211
Views
0
CrossRef citations to date
0
Altmetric
Review

Chromatin dynamics during repair of chromosomal DNA double-strand breaks

&
Pages 371-385 | Published online: 03 Dec 2009

Bibliography

  • Rich T , AllenRL, WyllieAH: Defying death after DNA damage.Nature407 , 777–783 (2000).
  • Khanna KK , JacksonSP: DNA double-strand breaks: signaling, repair and the cancer connection.Nat. Genet.27 , 247–254 (2001).
  • O‘Driscoll M , JeggoPA: The role of double-strand break repair – insights from human genetics.Nat. Rev. Genet.7 , 45–54 (2006).
  • Downs JA , NussenzweigMC, NussenzweigA: Chromatin dynamics and the preservation of genetic information.Nature447 , 951–958 (2007).
  • Bao Y , ShenX: Chromatin remodeling in DNA double-strand break repair.Curr. Opin. Genet. Dev.17 , 126–131 (2007).
  • Wong LY , RechtJ, LaurentBC: Chromatin remodeling and repair of DNA double-strand breaks.J. Mol. Histol.37 , 261–269 (2006).
  • van Attikum H , GasserSM: Crosstalk between histone modifications during the DNA damage response.Trends Cell Biol.19 , 207–217 (2009).
  • Pandita TK , RichardsonC: Chromatin remodeling finds its place in the DNA double-strand break response.Nucleic Acids Res.37 , 1363–1377 (2009).
  • Karagiannis TC , El-OstaA: Chromatin modifications and DNA double-strand breaks: the current state of play.Leukemia21 , 195–200 (2007).
  • Acilan C , PotterDM, SaundersWS: DNA repair pathways involved in anaphase bridge formation.Genes Chromosomes Cancer46 , 522–531 (2007).
  • Paques F , HaberJE: Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae.Microbiol. Mol. Biol. Rev.63 , 349–404 (1999).
  • Franco S , AltFW, ManisJP: Pathways that suppress programmed DNA breaks from progressing to chromosomal breaks and translocations.DNA Repair (Amst.)5 , 1030–1041 (2006).
  • Chaudhuri J , BasuU, ZarrinA et al.: Evolution of the immunoglobulin heavy chain class switch recombination mechanism.Adv. Immunol.94 , 157–214 (2007).
  • Keeney S , NealeMJ: Initiation of meiotic recombination by formation of DNA double-strand breaks: mechanism and regulation.Biochem. Soc. Trans.34 , 523–525 (2006).
  • Degrassi F , FioreM, PalittiF: Chromosomal aberrations and genomic instability induced by topoisomerase-targeted antitumour drugs.Curr. Med. Chem. Anticancer Agents4 , 317–325 (2004).
  • Limoli CL , GiedzinskiE, BonnerWM, CleaverJE: UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, γ-H2AX formation, and Mre11 relocalization.Proc. Natl Acad. Sci. USA99 , 233–238 (2002).
  • Bosco EE , MayhewCN, HenniganRF, SageJ, JacksT, KnudsenES: RB signaling prevents replication-dependent DNA double-strand breaks following genotoxic insult.Nucleic Acids Res.32 , 25–34 (2004).
  • Su TT : Cellular responses to DNA damage: one signal, multiple choices.Annu. Rev. Genet.40 , 187–208 (2006).
  • Lieber MR , MaY, PannickeU, SchwarzK: Mechanism and regulation of human non-homologous DNA end-joining.Nat. Rev. Mol. Cell. Biol.4 , 712–720 (2003).
  • Cahill D , ConnorB, CarneyJP: Mechanisms of eukaryotic DNA double strand break repair.Front. Biosci.11 , 1958–1976 (2006).
  • Daley JM , PalmbosPL, WuD, WilsonTE: Nonhomologous end joining in yeast.Annu. Rev. Genet.39 , 431–451 (2005).
  • van Gent DC , van der Burg M: Non-homologous end-joining, a sticky affair. Oncogene26 , 7731–7740 (2007).
  • Jackson SP : Sensing and repairing DNA double-strand breaks.Carcinogenesis23 , 687–696 (2002).
  • Sonoda E , TakataM, YamashitaYM, MorrisonC, TakedaS: Homologous DNA recombination in vertebrate cells.Proc. Natl Acad. Sci. USA98 , 8388–8394 (2001).
  • Thompson LH , SchildD: Homologous recombinational repair of DNA ensures mammalian chromosome stability.Mutat. Res.477 , 131–153 (2001).
  • Haber JE : Mating-type gene switching in Saccharomyces cerevisiae.Annu. Rev. Genet.32 , 561–599 (1998).
