, KeshetI et al.: Sp1 elements protect a CpG island from de novo methylation.Nature371 , 435–438 (1994).
  • Kalkhoven E : CBP and p300: HATs for different occasions.Biochem. Pharmacol.68 , 1145–1155 (2004).
  • Szyf M , EliassonV, MannG, Klein, Razin A: Cellular and viral DNA hypomethylation associated with induction of Epstein-Barr virus lyticcycle. Proc. Natl Acad. Sci. USA82 , 8090–8094 (1985).
  • Detich N , BovenziV, SzyfM: Valproate induces replication-independent active DNA demethylation.J. Biol. Chem.278 , 27586–27592 (2003).
  • Wu LP , WangX, LiL et al.: Histone deacetylase inhibitor depsipeptide activates silenced genes through decreasing both CpG and H3k9 methylation on the promoter.Mol. Cell. Biol.28 , 3219–3235 (2008).
  • Cameron EE , BachmanKE, MyohanenS, HermanJG, BaylinSB: Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer.Nat. Genet.21 , 103–107 (1999).
  • Bachman KE , ParkBH, RheeI et al.: Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene.Cancer Cell3 , 89–95 (2003).
  • Belinsky SA , KlingeDM, StidleyCA et al.: Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer.Cancer Res. CA63 , 7089–7093 (2003).
  • Levenson JM , O‘RiordanKJ, BrownKD, TrinhMA, MolfeseDL, SweattJD: Regulation of histone acetylation during memory formation in the hippocampus.J. Biol. Chem.279 , 40545–40559 (2004).
  • Weaver IC . Meaney MJ. Szyf M: Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc. Natl Acad. Sci. USA103 , 3480–3485 (2006).
  • Dragunow M : A role for immediate-early transcription factors in learning and memory.Behav. Genet.26 , 293–299 (1996).
  • O‘Donovan KJ , TourtellotteWG, MillbrandtJ, BarabanJM: The EGR family of transcription-regulatory factors: progress at the interface of molecular and systems neuroscience.Trends Neurosci.22 , 167–173 (1999).
  • Jones MW , ErringtonML, FrenchPJ et al.: A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories.Nat. Neurosci.4 , 289–296 (2001).
  • Knapska E , KaczmarekL: A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK?Prog. Neurobiol.74 , 183–211 (2004).
  • Liu D , DiorioJ, DayJC, FrancisDD, MarA, MeaneyMJ: Maternal care, hippocampal synaptogenesis and cognitive development in the Rat.Nat. Neurosci.3 , 799–806 (2000).
  • Bredy TW , HumpartzoomianRA, CainDP, MeaneyMJ: The influence of maternal care and environmental enrichment on hippocampal development and function in the rat.Neuroscience118 , 571–576 (2003).
  • Champagne DL . Bagot RC. van Hasselt F et al.: Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J. Neurosci.28 , 6037–6045 (2008).
  • Bagot RC , van Hasselt FN, Champagne DL, Meaney MJ, Krugers HJ, Joëls M: Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus. Neurobiol. Learn. Mem.92(3) , 292–300 (2009).
  • Smit-Rigter LA , ChampagneDL, van Hooft JA: Dendritic structure and function of cortical layer 2/3 pyramidal neurons in rat offspring. PLoS ONE4 , e5167 (2009).
  • Malenka RC , NicollRA: NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms.Trends Neurosci.16 , 521–527 (1993).
  • Bear MF , MalenkaRC: Synaptic plasticity: LTP and LTD.Curr. Opin. Neurobiol.4 , 389–399 (1994).
  • Morris RG , FreyU: Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience?Philos. Trans. R. Soc. Lond., B, Biol. Sci.352 , 1489–1503 (1997).
  • Ali DW , SalterMW: NMDA receptor regulation by Src kinase signaling in excitatory synaptic transmission and plasticity.Curr. Opin. Neurobiol.11 , 336–342 (2001).
