371
Views
0
CrossRef citations to date
0
Altmetric
Review

Human Imprinting Syndromes

&
Pages 347-369 | Published online: 03 Dec 2009

Bibliography

  • Reik W , WalterJ: Genomic imprinting: parental influence on the genome.Nat. Rev. Genet.2 , 21–32 (2001).
  • McGrath J , SolterD: Completion of mouse embryogenesis requires both the maternal and paternal genomes.Cell37 , 179–183 (1984).
  • Surani MA , BartonSC, NorrisML: Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis.Nature308 , 548–550 (1984).
  • Kajii T , OhamaK: Androgenetic origin of hydatidiform mole.Nature268 , 633–634 (1977).
  • Ohama K , KajiiT, OkamotoE et al.: Dispermic origin of XY hydatidiform moles.Nature292 , 551–552 (1981).
  • Ohama K , NomuraK, OkamotoE, FukudaY, IharaT, FujiwaraA: Origin of immature teratoma of the ovary.Am. J. Obstet. Gynecol.152 , 896–900 (1985).
  • Cattanach BM , KirkM: Differential activity of maternally and paternally derived chromosome regions in mice.Nature315 , 496–498 (1985).
  • Barlow DP , StogerR, HerrmannBG, SaitoK, SchweiferN: The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus.Nature349 , 84–87 (1991).
  • Neumann B , KubickaP, BarlowDP: Characteristics of imprinted genes.Nat. Genet.9 , 12–13 (1995).
  • Jaenisch R , BirdA: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals.Nat. Genet.33(Suppl.) , 245–254 (2003).
  • Dennis C : Epigenetics and disease: altered states.Nature421 , 686–688 (2003).
  • Horike S , MitsuyaK, MeguroM et al.: Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith–Wiedemann syndrome.Hum. Mol. Genet.9 , 2075–2083 (2000).
  • Bell AC , FelsenfeldG: Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene.Nature405 , 482–485 (2000).
  • Lee J , InoueK, OnoR et al.: Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells.Development129 , 1807–1817 (2002).
  • Szabo PE , HubnerK, ScholerH, MannJR: Allele-specific expression of imprinted genes in mouse migratory primordial germ cells.Mec. Dev.115 , 157–160 (2002).
  • Cooper WN , LuhariaA, EvansGA et al.: Molecular subtypes and phenotypic expression of Beckwith–Wiedemann syndrome.Eur. J. Hum. Genet.13 , 1025–1032 (2005).
  • Abu-Amero S , MonkD, FrostJ, PreeceM, StanierP, MooreGE: The genetic aetiology of Silver–Russell syndrome.J. Med. Genet.45 , 193–199 (2008).
  • Jirtle RL , SkinnerMK: Environmental epigenomics and disease susceptibility.Nat. Rev. Genet.8 , 253–262 (2007).
  • Coan PM , BurtonGJ, Ferguson-SmithAC: Imprinted genes in the placenta – a review.Placenta26(Suppl. A) , S10–S20 (2005).
  • Davies W , IslesAR, WilkinsonLS: Imprinted gene expression in the brain.Neurosci. Biobehav. Rev.29 , 421–430 (2005).
  • Hensen EF , JordanovaES, van Minderhout IJ et al.: Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene23 , 4076–4083 (2004).
  • Bartolomei MS , ZemelS, TilghmanSM: Parental imprinting of the mouse H19 gene.Nature351 , 153–155 (1991).
  • DeChiara TM , RobertsonEJ, EfstratiadisA: Parental imprinting of the mouse insulin-like growth factor II gene.Cell64 , 849–859 (1991).
  • Hark AT , SchoenherrCJ, KatzDJ, IngramRS, LevorseJM, TilghmanSM: CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus.Nature405 , 486–489 (2000).
  • Maher ER , ReikW: Beckwith–Wiedemann syndrome: imprinting in clusters revisited.J. Clin. Invest.105 , 247–252 (2000).
  • Wan LB , BartolomeiMS: Regulation of imprinting in clusters: noncoding RNAs versus insulators.Adv. Genet.61 , 207–223 (2008).
  • Smilinich NJ , DayCD, FitzpatrickGV et al.: A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith–Wiedemann syndrome.Proc. Natl Acad. Sci. USA96 , 8064–8069 (1999).
  • Diaz-Meyer N , DayCD, KhatodK et al.: Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith–Wiedemann syndrome.J. Med. Genet.40 , 797–801 (2003).