  • Moore JK , HaberJE: Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae.Mol. Cell. Biol.16 , 2164–2173 (1996).
  • Holmes A , HaberJE: Physical monitoring of HO-induced homologous recombination.Methods Mol. Biol.113 , 403–415 (1999).
  • Bernstein KA , RothsteinR: At loose ends: resecting a double-strand break.Cell137 , 807–810 (2009).
  • Mimitou EP , SymingtonLS: Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing.Nature455 , 770–774 (2008).
  • Raynard S , NiuH, SungP: DNA double-strand break processing: the beginning of the end.Genes Dev.22 , 2903–2907 (2008).
  • Zhu Z , ChungWH, ShimEY, LeeSE, IraG: Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends.Cell134 , 981–994 (2008).
  • Sung P , RobbersonDL: DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA.Cell82 , 453–461 (1995).
  • Conway AB , LynchTW, ZhangY et al.: Crystal structure of a Rad51 filament.Nat. Struct. Mol. Biol.11 , 791–796 (2004).
  • Benson FE , StasiakA, WestSC: Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA.EMBO J.13 , 5764–5771 (1994).
  • Sung P : Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein.Science265 , 1241–1243 (1994).
  • Gupta RC , BazemoreLR, GolubEI, RaddingCM: Activities of human recombination protein Rad51.Proc. Natl Acad. Sci. USA94 , 463–468 (1997).
  • Bugreev DV , MazinAV: Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity.Proc. Natl Acad. Sci. USA101 , 9988–9993 (2004).
  • Bugreev DV , GolubEI, StasiakAZ, StasiakA, MazinAV: Activation of human meiosis-specific recombinase Dmc1 by Ca2+.J. Biol. Chem.280 , 26886–26895 (2005).
  • Ristic D , ModestiM, van der Heijden T et al.: Human Rad51 filaments on double- and single-stranded DNA: correlating regular and irregular forms with recombination function. Nucleic Acids Res.33 , 3292–3302 (2005).
  • Chi P , Van Komen S, Sehorn MG, Sigurdsson S, Sung P: Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA Repair (Amst.)5 , 381–391 (2006).
  • Gasior SL , OlivaresH, EarU, HariDM, WeichselbaumR, BishopDK: Assembly of RecA-like recombinases: distinct roles for mediator proteins in mitosis and meiosis.Proc. Natl Acad. Sci. USA98 , 8411–8418 (2001).
  • San Filippo J , SungP, KleinH: Mechanism of eukaryotic homologous recombination.Annu. Rev. Biochem.77 , 229–257 (2008).
  • West SC : Molecular views of recombination proteins and their control.Nat. Rev. Mol. Cell. Biol.4 , 435–445 (2003).
  • Richardson C , MoynahanME, JasinM: Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations.Genes Dev.12 , 3831–3842 (1998).
  • Inbar O , KupiecM: Homology search and choice of homologous partner during mitotic recombination.Mol. Cell. Biol.19 , 4134–4142 (1999).
  • Haber JE , LeungWY, BortsRH, LichtenM: The frequency of meiotic recombination in yeast is independent of the number and position of homologous donor sequences: implications for chromosome pairing.Proc. Natl Acad. Sci. USA88 , 1120–1124 (1991).
  • Van Komen S , PetukhovaG, SigurdssonS, StrattonS, SungP: Superhelicity-driven homologous DNA pairing by yeast recombination factors Rad51 and Rad54.Mol. Cell6 , 563–572 (2000).
  • Williams RS , WilliamsJS, TainerJA: Mre11–Rad50–Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template.Biochem. Cell Biol.85 , 509–520 (2007).
  • Jazayeri A , FalckJ, LukasC et al.: ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks.Nat. Cell Biol.8 , 37–45 (2006).
  • Zou L , ElledgeSJ: Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes.Science300 , 1542–1548 (2003).
  • Harper JW , ElledgeSJ: The DNA damage response: ten years after.Mol. Cell28 , 739–745 (2007).
  • Buolamwini JK : Cell cycle molecular targets in novel anticancer drug discovery.Curr. Pharm. Des.6 , 379–392 (2000).
  • Heideker J , LisET, RomesbergFE: Phosphatases, DNA damage checkpoints and checkpoint deactivation.Cell Cycle6 , 3058–3064 (2007).
  • Peterson CL , CoteJ: Cellular machineries for chromosomal DNA repair.Genes Dev.18 , 602–616 (2004).
  • Luger K , MaderAW, RichmondRK, SargentDF, RichmondTJ: Crystal structure of the nucleosome core particle at 2.8 A resolution.Nature389 , 251–260 (1997).