  • Alberini CM , GhirardiM, HuangYY, NguyenPV, KandelER: A molecular switch for the consolidation of long-term memory: cAMP-inducible gene expression.Ann. NY Acad. Sci.758 , 261–286 (1995).
  • Kandel ER : The molecular biology of memory storage: a dialogue between genes and synapses.Science294 , 1030–1038 (2001).
  • Lynch MA : Long-term potentiation and memory.Physiol. Rev.84 , 87–136 (2004).
  • Alarcon JM , MalleretG, TouzaniK et al.: Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein–Taybi syndrome and its amelioration.Neuron42 , 947–959 (2004).
  • Lubin FD , RothTL, SweattJD: Epigenetic regulation of bdnf gene transcription in the consolidation of fear memory.J. Neurosci.28 , 10576–10586 (2008).
  • Miller CA , SweattJD: Covalent modification of DNA regulates memory formation.Neuron53 , 857–869 (2007).
  • Yeh SH , LinCH, GeanPW: Acetylation of nuclear factor-κB in rat amygdala improves long-term but not short-term retention of fear memory.Mol. Pharmacol.65 , 1286–1292 (2004).
  • Bredy TW , WuH, CregoC, ZellhoeferJ, SunYE, BaradM: Histone modifications around individual BDNF gene promoters in prefrontalcortex are associated with extinction of conditioned fear.Learn. Mem.14 , 268–276 (2007).
  • Oike Y , HataA, MamiyaT et al.: Truncated CBP protein leads to classical Rubinstein–Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism.Hum. Mol. Genet.8 , 387–396 (1999).
  • Bourtchouladze R , LidgeR, CatapanoR et al.: A mouse model of Rubinstein–Taybi syndrome: defective long-term memory isameliorated by inhibitors of phosphodiesterase 4.Proc. Natl Acad. Sci. USA100 , 10518–10522 (2003).
  • Korzus E , RosenfeldMG, MayfordM: CBP histone acetyltransferase activity is a critical component of memory consolidation.Neuron42 , 961–972 (2004).
  • Wood MA , AttnerMA, OliveiraAM, BrindlePK, AbelT: A transcription factor-binding domain of the co-activator CBP is essential for long-term memory and the expression of specific target genes.Learn. Mem.13 , 609–617 (2006).
  • Vecsey CG , HawkJD, LattalKM et al.: Histone deacetylase inhibitors enhance memory and synaptic plasticity via CREB: CBP-dependent transcriptional activation.J. Neurosci.27 , 6128–6140 (2007).
  • Petrij F , GilesRH, DauwerseHG et al.: Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP.Nature376 , 348–351 (1995).
  • Levenson JM , SweattJD: Epigenetic mechanisms in memory formation.Nat. Rev. Neurosci.6 , 108–118 (2005).
  • Guan Z , GiustettoM, LomvardasS et al.: Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure.Cell111 , 483–493 (2002).
  • Miller CA , CampbellSL, SweattJD: DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity.Neurobiol. Learn. Mem.89 , 599–603 (2008).
  • West AE , ChenWG, DalvaMB et al.: Calcium regulation of neuronal gene expression.Proc. Natl Acad. Sci. USA.98 , 11024–11031 (2001).
  • Timmusk T , PalmK, MetsisM et al.: Multiple promoters direct tissue-specific expression of the rat BDNF gene.Neuron10 , 475–479 (1993).
  • Zoghbi HY : Postnatal neurodevelopmental disorders: meeting at the synapse?Science302 , 826–830 (2003).
  • Zhou Z , HongEJ, CohenS et al.: Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation.Neuron52 , 255–269 (2006).
  • Chen WG , ChangQ, LinY et al.: Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2.Science302 , 793–795 (2003).
  • Kishi N , MacklisJD: MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions.Mol. Cell. Neurosci.27 , 306–321 (2004).
  • Moretti P , LevensonJM, BattagliaF et al.: Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome.J. Neurosci.26 , 319–327 (2006).