  • Lee MP , DeBaunMR, MitsuyaK et al.: Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith–Wiedemann syndrome and is independent of insulin-like growth factor II imprinting.Proc. Natl Acad. Sci. USA96 , 5203–5208 (1999).
  • Weksberg R , ShumanC, BeckwithJB: Beckwith–Wiedemann syndrome.Eur. J. Hum. Genet. (2009) (Epub ahead of print).
  • Smith AC , ChoufaniS, FerreiraJC, WeksbergR: Growth regulation, imprinted genes, and chromosome 11p15.5.Pediatr. Res.61 , R43–R47 (2007).
  • Haig D : Genomic imprinting and kinship: how good is the evidence?Annu. Rev. Genet.38 , 553–585 (2004).
  • Reik W , MaherER: Imprinting in clusters: lessons from Beckwith–Wiedemann syndrome.Trends Genet.13 , 330–334 (1997).
  • Slavotinek A , GauntL, DonnaiD: Paternally inherited duplications of 11p15.5 and Beckwith–Wiedemann syndrome.J. Med. Genet.34 , 819–826 (1997).
  • Elliott M , BaylyR, ColeT, TempleIK, MaherER: Clinical features and natural history of Beckwith–Wiedemann syndrome: presentation of 74 new cases.Clin. Genet.46 , 168–174 (1994).
  • Elliott M , MaherER: Beckwith–Wiedemann syndrome.J. Med. Genet.31 , 560–564 (1994).
  • Everman DB , ShumanC, DzolganovskiB, O‘RiordanMA, WeksbergR, RobinNH: Serum α-fetoprotein levels in Beckwith–Wiedemann syndrome.J. Pediatr.137 , 123–127 (2000).
  • Beckwith JB : Nephrogenic rests and the pathogenesis of Wilms tumor: developmental and clinical considerations.Am. J. Med. Genet.79 , 268–273 (1998).
  • Scott RH , WalkerL, OlsenOE et al.: Surveillance for Wilms tumor in at-risk children: pragmatic recommendations for best practice.Arch. Dis. Child.91 , 995–999 (2006).
  • Niemitz EL , DeBaunMR, FallonJ et al.: Microdeletion of LIT1 in familial Beckwith–Wiedemann syndrome.Am. J. Hum. Genet.75 , 844–849 (2004).
  • Sparago A , CerratoF, VernucciM, FerreroGB, SilengoMC, RiccioA: Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith–Wiedemann syndrome.Nat. Genet.36 , 958–960 (2004).
  • Sparago A , RussoS, CerratoF et al.: Mechanisms causing imprinting defects in familial Beckwith–Wiedemann syndrome with Wilms‘ tumor.Hum. Mol. Genet.16 , 254–264 (2007).
  • Scott RH , DouglasJ, BaskcombL et al.: Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) robustly detects and distinguishes 11p15 abnormalities associated with overgrowth and growth retardation.J. Med. Genet.45 , 106–113 (2008).
  • Hatada I , OhashiH, FukushimaY et al.: An imprinted gene p57KIP2 is mutated in Beckwith–Wiedemann syndrome.Nat. Genet.14 , 171–173 (1996).
  • Lam WW , HatadaI, OhishiS et al.: Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith–Wiedemann syndrome (BWS) provides a novel genotype–phenotype correlation.J. Med. Genet.36 , 518–523 (1999).
  • Meyer E , LimD, PashaS et al.: Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith–Wiedemann Syndrome).PLoS Genet.5 , E1000423 (2009).
  • Scott RH , DouglasJ, BaskcombL et al.: Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor.Nat. Genet.40 , 1329–1334 (2008).
  • Maher ER , BruetonLA, BowdinSC et al.: Beckwith–Wiedemann syndrome and assisted reproduction technology (ART).J. Med. Genet.40 , 62–64 (2003).
  • DeBaun MR , NiemitzEL, FeinbergAP: Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19.Am. J. Hum. Genet.72 , 156–160 (2003).
  • Gicquel C , GastonV, MandelbaumJ, SiffroiJP, FlahaultA, Le Bouc Y: In vitro fertilization may increase the risk of Beckwith–Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am. J. Hum. Genet.72 , 1338–1341 (2003).
  • Halliday J , OkeK, BrehenyS, AlgarE, J Amor D: Beckwith–Wiedemann syndrome and IVF: a case–control study. Am. J. Hum. Genet.75 , 526–528 (2004).
  • Rossignol S , SteunouV, ChalasC et al.: The epigenetic imprinting defect of patients with Beckwith–Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region.J. Med. Genet.43 , 902–907 (2006).