  • Gelato KA , FischleW: Role of histone modifications in defining chromatin structure and function.Biol. Chem.389 , 353–363 (2008).
  • Fletcher TM , HansenJC: The nucleosomal array: structure/function relationships.Crit. Rev. Eukaryot. Gene Expr.6 , 149–188 (1996).
  • Carruthers LM , HansenJC: The core histone N-termini function independently of linker histones during chromatin condensation.J. Biol. Chem.275 , 37285–37290 (2000).
  • Horn PJ , PetersonCL: Molecular biology. Chromatin higher order folding – wrapping up transcription.Science297 , 1824–1827 (2002).
  • Woodcock CL : Chromatin architecture.Curr. Opin. Struct. Biol.16 , 213–220 (2006).
  • Woodcock CL , DimitrovS: Higher-order structure of chromatin and chromosomes.Curr. Opin. Genet. Dev.11 , 130–135 (2001).
  • Carruthers LM , BednarJ, WoodcockCL, HansenJC: Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding.Biochemistry37 , 14776–14787 (1998).
  • Passarge E : Emil Heitz and the concept of heterochromatin: longitudinal chromosome differentiation was recognized fifty years ago.Am. J. Hum. Genet.31 , 106–115 (1979).
  • Grewal SI , JiaS: Heterochromatin revisited.Nat. Rev. Genet.8 , 35–46 (2007).
  • Henikoff S : Heterochromatin function in complex genomes.Biochim. Biophys. Acta1470 , O1–O8 (2000).
  • Richards EJ , ElginSC: Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects.Cell108 , 489–500 (2002).
  • Ahmad K , HenikoffS: The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly.Mol. Cell9 , 1191–1200 (2002).
  • Fan JY , GordonF, LugerK, HansenJC, TremethickDJ: The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states.Nat. Struct. Biol.9 , 172–176 (2002).
  • Zlatanova J , ThakarA: H2A.Z: view from the top.Structure16 , 166–179 (2008).
  • Basrai MA , HieterP: Is there a unique form of chromatin at the Saccharomyces cerevisiae centromeres?Bioessays17 , 669–672 (1995).
  • Durand-Dubief M , EkwallK: Heterochromatin tells CENP-A where to go.Bioessays30 , 526–529 (2008).
  • Orsi GA , CoubleP, LoppinB: Epigenetic and replacement roles of histone variant H3.3 in reproduction and development.Int. J. Dev. Biol.53 , 231–243 (2009).
  • Strahl BD , AllisCD: The language of covalent histone modifications.Nature403 , 41–45 (2000).
  • Khorasanizadeh S : The nucleosome: from genomic organization to genomic regulation.Cell116 , 259–272 (2004).
  • Shogren-Knaak M , IshiiH, SunJM, PazinMJ, DavieJR, PetersonCL: Histone H4-K16 acetylation controls chromatin structure and protein interactions.Science311 , 844–847 (2006).
  • Zhang Y , SmithCL, SahaA et al.: DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC.Mol. Cell24 , 559–568 (2006).
  • Vignali M , HassanAH, NeelyKE, WorkmanJL: ATP-dependent chromatin-remodeling complexes.Mol. Cell. Biol.20 , 1899–1910 (2000).
  • Eisen JA , SwederKS, HanawaltPC: Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions.Nucleic Acids Res.23 , 2715–2723 (1995).
  • Boyer LA , LogieC, BonteE et al.: Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes.J. Biol. Chem.275 , 18864–18870 (2000).
  • Cote J , QuinnJ, WorkmanJL, PetersonCL: Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex.Science265 , 53–60 (1994).
  • Cairns BR , LorchY, LiY et al.: RSC, an essential, abundant chromatin-remodeling complex.Cell87 , 1249–1260 (1996).
  • Tsukiyama T , PalmerJ, LandelCC, ShiloachJ, WuC: Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae.Genes Dev.13 , 686–697 (1999).
  • Shen X , MizuguchiG, HamicheA, WuC: A chromatin remodelling complex involved in transcription and DNA processing.Nature406 , 541–544 (2000).
  • Mizuguchi G , ShenX, LandryJ, WuWH, SenS, WuC: ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex.Science303 , 343–348 (2004).
  • Cairns BR : Chromatin remodeling: insights and intrigue from single-molecule studies.Nat. Struct. Mol. Biol.14 , 989–996 (2007).
  • Langst G , BonteEJ, CoronaDF, BeckerPB: Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer.Cell97 , 843–852 (1999).