  • Asaka Y , JugloffDG, ZhangL, EubanksJH, FitzsimondsRM: Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome.Neurobiol. Dis.21 , 217–227 (2006).
  • Nelson ED , KavalaliET, MonteggiaLM: MeCP2-dependent transcriptional repression regulates excitatory neurotransmission.Curr. Biol.16 , 710–716 (2006).
  • Pelka GJ , WatsonCM, RadziewicT et al.: Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice.Brain129 , 887–898 (2006).
  • Linnarsson S , BjörklundA, ErnforsP: Learning deficit in BDNF mutant mice.Eur. J. Neurosci.9 , 2581–2587 (1997).
  • Hall J , ThomasKL, EverittBJ: Rapid and selective induction of BDNF expression in the hippocampus during contextual learning.Nat. Neurosci.3 , 533–535 (2000).
  • Maren S , QuirkGJ: Neuronal signaling of fear memory.Nat. Rev. Neurosci.5 , 844–852 (2000).
  • Roceri M , CirulliF, PessinaC, PerettoP, RacagniG, RivaMA: Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions.Biol. Psychiatry55 , 708–714 (2004).
  • Roceri M , HendriksW, RacagniG, EllenbroekBA, RivaMA: Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus.Mol. Psychiatry7 , 609–616 (2002).
  • Branchi I , D‘AndreaI, FioreM, Di Fausto V, Aloe L, Alleva E: Early social enrichment shapes social behavior and nerve growth factor and brain-derived neurotrophic factor levels in the adult mouse brain. Biol. Psychiatry60 , 690–696 (2006).
  • Greisen MH , AltarCA, BolwigTG, WhiteheadR, WortweinG: Increased adult hippocampal brain-derived neurotrophic factor and normal levels of neurogenesis in maternal separation rats.Trends Genet.22 , 347–350 (2006).
  • Roth TL , LubinFD, FunkAJ, SweattJD: Lasting epigenetic influence of early-life adversity on the BDNF gene.Biol. Psychiatry65 , 760–769 (2009).
  • Hensch TK : Recovery in the blink of an eye, Neuron 48, 166–168 (2005).
  • Knudsen EI : Sensitive periods in the development of the brain and behaviorJ. Cogn. Neurosci.16 , 1412–1425 (2004).
  • Hooks BM , ChenC: Critical periods in the visual system: changing views for a model of experience-dependent plasticity.Neuron56 , 312–326 (2007).
  • Hensch TK : Critical period regulation.Ann. Rev. Neurosci.27 , 549–579 (2004).
  • Daw N : Visual Development. Plenum Press, NY, USA (1995).
  • O‘Leary DDM , RuffNL, DyckRH: Development, critical period plasticity, and adult reorganizations of mammalian somatosensory system.Curr. Opin. Neurobiol.4 , 535–544 (1994).
  • Fox K , SchlaggarBL, GlazewskiS, O‘LearyDDM: Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex.Proc. Natl Acad. Sci. USA93 , 5584–5589 (1996).
  • Van der Loos H , WoolseyTA: Somatosensory cortex: structural alterations following early injury to sense organs.Science179 , 395–398 (1973).
  • Iwasato T , DatwaniA, WolfAM et al.: Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex.Nature406 , 726–731 (2000).
  • Chang EF , MerzenichMM: Environmental noise retards auditory cortical development.Science300 , 498–502 (2003).
  • Lenneberg EH : Biological Foundations of Language. Wiley, NY, USA (1967).
  • Wiesel TN , HubelDH: Single-cell responses in striate cortex of kittens deprived of vision in one eye.J. Neurophysiol.26 , 1003–1017.
  • Prusky GT , DouglasRM: Developmental plasticity of mouse visual acuity.Eur. J. Neurosci.17 , 167–173 (2003).
  • Ossipow V , PellissierF, SchaadO, BallivetM: Gene expression analysis of the critical period in the visual cortex.Mol. Cell. Neurosci.27 , 70–83 (2004).
