121
Views
0
CrossRef citations to date
0
Altmetric
Review

High-resolution mapping studies of chromatin and gene regulatory elements

&
Pages 319-329 | Published online: 03 Dec 2009

Bibliography

  • Birney E , StamatoyannopoulosJA, DuttaA et al.: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project.Nature447(7146) , 799–816 (2007).
  • ENCODE Project Consortium: The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306(5696) , 636–640 (2004).
  • Celniker SE , DillonLA, GersteinMB et al.: Unlocking the secrets of the genome.Nature459(7249) , 927–930 (2009).
  • Spencer G : Fly and worm models to teach researchers about biology and medicine.NIH News May 14 (2007).
  • Weaver IC , D‘AlessioAC, BrownSE et al.: The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: Altering epigenetic marks by immediate-early genes.J. Neurosci.27(7) , 1756–1768 (2007).
  • Lister R , EckerJR: Finding the fifth base: genome-wide sequencing of cytosine methylation.Genome Res.19(6) , 959–966 (2009).
  • Amir RE , ZoghbiHY: Rett syndrome: Methyl-cpg-binding protein 2 mutations and phenotype-genotype correlations.Am. J. Med. Genet.97(2) , 147–152 (2000).
  • Esteller M : Cancer epigenomics: DNA methylomes and histone-modification maps.Nat. Rev. Genet.8(4) , 286–298 (2007).
  • Down TA , RakyanVK, TurnerDJ et al.: A bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis.Nat. Biotechnol.26(7) , 779–785 (2008).
  • Rakyan VK , DownTA, ThorneNP et al.: An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (TDMRs).Genome Res.18(9) , 1518–1529 (2008).
  • Bailey VJ , EaswaranH, ZhangY et al.: MS-qfret: a quantum dot-based method for analysis of DNA methylation.Genome Res.19(8) , 1455–1461 (2009).
  • Korshunova Y , MaloneyRK, LakeyN et al.: Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA.Genome Res.18(1) , 19–29 (2008).
  • Ball MP , LiJB, GaoY et al.: Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells.Nat. Biotechnol.27(4) , 361–368 (2009).
  • Deng J , ShoemakerR, XieB et al.: Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming.Nat. Biotechnol.27(4) , 353–360 (2009).
  • Rusk N : Capturing the human methylome.Nat. Methods6 , 320–321 (2009).
  • Cokus SJ , FengS, ZhangX et al.: Shotgun bisulphite sequencing of the arabidopsis genome reveals DNA methylation patterning.Nature452(7184) , 215–219 (2008).
  • Lister R , O‘MalleyRC, Tonti-FilippiniJ et al.: Highly integrated single-base resolution maps of the epigenome in arabidopsis.Cell133(3) , 523–536 (2008).
  • Meissner A , MikkelsenTS, GuH et al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells.Nature454(7205) , 766–770 (2008).
  • Brunner AL , JohnsonDS, KimSW et al.: Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver.Genome Res.19(6) , 1044–1056 (2009).
  • Collas P , DahlJA: Chop it, chip it, check it: the current status of chromatin immunoprecipitation.Front. Biosci.13 , 929–943 (2008).
  • Aparicio O , GeisbergJV, SekingerE, YangA, MoqtaderiZ, StruhlK: Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo. Curr. Protoc. Mol. Biol. Chapter 21, Unit 21.3. (2005).
  • Schmidt D , WilsonMD, SpyrouC, BrownGD, HadfieldJ, OdomDT: Chip-seq: using high-throughput sequencing to discover protein–DNA interactions.Methods48(3) , 240–248 (2009).
  • Barski A , CuddapahS, CuiK et al.: High-resolution profiling of histone methylations in the human genome.Cell129(4) , 823–837 (2007).
  • Robertson G , HirstM, BainbridgeM et al.: Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing.Nat. Methods4(8) , 651–657 (2007).
  • Kim TH , AbdullaevZK, SmithAD et al.: Analysis of the vertebrate insulator protein ctcf-binding sites in the human genome.Cell128(6) , 1231–1245 (2007).
  • Valouev A , JohnsonDS, SundquistA et al.: Genome-wide analysis of transcription factor binding sites based on chip-seq data.Nat. Methods5(9) , 829–834 (2008).
  • Johnson DS , MortazaviA, MyersRM, WoldB: Genome-wide mapping of in vivo protein-DNA interactions.Science316(5830) , 1497–1502 (2007).
  • Zhang Y , LiuT, MeyerCA et al.: Model-based analysis of chip-seq (MACS).Genome Biol.9(9) , R137 (2008).
  • Shah A : Chromatin immunoprecipitation sequencing (chip-seq) on the solid(tm) system. Nat. Methods 6(4) , i–iii (2009).
  • Narlikar L , GordanR, HarteminkAJ: A nucleosome-guided map of transcription factor binding sites in yeast.PLoS Comput. Biol.3(11) , E215 (2007).