  • Whitehouse I , FlausA, CairnsBR, WhiteMF, WorkmanJL, Owen-HughesT: Nucleosome mobilization catalysed by the yeast SWI/SNF complex.Nature400 , 784–787 (1999).
  • Jin J , CaiY, YaoT et al.: A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex.J. Biol. Chem.280 , 41207–41212 (2005).
  • Lorch Y , ZhangM, KornbergRD: RSC unravels the nucleosome.Mol. Cell7 , 89–95 (2001).
  • Hassan AH , ProchassonP, NeelyKE et al.: Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes.Cell111 , 369–379 (2002).
  • Chandy M , GutierrezJL, ProchassonP, WorkmanJL: SWI/SNF displaces SAGA-acetylated nucleosomes.Eukaryot. Cell5 , 1738–1747 (2006).
  • Nielsen PR , NietlispachD, MottHR et al.: Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9.Nature416 , 103–107 (2002).
  • Jacobs SA , KhorasanizadehS: Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail.Science295 , 2080–2083 (2002).
  • Shi X , KachirskaiaI, WalterKL et al.: Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36.J. Biol. Chem.282 , 2450–2455 (2007).
  • Kim J , DanielJ, EspejoA et al.: Tudor, MBT and chromodomains gauge the degree of lysine methylation.EMBO Rep.7 , 397–403 (2006).
  • Fry CJ , PetersonCL: Chromatin remodeling enzymes: who‘s on first?Curr. Biol.11 , R185–R197 (2001).
  • Rogakou EP , PilchDR, OrrAH, IvanovaVS, BonnerWM: DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139.J. Biol. Chem.273 , 5858–5868 (1998).
  • Shroff R , Arbel-EdenA, PilchD et al.: Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break.Curr. Biol.14 , 1703–1711 (2004).
  • Altaf M , SaksoukN, CoteJ: Histone modifications in response to DNA damage.Mutat. Res.618 , 81–90 (2007).
  • Karagiannis TC , HarikrishnanKN, El-OstaA: Disparity of histone deacetylase inhibition on repair of radiation-induced DNA damage on euchromatin and constitutive heterochromatin compartments.Oncogene26 , 3963–3971 (2007).
  • Celeste A , Fernandez-CapetilloO, KruhlakMJ et al.: Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks.Nat. Cell Biol.5 , 675–679 (2003).
  • Celeste A , PetersenS, RomanienkoPJ et al.: Genomic instability in mice lacking histone H2AX.Science296 , 922–927 (2002).
  • Huen MS , GrantR, MankeI et al.: RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly.Cell131 , 901–914 (2007).
  • Mailand N , Bekker-JensenS, FaustrupH et al.: RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins.Cell131 , 887–900 (2007).
  • Kolas NK , ChapmanJR, NakadaS et al.: Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase.Science318 , 1637–1640 (2007).
  • Strom L , LindroosHB, ShirahigeK, SjogrenC: Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair.Mol. Cell16 , 1003–1015 (2004).
  • Unal E , Arbel-EdenA, SattlerU et al.: DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain.Mol. Cell16 , 991–1002 (2004).
  • van Attikum H , FritschO, HohnB, GasserSM: Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair.Cell119 , 777–788 (2004).
  • Downs JA , AllardS, Jobin-RobitailleO et al.: Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites.Mol. Cell16 , 979–990 (2004).
  • Morrison AJ , HighlandJ, KroganNJ et al.: INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair.Cell119 , 767–775 (2004).
  • Keogh MC , KimJA, DowneyM et al.: A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery.Nature439 , 497–501 (2006).
  • Chowdhury D , KeoghMC, IshiiH, PetersonCL, BuratowskiS, LiebermanJ: γ-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair.Mol. Cell20 , 801–809 (2005).
  • Huyen Y , ZgheibO, DitullioRA Jr et al.: Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature432 , 406–411 (2004).
  • Daniel JA , Pray-GrantMG, GrantPA: Effector proteins for methylated histones: an expanding family.Cell Cycle4 , 919–926 (2005).
  • Lachner M , SenguptaR, SchottaG, JenuweinT: Trilogies of histone lysine methylation as epigenetic landmarks of the eukaryotic genome.Cold Spring Harb. Symp. Quant. Biol.69 , 209–218 (2004).
  • Botuyan MV , LeeJ, WardIM et al.: Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair.Cell127 , 1361–1373 (2006).
  • Harvey AC , JacksonSP, DownsJA: Saccharomyces cerevisiae histone H2A Ser122 facilitates DNA repair.Genetics170 , 543–553 (2005).