  • Majdan M , ShatzCJ: Effects of visual experience on activity-dependent gene regulation in cortex.Nat. Neurosci.9 , 650–659 (2006).
  • Tropea D , KreimanG, LyckmanA, MukherjeeS, YuH, HorngS, SurM: Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex.Nat. Neurosci.9 , 660–668 (2006).
  • Crosio C , CermakianN, AllisCD, Sassone-CorsiP: Light induces chromatin modification in cells of the mammalian circadian clock.Nat. Neurosci.3 , 1241–1247 (2000).
  • Korzus E , RosenfeldMG, MayfordM: CBP histone acetyltransferase activity is a critical component of memory consolidation.Neuron42 , 961–972 (2004).
  • Huang YF , DohertyJJ, DingledineR: Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus.J. Neurosci.22 , 8422–8428 (2002).
  • Sng JCG , TaniuraH, YonedaY: Histone modifications in kainite induced status epilepticus.Eur. J. Neurosci.23 , 1269–1282 (2006).
  • Putignano E , LonettiG, CanceddaL et al.: Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity.Neuron53 , 747–759 (2007).
  • Pham TA , GrahamSJ, SuzukiS et al.: A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB.Learn. Mem.11 , 738–747 (2004).
  • Sawtell NB , FrenkelMY, PhilpotBD, NakazawaK, TonegawaS, BearMF: NMDA receptor-dependent ocular dominance plasticity in adult visual cortex.Neuron38 , 977–985 (2003).
  • Pizzorusso T , MediniP, BerardiN et al.: Reactivation of ocular dominance plasticity in the adult visual cortex.Science298 , 1248–1251 (2002).
  • Pizzorusso T , MediniP, LandiS, BaldiniS, BerardiN, MaffeiL: Structural and functional recovery from early monocular deprivation in adult rats.Proc. Natl Acad. Sci. USA103 , 8517–8522 (2006).
  • Cancedda L , PutignanoE, SaleA, ViegiA, BerardiN, MaffeiL: Acceleration of visual system development by environmental enrichment.J. Neurosci.24 , 4840–4848 (2004).
  • van Praag H , KempermannG, GageFH: Neural consequences of environmental enrichment.Nat. Rev. Neurosci.1 , 191–198 (2002).
  • Nithianantharajah J , HannanAJ: Dynamic mutations as digital genetic modulators of brain development, function and dysfunction.Bioessays29 , 525–535 (2007).
  • Galimberti I , GogollaN, AlberiS, SantosAF, MullerD, CaroniP: Long-term rearrangements of hippocampal mossy fiber terminal connectivity in the adult regulated by experience.Neuron50 , 749–763 (2006).
  • Guan J -S, Haggarty SJ, Giacometti E et al.: HDAC2 negatively regulates memory formation and synaptic plasticity. Nature459 , 55–60 (2009).
  • Benes FM , BerrettaS: GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder.Neuropsychopharmacology25 , 1–27 (2001).
  • Fatemi SH , EarleJA, McMenomyT: Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression.Mol. Psychiatry5 , 654–663 (2000).
  • Guidotti A , AutaJ, DavisJM et al.: Decrease in reelin and glutamic acid67 (GAD67) expression in schizophrenia and bipolar disorder.Arch. Gen. Psychiatry57 , 1061–1069 (2000).
  • Eastwood SL , HarrisonPJ: Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis.Mol. Psychiatry769 , 821–831 (2003).
  • Torrey EF , BarciBM, WebsterMJ, BartkoJJ, Meador-WoodruffJH, KnableMB: Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains.Biol. Psychiatry57 , 252–260 (2005).
  • Costa E , DavisJM, DongE et al.: A GABAergic cortical deficit dominates schizophrenia pathophysiology.Crit. Rev. Neurobiol.16 , 1–23 (2004).
  • Akbarian S , HuangHS: Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders.Brain Res. Brain Res. Rev.52 , 293–304 (2006).