  • Lim D , BowdinSC, TeeL et al.: Clinical and molecular genetic features of Beckwith–Wiedemann syndrome associated with assisted reproductive technologies.Hum. Reprod.24 , 741–747 (2009).
  • Bliek J , VerdeG, CallawayJ et al.: Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith–Wiedemann syndrome.Eur. J. Hum. Genet.17 , 611–619 (2009).
  • Amor DJ , HallidayJ: A review of known imprinting syndromes and their association with assisted reproduction technologies.Hum. Reprod.23 , 2826–2834 (2008).
  • Manipalviratn S , DeCherneyA, SegarsJ: Imprinting disorders and assisted reproductive technology.Fertil. Steril.91 , 305–315 (2009).
  • Silver HK , KiyasuW, GeorgeJ, DeamerWC: Syndrome of congenital hemihypertrophy, shortness of stature, and elevated urinary gonadotropins.Pediatrics12 , 368–376 (1953).
  • Russell A : A syndrome of intra-uterine dwarfism recognizable at birth with cranio-facial dysostosis, disproportionately short arms, and other anomalies (5 examples).Proc. R. Soc. Med.47 , 1040–1044 (1954).
  • Price SM , StanhopeR, GarrettC, PreeceMA, TrembathRC: The spectrum of Silver–Russell syndrome: a clinical and molecular genetic study and new diagnostic criteria.J. Med. Genet.36 , 837–842 (1999).
  • Tomiyama H , IbukiT, NakajimaY, TanakaY: Late intraoperative hypoglycemia in a patient with Russell–Silver syndrome.J. Clin. Anesth.11 , 80–82 (1999).
  • Stanhope R , AlbaneseA, AzconaC: Growth hormone treatment of Russell–Silver syndrome.Horm. Res.49(Suppl. 2) , 37–40 (1998).
  • Anderson J , ViskochilD, O‘GormanM, GonzalesC: Gastrointestinal complications of Russell–Silver syndrome: a pilot study.Am. J. Med. Genet.113 , 15–19 (2002).
  • Duncan PA , HallJG, ShapiroLR, VibertBK: Three-generation dominant transmission of the Silver–Russell syndrome.Am. J. Med. Genet.35 , 245–250 (1990).
  • Rossignol S , NetchineI, Le Bouc Y, Gicquel C: Epigenetics in Silver–Russell syndrome. Best Pract. Res. Clin. Endocrinol. Metab.22 , 403–414 (2008).
  • Gicquel C , RossignolS, CabrolS et al.: Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver–Russell syndrome.Nat. Genet.37 , 1003–1007 (2005).
  • Netchine I , RossignolS, DufourgMN et al.: 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell–Silver syndrome: clinical scoring system and epigenetic-phenotypic correlations.J. Clin. Endocrinol. Metab.92 , 3148–3154 (2007).
  • Schonherr N , MeyerE, RoosA, SchmidtA, WollmannHA, EggermannT: The centromeric 11p15 imprinting centre is also involved in Silver–Russell syndrome.J. Med. Genet.44 , 59–63 (2007).
  • Eggermann T , SchonherrN, MeyerE et al.: Epigenetic mutations in 11p15 in Silver–Russell syndrome are restricted to the telomeric imprinting domain.J. Med. Genet.43 , 615–616 (2006).
  • Binder G , SeidelAK, WeberK et al.: IGF-II serum levels are normal in children with Silver–Russell syndrome who frequently carry epimutations at the IGF2 locus.J. Clin. Endocrinol. Metab.91 , 4709–4712 (2006).
  • Bullman H , LeverM, RobinsonDO, MackayDJ, HolderSE, WakelingEL: Mosaic maternal uniparental disomy of chromosome 11 in a patient with Silver–Russell syndrome.J. Med. Genet.45 , 396–399 (2008).
  • Hannula K , KereJ, PirinenS, HolmbergC, Lipsanen-NymanM: Do patients with maternal uniparental disomy for chromosome 7 have a distinct mild Silver–Russell phenotype?J. Med. Genet.38 , 273–278 (2001).
  • van Haelst MM , EussenHJ, VisscherF et al.: Silver–Russell phenotype in a patient with pure trisomy 1q32.1-q42.1: further delineation of the pure 1q trisomy syndrome.J. Med. Genet.39 , 582–585 (2002).
  • Kennerknecht I , BarbiG, RodensK: Dup(1q)(q42-->qter) syndrome: case report and review of literature.Am. J. Med. Genet.47 , 1157–1160 (1993).