  • Wyatt HR , LiawH, GreenGR, LustigAJ: Multiple roles for Saccharomyces cerevisiae histone H2A in telomere position effect, Spt phenotypes and double-strand-break repair.Genetics164 , 47–64 (2003).
  • Moore JD , YazganO, AtaianY, KrebsJE: Diverse roles for histone H2A modifications in DNA damage response pathways in yeast.Genetics176 , 15–25 (2007).
  • Fernandez-Capetillo O , AllisCD, NussenzweigA: Phosphorylation of histone H2B at DNA double-strand breaks.J. Exp. Med.199 , 1671–1677 (2004).
  • Giannattasio M , LazzaroF, PlevaniP, Muzi-FalconiM: The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1.J. Biol. Chem.280 , 9879–9886 (2005).
  • Tamburini BA , TylerJK: Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair.Mol. Cell. Biol.25 , 4903–4913 (2005).
  • Bird AW , YuDY, Pray-GrantMG et al.: Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair.Nature419 , 411–415 (2002).
  • Mersfelder EL , ParthunMR: The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure.Nucleic Acids Res.34 , 2653–2662 (2006).
  • Murr R , LoizouJI, YangYG et al.: Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks.Nat. Cell Biol.8 , 91–99 (2006).
  • Chai B , HuangJ, CairnsBR, LaurentBC: Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair.Genes Dev.19 , 1656–1661 (2005).
  • Liang B , QiuJ, RatnakumarK, LaurentBC: RSC functions as an early double-strand-break sensor in the cell‘s response to DNA damage.Curr. Biol.17 , 1432–1437 (2007).
  • Shim EY , HongSJ, OumJH, YanezY, ZhangY, LeeSE: RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin.Mol. Cell. Biol.27 , 1602–1613 (2007).
  • Kent NA , ChambersAL, DownsJA: Dual chromatin remodeling roles for RSC during DNA double strand break induction and repair at the yeast MAT locus.J. Biol. Chem.282 , 27693–27701 (2007).
  • Shim EY , MaJL, OumJH, YanezY, LeeSE: The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks.Mol. Cell. Biol.25 , 3934–3944 (2005).
  • Kusch T , FlorensL, MacdonaldWH et al.: Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions.Science306 , 2084–2087 (2004).
  • Papamichos-Chronakis M , KrebsJE, PetersonCL: Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage.Genes Dev.20 , 2437–2449 (2006).
  • Tsukuda T , FlemingAB, NickoloffJA, OsleyMA: Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae.Nature438 , 379–383 (2005).
  • Tsukuda T , LoYC, KrishnaS, SterkR, OsleyMA, NickoloffJA: INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination.DNA Repair (Amst.)8 , 360–369 (2009).
  • Chen CC , CarsonJJ, FeserJ et al.: Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair.Cell134 , 231–243 (2008).
  • Palter KB , FoeVE, AlbertsBM: Evidence for the formation of nucleosome-like histone complexes on single-stranded DNA.Cell18 , 451–467 (1979).
  • Palter KB , AlbertsBM: The use of DNA-cellulose for analyzing histone-DNA interactions. Discovery of nucleosome-like histone binding to single-stranded DNA.J. Biol. Chem.254 , 11160–11169 (1979).
  • Wolner B , PetersonCL: ATP-dependent and ATP-independent roles for the Rad54 chromatin remodeling enzyme during recombinational repair of a DNA double strand break.J. Biol. Chem.280 , 10855–10860 (2005).
  • Sugawara N , WangX, HaberJE: In vivo roles of Rad52, Rad54 and Rad55 proteins in Rad51-mediated recombination.Mol. Cell12 , 209–219 (2003).
  • Sinha M , PetersonCL: A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break.Mol. Cell30 , 803–810 (2008).
  • Sinha M , WatanabeS, JohnsonA, MoazedD, PetersonCL: Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling.Cell138(6) , 1109–1121 (2009).
  • Mazin AV , AlexeevAA, KowalczykowskiSC: A novel function of Rad54 protein: Stabilization of the Rad51 nucleoprotein filament.J. Biol. Chem.278(16) , 14029–14036 (2003).
  • Bugreev DV , MazinaOM, MazinAV: Rad54 protein promotes branch migration of Holliday junctions.Nature442(7102) , 590–593 (2006).
  • Bugreev DV , HanaokaF, MazinAV: Rad54 dissociates homologous recombination intermediates by branch migration.Nat. Struct. Mol. Biol.14(8) , 746–753 (2007).
  • Sinha M , PetersonCL: A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break.Mol. Cell30(6) , 803–810 (2008).
  • van Attikum H , FritschO, GasserSM: Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks.EMBO J.26(18) , 4113–4125 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.