  • Lewis DA , HashimotoT, VolkDW: Cortical inhibitory neurons and schizophrenia.Nat. Rev. Neurosci.6 , 312–324 (2005).
  • Straub RE , LipskaBK, EganMF, GoldbergTE, KleinmanJE: Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression.Mol. Psychiatry10 , 1038 (2007).
  • Abdolmaleky HM , ChengK, RussoA et al.: Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report.Am. J. Med. Genet. B Neuropsychiatry Genet.134 , 60–66 (2005).
  • Grayson DR , JiaX, ChenY et al.: Reelin promoter hypermethylation in schizophrenia.Proc. Natl Acad. Sci. USA102 , 9341–9346 (2005).
  • Huang HS , MatevossianA, WhittleC et al.: Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters.J. Neurosci.27 , 11254–11262 (2007).
  • Mill J , TangT, KaminskyZ et al.: Epigenomic profiling reveals DNA-methylation changes associated with major psychosis.Am. J. Hum. Genet.82 , 696–711 (2008).
  • Kundakovic M , ChenY, CostaE, GraysonDR: DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes.Mol. Pharmacol.71 , 644–653 (2007).
  • Veldic M , CarunchoHJ, LiuS et al.: DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains.Proc. Natl Acad. Sci. USA101 , 348–353 (2004).
  • Ruzicka WB , ZhubiA, VeldicM, GraysonDR, CostaE, GuidottiA: Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection.Mol. Psychiatry12 , 385–397 (2007).
  • Selker EU : Trichostatin A causes selective loss of DNA methylation in Neurospora.Proc. Natl Acad. Sci. USA95 , 9430–9435 (1998).
  • McGowan PO , SasakiA, DymovS, TureckiG, SzyfM, MeaneyMJ: Differential methylation of a neuron-enriched glucocorticoid receptor gene promoter in human hippocampus is associated with early child trauma and adult psychopathology.Nat. Neurosci.12 , 342–348 (2009).
  • McGirr A , RenaudJ, SeguinM, AldaM, TureckiG: Course of major depressive disorder and suicide outcome: a psychological autopsy study.J. Clin. Psychiatry69 , 966–970 (2008).
  • Turner JD , MullerCP: Structure of the glucocorticoid receptor (NR3C1) gene 5´untranslated region: identification and tissue distribution of multiple new human exon 1.J. Mol. Endocrinol.35 , 283–292 (2005).
  • Heim C , NewportDJ, HeitS et al.: Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood.JAMA284 , 592–597 (2009).
  • Jiang Y , LangleyB, LubinFD et al.: Epigenetics in the nervous system.J. Neurosci.28 , 11753–11759 (2008).
  • Akbarian S , HuangHS: Epigenetic regulation in human brain-focus on histone lysine methylation.Biol. Psychiatry65 , 198–203 (2009).
  • Renthal W , NestlerEJ: Epigenetic mechanisms in drug addiction.Trends Mol. Med.14 , 34150 (2008).
  • Nestler EJ : Epigenetic mechanisms in psychiatry.Biol. Psychiatry65 , 189–190 (2009).
  • Poulter MO , DuL, WeaverIC et al.: GABAA receptor promoter hypermethylation in suicide brain: implications for the involvement of epigenetic processes.Biol. Psychiatry64 , 645–652 (2006).
  • McGowan PO , SasakiA, HuangTC et al.: Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain.PLoS ONE3 , e2085 (2008).
  • Kumar A , ChoiKH, RenthalW et al.: Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum.Neuron48 , 303–314 (2005).
  • Renthal W , KumarA, XiaoG et al.: Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins.Neuron62 , 335–348 (2009).
  • Kalivas PW , StewartJ: Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity.Brain Res. Brain Res. Rev.16 , 223–244 (1991).
  • Bushati N , CohenSM: MicroRNA functions.Annu. Rev. Cell. Dev. Biol.23 , 175–205 (2007).