  • Ramirez-Duenas ML , MedinaC, Ocampo-CamposR, RiveraH: Severe Silver–Russell syndrome and translocation (17;20) (q25;q13).Clin. Genet.41 , 51–53 (1992).
  • Midro AT , DebekK, SawickaA, MarcinkiewiczD, RogowskaM: Second observation of Silver–Russel syndrome in a carrier of a reciprocal translocation with one breakpoint at site 17q25.Clin. Genet.44 , 53–55 (1993).
  • Dorr S , MidroAT, FarberC, GiannakudisJ, HansmannI: Construction of a detailed physical and transcript map of the candidate region for Russell–Silver syndrome on chromosome 17q23-q24.Genomics71 , 174–181 (2001).
  • Eggermann T , EggermannK, MergenthalerS et al.: Paternally inherited deletion of CSH1 in a patient with Silver–Russell syndrome.J. Med. Genet.35 , 784–786 (1998).
  • Prager S , WollmannHA, MergenthalerS et al.: Characterization of genomic variants in CSH1 and GH2, two candidate genes for Silver–Russell syndrome in 17q24-q25.Genet. Test.7 , 259–263 (2003).
  • Hitchins MP , S Abu-Amero, Apostolidou S et al.: Investigation of the GRB2, GRB7, and CSH1 genes as candidates for the Silver–Russell syndrome (SRS) on chromosome 17q. J. Med. Genet.39 , E13 (2002).
  • Eggermann T , SchonherrN, EggermannK, WollmannH: Hypomethylation in the 11p15 telomeric imprinting domain in a patient with Silver–Russell syndrome with a CSH1 deletion (17q24) renders a functional role of this alteration unlikely.J. Med. Genet.44 , E77 (2007).
  • Runte M , HuttenhoferA, GrossS, KiefmannM, HorsthemkeB, BuitingK: The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A.Hum. Mol. Genet.10 , 2687–2700 (2001).
  • Landers M , BancescuDL, Le Meur E et al.: Regulation of the large (approximately 1000 kb) imprinted murine Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn. Nucleic Acids Res.32 , 3480–3492 (2004).
  • Hulten M , ArmstrongS, ChallinorP et al.: Genomic imprinting in an Angelman and Prader–Willi translocation family.Lancet338 , 638–639 (1991).
  • Williams CA , BeaudetAL, Clayton-SmithJ et al.: Angelman syndrome 2005: updated consensus for diagnostic criteria.Am. J. Med. Genet. A140 , 413–418 (2006).
  • Williams CA : Neurological aspects of the Angelman syndrome.Brain Dev.27 , 88–94 (2005).
  • Butler MG , TheodoroMF, BittelDC, DonnellyJE: Energy expenditure and physical activity in Prader–Willi syndrome: comparison with obese subjects.Am. J. Med. Genet. A143 , 449–459 (2007).
  • Cassidy SB , DriscollDJ: Prader–Willi syndrome.Eur. J. Hum. Genet.17 , 3–13 (2009).
  • Whittington J , HollandA, WebbT, ButlerJ, ClarkeD, BoerH: Academic underachievement by people with Prader–Willi syndrome.J. Intellect. Disabil. Res.48 , 188–200 (2004).
  • Descheemaeker MJ , GoversV, VermeulenP, FrynsJP: Pervasive developmental disorders in Prader–Willi syndrome: the Leuven experience in 59 subjects and controls.Am. J. Med. Genet. A140 , 1136–1142 (2006).
  • Wigren M , HansenS: ADHD symptoms and insistence on sameness in Prader–Willi syndrome.J. Intellect. Disabil. Res.49 , 449–456 (2005).
  • Steinhausen HC , EiholzerU, HauffaBP, MalinZ: Behavioural and emotional disturbances in people with Prader–Willi Syndrome.J. Intellect. Disabil. Res.48 , 47–52 (2004).
  • Festen DA , de Weerd AW, van den Bossche RA, Joosten K, Hoeve H, Hokken-Koelega AC: Sleep-related breathing disorders in prepubertal children with Prader–Willi syndrome and effects of growth hormone treatment. J. Clin. Endocrinol. Metab.91 , 4911–4915 (2006).
  • Priano L , GrugniG, MiscioG et al.: Sleep cycling alternating pattern (CAP) expression is associated with hypersomnia and GH secretory pattern in Prader–Willi syndrome.Sleep Med.7 , 627–633 (2006).
  • Fan Z , GreenwoodR, FisherA, PendyalS, PowellCM: Characteristics and frequency of seizure disorder in 56 patients with Prader–Willi syndrome.Am. J. Med. Genet. A149A , 1581–1584 (2009).
  • Crino A , SchiaffiniR, CiampaliniP et al.: Hypogonadism and pubertal development in Prader–Willi syndrome.Eur J. Pediatr.162 , 327–333 (2003).
  • Akefeldt A , TornhageCJ, GillbergC: ‘A woman with Prader–Willi syndrome gives birth to a healthy baby girl‘.Dev. Med. Child Neurol.41 , 789–790 (1999).
  • Schulze A , MogensenH, Hamborg-PetersenB, GraemN, OstergaardJR, Brondum-NielsenK: Fertility in Prader–Willi syndrome: a case report with Angelman syndrome in the offspring.Acta Paediatr.90 , 455–459 (2001).
  • Burman P , RitzenEM, LindgrenAC: Endocrine dysfunction in Prader–Willi syndrome: a review with special reference to GH.Endocr. Rev.22 , 787–799 (2001).
  • Gunay-Aygun M , SchwartzS, HeegerS, O‘RiordanMA, CassidySB: The changing purpose of Prader–Willi syndrome clinical diagnostic criteria and proposed revised criteria.Pediatrics108 , E92 (2001).
  • Magenis RE , Toth-FejelS, AllenLJ et al.: Comparison of the 15q deletions in Prader–Willi and Angelman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences.Am. J. Med. Genet.35 , 333–349 (1990).
  • Zori R , WilliamsC, MatteiJF, MonclaA: Parental origin of del(15)(q11-q13) in Angelman and Prader–Willi syndromes.Am. J. Med. Genet.37 , 294–295 (1990).
  • Knoll JH , NichollsRD, MagenisRE, GrahamJM Jr, Lalande M, Latt SA: Angelman and Prader–Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am. J. Med. Genet.32 , 285–290 (1989).
  • Nicholls RD , KnollJH, ButlerMG, KaramS, LalandeM: Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader–Willi syndrome.Nature342 , 281–285 (1989).
  • Knoll JH , GlattKA, NichollsRD, MalcolmS, LalandeM: Chromosome 15 uniparental disomy is not frequent in Angelman syndrome.Am. J. Hum. Genet.48 , 16–21 (1991).
  • Kishino T , LalandeM, WagstaffJ: UBE3A/E6-AP mutations cause Angelman syndrome.Nat. Genet.15 , 70–73 (1997).
  • Matsuura T , SutcliffeJS, FangP et al.: De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome.Nat. Genet.15 , 74–77 (1997).
  • Sahoo T , del Gaudio D, German JR et al.: Prader–Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat. Genet.40 , 719–721 (2008).
  • de Smith AJ , PurmannC, WaltersRG et al.: A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism.Hum. Mol. Genet.18 , 3257–3265 (2009).
  • Gallagher RC , PilsB, AlbalwiM, FranckeU: Evidence for the role of PWCR1/HBII-85 C/D box small nucleolar RNAs in Prader–Willi syndrome.Am. J. Hum. Genet.71 , 669–678 (2002).
  • Schule B , AlbalwiM, NorthropE et al.: Molecular breakpoint cloning and gene expression studies of a novel translocation t(4;15)(q27;q11.2) associated with Prader–Willi syndrome.BMC Med. Genet.6 , 18 (2005).
  • Horsthemke B , BuitingK: Imprinting defects on human chromosome 15.Cytogenet. Genome Res.113 , 292–299 (2006).
  • Buiting K , LichC, CottrellS, BarnicoatA, HorsthemkeB: A 5-kb imprinting center deletion in a family with Angelman syndrome reduces the shortest region of deletion overlap to 880 bp.Hum. Genet.105 , 665–666 (1999).
  • Bielinska B , BlaydesSM, BuitingK et al.: De novo deletions of SNRPN exon 1 in early human and mouse embryos result in a paternal to maternal imprint switch.Nat. Genet.25 , 74–78 (2000).
  • Horsthemke B , WagstaffJ: Mechanisms of imprinting of the Prader–Willi/Angelman region.Am. J. Med. Genet. A146A , 2041–2052 (2008).
  • Sahoo T , PetersSU, MadduriNS et al.: Microarray based comparative genomic hybridization testing in deletion bearing patients with Angelman syndrome: genotype–phenotype correlations.J. Med. Genet.43 , 512–516 (2006).
  • Lossie AC , WhitneyMM, AmidonD et al.: Distinct phenotypes distinguish the molecular classes of Angelman syndrome.J. Med. Genet.38 , 834–845 (2001).