  • Kosic KS : The neuronal microRNA system.Nat. Rev. Neurosci.7 , 911–920 (2006).
  • Schratt GM , TuebingF, NighEA et al.: A brain-specific microRNA regulates dendritic spine development.Nature439 , 283–289 (2006).
  • Kocerha J , FaghihiMA, Lopez-ToedanoMA et al.: MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction.Proc. Natl Acad. Sci. USA.106 , 3507–3512 (2009).
  • Mercer TR , DingerME, MarianiJ, KosikKS, MehlerMF, MattickJS: Noncoding RNAs in long-term memory formation.Neuroscientist14 , 434–444 (2008).
  • Yoo AS , StaahlBT, Chen Lei, Crabtree GR: MicroRNA-mediated switching of chromatin-remodeling complexes in neural development. Nature460 , 642–646 (2009).
  • Li X , CassidyJJ, ReinkeCA, FischboeckS, CarthewRW: A microRNA imparts robustness against environmental fluctuation during development.Cell137 , 273–282 (2009).
  • Blakaj A , LinH: Piecing together the mosaic of early mammalian development through microRNAs.J. Biol. Chem.283 , 9505–9508 (2008).
  • Makeyev EV , ZhangJ, CarrascoMA, ManiatisT: The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing.Mol. Cell27 , 435–448 (2007).
  • Schratt G : Fine-tuning neural gene expression with microRNAs.Curr. Opin. Neurobiol.19 , 213–219 (2009).
  • Ashraf SI , McLoonAL, SclarsicSM, KunesS: Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila.Cell124 , 191–205 (2006).
  • Giraldez AJ , CinalliRM, GlasnerME et al.: MicroRNAs regulate brain morphogenesis in zebrafish.Science308 , 833–838 (2005).
  • Choi PS , ZakharyL, ChoiWY et al.: Members of the miRNA-200 family regulate olfactory neurogenesis.Neuron57 , 41–55 (2008).
  • Conaco C , OttoS, HanJJ, MandelG: Reciprocal actions of REST and a microRNA promote neuronal identity.Proc. Natl Acad. Sci. USA103 , 2422–2427 (2006).
  • Seigel G , ObernostererG, Roberto Fiore R et al.: A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat. Cell Biol.11 , 705–716 (2009).
  • Sokolowski MB : Drosophila: genetics meets behaviour.Nat. Rev. Genet.2 , 879–890 (2001).
  • Sokolowski MB , WahlstenD: Gene–environment interaction and complex behavior. In: Methods in genomic neuroscience. Moldin SO, Boca Raton FL (Eds), CRC Press, FL, USA, 3–27 (2001).
  • Hebb DO : A Textbook in Psychology. Saunders, PA, USA (1958).
  • Gehring M , ReikW, HenikoffS: DNA demethylation by DNA repair.Trends Genet.25 , 82–90 (2009).
  • Reik W , DeanJW: Epigenetic reprogramming in mammalian development.Science293 , 1089–1093 (2001).
  • Kangaspeska S , StrideB, MétivierR et al.: Transient cyclical methylation of promoter DNA.Nature452 , 112–115 (2008).
  • Metivier R , GallaisC, TiffocheC et al.: Cyclical DNA methylation of a transcriptionally active promoter.Nature452 , 45–50 (2008).
  • Ma DK , Jang M-H, Guo JU et al.: Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science323 , 1074–1077 (2009).
  • Barreto G , SchaferA, MarholdJ et al.: Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation.Nature445 , 671–675 (2007).
  • Wu H , SunYE: Reversing DNA methylation: new insights from neuronal activity inducedgadd45b in adult neurogenesis.Sci. Signal.2 , pe17 (2009).
  • Rai K , HugginsIJ, JamesSR, KarpfAR, JonesDA, CairnsBR: DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45.Cell135 , 1201–1212 (2008).
  • Weber M , HellmannI, StadlerMB et al.: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome.Nat. Genet.39 , 457–466 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.