  • Saitoh S , WadaT, OkajimaM, TakanoK, SudoA, NiikawaN: Uniparental disomy and imprinting defects in Japanese patients with Angelman syndrome.Brain Dev.27 , 389–391 (2005).
  • Nazlican H , ZeschnigkM, ClaussenU et al.: Somatic mosaicism in patients with Angelman syndrome and an imprinting defect.Hum. Mol. Genet.13 , 2547–2555 (2004).
  • Cox GF , BurgerJ, LipV et al.: Intracytoplasmic sperm injection may increase the risk of imprinting defects.Am. J. Hum. Genet.71 , 162–164 (2002).
  • Orstavik KH , EiklidK, van der Hagen CB et al.: Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am. J. Hum. Genet.72 , 218–219 (2003).
  • Ludwig M , KatalinicA, GrossS, SutcliffeA, VaronR, HorsthemkeB: Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples.J. Med. Genet.42 , 289–291 (2005).
  • Kamiya M , JudsonH, OkazakiY et al.: The cell cycle control gene ZAC/PLAGL1 is imprinted – a strong candidate gene for transient neonatal diabetes.Hum. Mol. Genet.9 , 453–460 (2000).
  • Arima T , DrewellRA, ArneyKL et al.: A conserved imprinting control region at the HYMAI/ZAC domain is implicated in transient neonatal diabetes mellitus.Hum. Mol. Genet.10 , 1475–1483 (2001).
  • Mackay DJ , CoupeAM, ShieldJP, StorrJN, TempleIK, RobinsonDO: Relaxation of imprinted expression of ZAC and HYMAI in a patient with transient neonatal diabetes mellitus.Hum. Genet.110 , 139–144 (2002).
  • Gardner RJ , MackayDJ, MungallAJ et al.: An imprinted locus associated with transient neonatal diabetes mellitus.Hum. Mol. Genet.9 , 589–596 (2000).
  • Temple IK , ShieldJP: Transient neonatal diabetes, a disorder of imprinting.J. Med. Genet.39 , 872–875 (2002).
  • Temple IK , GardnerRJ, MackayDJ, BarberJC, RobinsonDO, ShieldJP: Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes.Diabetes49 , 1359–1366 (2000).
  • Temple IK : Imprinting in human disease with special reference to transient neonatal diabetes and Beckwith–Wiedemann syndrome.Endocr. Dev.12 , 113–123 (2007).
  • Mackay DJ , BoonenSE, Clayton-SmithJ et al.: A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus.Hum. Genet.120 , 262–269 (2006).
  • Mackay DJ , HahnemannJM, BoonenSE et al.: Epimutation of the TNDM locus and the Beckwith–Wiedemann syndrome centromeric locus in individuals with transient neonatal diabetes mellitus.Hum. Genet.119 , 179–184 (2006).
  • Mackay DJ , CallawayJL, MarksSM et al.: Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57.Nat. Genet.40 , 949–951 (2008).
  • Li X , ItoM, ZhouF et al.: A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints.Dev. Cell15 , 547–557 (2008).
  • Lin SP , YoungsonN, TakadaS et al.: Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12.Nat. Genet.35 , 97–102 (2003).
  • Geuns E , De Temmerman N, Hilven P, Van Steirteghem A, Liebaers I, De Rycke M: Methylation analysis of the intergenic differentially methylated region of DLK1-GTL2 in human. Eur. J. Hum. Genet.15 , 352–361 (2007).
  • Edwards CA , Ferguson-SmithAC: Mechanisms regulating imprinted genes in clusters.Curr. Opin. Cell Biol.19 , 281–289 (2007).
  • Temple IK , CockwellA, HassoldT, PettayD, JacobsP: Maternal uniparental disomy for chromosome 14.J. Med. Genet.28 , 511–514 (1991).
  • Kotzot D , UtermannG: Uniparental disomy (UPD) other than 15: phenotypes and bibliography updated.Am. J. Med. Genet. A136 , 287–305 (2005).
  • Mitter D , BuitingK, von Eggeling F et al.: Is there a higher incidence of maternal uniparental disomy 14 [upd(14)mat]? Detection of 10 new patients by methylation-specific PCR. Am. J. Med. Genet. A140 , 2039–2049 (2006).
  • Cox H , BullmanH, TempleIK: Maternal UPD(14) in the patient with a normal karyotype: clinical report and a systematic search for cases in samples sent for testing for Prader–Willi syndrome.Am. J. Med. Genet. A127A , 21–25 (2004).
  • Kagami M , SekitaY, NishimuraG et al.: Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes.Nat. Genet.40 , 237–242 (2008).
  • Temple IK , ShrubbV, LeverM, BullmanH, MackayDJ: Isolated imprinting mutation of the DLK1/GTL2 locus associated with a clinical presentation of maternal uniparental disomy of chromosome 14.J. Med. Genet.44 , 637–640 (2007).
  • Kurosawa K , SasakiH, SatoY et al.: Paternal UPD14 is responsible for a distinctive malformation complex.Am. J. Med. Genet.110 , 268–272 (2002).
  • Offiah AC , CornetteL, HallCM: Paternal uniparental disomy 14: introducing the ‘coat-hanger‘ sign.Pediatr. Radiol.33 , 509–512 (2003).
  • Curtis L , AntonelliE, VialY et al.: Prenatal diagnostic indicators of paternal uniparental disomy 14.Prenat. Diagn.26 , 662–666 (2006).
  • Seitz H , YoungsonN, LinSP et al.: Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene.Nat. Genet.34 , 261–262 (2003).
  • Davis E , CaimentF, TordoirX et al.: RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus.Curr. Biol.15 , 743–749 (2005).
  • Sekita Y , WagatsumaH, NakamuraK et al.: Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta.Nat. Genet.40 , 243–248 (2008).
  • Weinstein LS , YuS, WarnerDR, LiuJ: Endocrine manifestations of stimulatory G protein α-subunit mutations and the role of genomic imprinting.Endocr. Rev.22 , 675–705 (2001).
  • Peters J , WroeSF, WellsCA et al.: A cluster of oppositely imprinted transcripts at the Gnas locus in the distal imprinting region of mouse chromosome 2.Proc. Natl Acad. Sci. USA96 , 3830–3835 (1999).
  • Liu J , YuS, LitmanD, ChenW, WeinsteinLS: Identification of a methylation imprint mark within the mouse Gnas locus.Mol. Cell. Biol20 , 5808–5817 (2000).
  • Kehlenbach RH , MattheyJ, HuttnerWB: XL α s is a new type of G protein.Nature372 , 804–809 (1994).
  • Wroe SF , KelseyG, SkinnerJA et al.: An imprinted transcript, antisense to Nesp, adds complexity to the cluster of imprinted genes at the mouse Gnas locus.Proc. Natl Acad. Sci. USA97 , 3342–3346 (2000).
  • Yu S , YuD, LeeE et al.: Variable and tissue-specific hormone resistance in heterotrimeric Gs protein α-subunit (Gsα) knockout mice is due to tissue-specific imprinting of the gsα gene.Proc. Natl Acad. Sci. USA95 , 8715–8720 (1998).
  • Hayward BE , KamiyaM, StrainL et al.: The human GNAS1 gene is imprinted and encodes distinct paternally and biallelically expressed G proteins.Proc. Natl Acad. Sci. USA95 , 10038–10043 (1998).
  • Hayward BE , MoranV, StrainL, BonthronDT: Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins.Proc. Natl Acad. Sci. USA95 , 15475–15480 (1998).
  • Williamson CM , BallST, NottinghamWT et al.: A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas.Nat. Genet.36 , 894–899 (2004).
  • Liu J , NealonJG, WeinsteinLS: Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB.Hum. Mol. Genet.14 , 95–102 (2005).
  • Williamson CM , TurnerMD, BallST et al.: Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster.Nat. Genet.38 , 350–355 (2006).
  • de Nanclares GP , Fernandez-RebolloE, SantinI et al.: Epigenetic defects of GNAS in patients with pseudohypoparathyroidism and mild features of Albright‘s hereditary osteodystrophy.J. Clin. Endocrinol. Metab.92 , 2370–2373 (2007).
  • Davies SJ , HughesHE: Imprinting in Albright‘s hereditary osteodystrophy.J. Med. Genet.30 , 101–103 (1993).
  • Aldred MA , AftimosS, HallC et al.: Constitutional deletion of chromosome 20q in two patients affected with albright hereditary osteodystrophy.Am. J. Med. Genet.113 , 167–172 (2002).
  • Mantovani G , SpadaA: Mutations in the Gs α gene causing hormone resistance.Best Pract. Res. Clin. Endocrinol. Metab.20 , 501–513 (2006).
  • Liu J , ErlichmanB, WeinsteinLS: The stimulatory G protein α-subunit Gs α is imprinted in human thyroid glands: implications for thyroid function in pseudohypoparathyroidism types 1A and 1B.J. Clin. Endocrinol. Metab.88 , 4336–4341 (2003).
  • Bastepe M , FrohlichLF, HendyGN et al.: Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS.J. Clin. Invest.112 , 1255–1263 (2003).
  • Liu J , LitmanD, RosenbergMJ, YuS, BieseckerLG, WeinsteinLS: A GNAS1 imprinting defect in pseudohypoparathyroidism type IB.J. Clin. Invest.106 , 1167–1174 (2000).
  • Bastepe M , PincusJE, SugimotoT et al.: Positional dissociation between the genetic mutation responsible for pseudohypoparathyroidism type Ib and the associated methylation defect at exon A/B: evidence for a long-range regulatory element within the imprinted GNAS1 locus.Hum. Mol. Genet.10 , 1231–1241 (2001).
  • Jan de Beur S , DingC, Germain-LeeE, ChoJ, MaretA, LevineMA: Discordance between genetic and epigenetic defects in pseudohypoparathyroidism type 1b revealed by inconsistent loss of maternal imprinting at GNAS1.Am. J. Hum. Genet.73 , 314–322 (2003).
  • Bastepe M , LaneAH, JuppnerH: Paternal uniparental isodisomy of chromosome 20q – and the resulting changes in GNAS1 methylation – as a plausible cause of pseudohypoparathyroidism.Am. J. Hum. Genet.68 , 1283–1289 (2001).
  • El-Maarri O , SeoudM, CoullinP et al.: Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles.Hum. Mol. Genet.12 , 1405–1413 (2003).
  • Fisher RA , HodgesMD, ReesHC et al.: The maternally transcribed gene p57(KIP2) (CDNK1C) is abnormally expressed in both androgenetic and biparental complete hydatidiform moles.Hum. Mol. Genet.11 , 3267–3272 (2002).
  • Judson H , HaywardBE, SheridanE, BonthronDT: A global disorder of imprinting in the human female germ line.Nature416 , 539–542 (2002).
  • Murdoch S , DjuricU, MazharB et al.: Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans.Nat. Genet.38 , 300–302 (2006).
  • Zhang P , DixonM, ZucchelliM et al.: Expression analysis of the NLRP gene family suggests a role in human preimplantation development.PLoS ONE3 , e2755 (2008).
  • Djuric U , El-MaarriO, LambB et al.: Familial molar tissues due to mutations in the inflammatory gene, NALP7, have normal postzygotic DNA methylation.Hum. Genet.120 , 390–395 (2006).
  • Kinoshita T , WangY, HasegawaM, ImamuraR, SudaT: PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1b secretion.J. Biol. Chem.280 , 21720–21725 (2005).
  • Drenth JP , van der Meer JW: The inflammasome – a linebacker of innate defense. N. Engl. J. Med.355 , 730–732 (2006).
  • Hoffman HM , MuellerJL, BroideDH, WandererAA, KolodnerRD: Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome.Nat. Genet.29 , 301–305 (2001).
  • Jeru I , DuquesnoyP, Fernandes-AlnemriT et al.: Mutations in NALP12 cause hereditary periodic fever syndromes.Proc. Natl Acad. Sci. USA105 , 1614–1619 (2008).
  • Jin Y , MaillouxCM, GowanK et al.: NALP1 in vitiligo-associated multiple autoimmune disease.N. Engl. J. Med.356 , 1216–1225 (2007).
  • Bestor TH : Cytosine methylation mediates sexual conflict.Trends Genet.19 , 185–190 (2003).
  • Van den Veyver IB , Al-HussainiTK: Biparental hydatidiform moles: a maternal effect mutation affecting imprinting in the offspring.Hum. Reprod. Update12 , 233–242 (2006).
  • Deveault C , QianJH, ChebaroW et al.: NLRP7 mutations in women with diploid androgenetic and triploid moles: a proposed mechanism for mole formation.Hum. Mol. Genet.18 , 888–897 (2009).
  • American Association for Cancer Research Human Epigenome Task Force; European Union, Network of Excellence, Scientific Advisory Board: Moving AHEAD with an international human epigenome project. Nature454 , 711–715 (2008).
  • Hansen M , KurinczukJJ, BowerC, WebbS: The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization.N. Engl. J. Med.346 , 725–730 (2002).
  • Feinberg AP : Epigenetics at the epicenter of modern medicine.JAMA299 , 1345–1350 (2008).
  • Van Buggenhout G , FrynsJP: Angelman syndrome (AS, MIM 10.830).Eur. J. Hum. Genet.17(11) , 1367–1373 (2009).
  • Wilson LC , TrembathRC: Albright‘s hereditary osteodystrophy.J. Med. Genet.31 , 779–84 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.