  • Pavesi G , MereghettiP, MauriG, Pesole G; Weeder web: Discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res.32(Web Server issue) , W199–W203 (2004).
  • Bailey TL , ElkanC: Fitting a mixture model by expectation maximization to discover motifs in biopolymers.Proc. Int. Conf. Intell. Syst. Mol. Biol.2 , 28–36 (1994).
  • Boulard M , BouvetP, KunduTK, DimitrovS: Histone variant nucleosomes: Structure, function and implication in disease.Subcell. Biochem.41 , 71–89 (2007).
  • Henikoff S , FuruyamaT, AhmadK: Histone variants, nucleosome assembly and epigenetic inheritance.Trends Genet.20(7) , 320–326 (2004).
  • Kouzarides T : Chromatin modifications and their function.Cell128(4) , 693–705 (2007).
  • Zhang X , BernatavichuteYV, CokusS, PellegriniM, JacobsenSE: Genome-wide analysis of mono-, di- and trimethylation of histone h3 lysine 4 in arabidopsis thaliana.Genome Biol.10(6) , R62 (2009).
  • Bernstein BE , MeissnerA, LanderES: The mammalian epigenome.Cell128(4) , 669–681 (2007).
  • Wang Z , ZangC, RosenfeldJA et al.: Combinatorial patterns of histone acetylations and methylations in the human genome.Nat. Genet.40(7) , 897–903 (2008).
  • Mikkelsen TS , KuM, JaffeDB et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.Nature448(7153) , 553–560 (2007).
  • Yu L , MorseRH: Chromatin opening and transactivator potentiation by rap1 in Saccharomyces cerevisiae.Mol. Cell. Biol.19(8) , 5279–5288 (1999).
  • Varga-Weisz P : ATP-dependent chromatin remodeling factors: Nucleosome shufflers with many missions.Oncogene20(24) , 3076–3085 (2001).
  • Tsukiyama T , WuC: Purification and properties of an ATP-dependent nucleosome remodeling factor.Cell83(6) , 1011–1020 (1995).
  • Sudarsanam P , WinstonF: The SWI/SNF family nucleosome-remodeling complexes and transcriptional control.Trends Genet.16(8) , 345–351 (2000).
  • Reinke H , HorzW: Histones are first hyperacetylated and then lose contact with the activated pho5 promoter.Mol. Cell11(6) , 1599–1607 (2003).
  • Dion MF , KaplanT, KimM, BuratowskiS, FriedmanN, RandoOJ: Dynamics of replication-independent histone turnover in budding yeast.Science315(5817) , 1405–1408 (2007).
  • Segal E , Fondufe-MittendorfY, ChenL et al.: A genomic code for nucleosome positioning.Nature442(7104) , 772–778 (2006).
  • Kaplan N , MooreIK, Fondufe-MittendorfY et al.: The DNA-encoded nucleosome organization of a eukaryotic genome.Nature458(7236) , 362–366 (2009).
  • Mavrich TN , IoshikhesIP, VentersBJ et al.: A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome.Genome Res.18(7) , 1073–1083 (2008).
  • Jiang C , PughBF: Nucleosome positioning and gene regulation: Advances through genomics.Nat. Rev. Genet.10(3) , 161–172 (2009).
  • Yuan GC , LiuYJ, DionMF et al.: Genome-scale identification of nucleosome positions in S. cerevisiae.Science309(5734) , 626–630 (2005).
  • Lee W , TilloD, BrayN et al.: A high-resolution atlas of nucleosome occupancy in yeast.Nat. Genet.39(10) , 1235–1244 (2007).
  • Shivaswamy S , BhingeA, ZhaoY, JonesS, HirstM, IyerVR: Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation.PLoS Biol.6(3) , E65 (2008).
  • Valouev A , IchikawaJ, TonthatT et al.: A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning.Genome Res.18(7) , 1051–1063 (2008).
  • Mavrich TN , JiangC, IoshikhesIP et al.: Nucleosome organization in the Drosophila genome.Nature453(7193) , 358–362 (2008).
  • Schones DE , CuiK, CuddapahS et al.: Dynamic regulation of nucleosome positioning in the human genome.Cell132(5) , 887–898 (2008).
  • Yassour M , KaplanT, JaimovichA, FriedmanN: Nucleosome positioning from tiling microarray data.Bioinformatics24(13) , I139–I146 (2008).
  • Gross DS , GarrardWT: Nuclease hypersensitive sites in chromatin.Annu. Rev. Biochem.57 , 159–197 (1988).
  • Boyle AP , DavisS, ShulhaHP et al.: High-resolution mapping and characterization of open chromatin across the genome.Cell132(2) , 311–322 (2008).
  • Sabo PJ , HawrylyczM, WallaceJC et al.: Discovery of functional noncoding elements by digital analysis of chromatin structure.Proc. Natl Acad. Sci. USA101(48) , 16837–16842 (2004).
  • Sabo PJ , HumbertR, HawrylyczM et al.: Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries.Proc. Natl Acad. Sci. USA101(13) , 4537–4542 (2004).
  • Sabo PJ , KuehnMS, ThurmanR et al.: Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays.Nat. Methods3(7) , 511–518 (2006).
  • Crawford GE , DavisS, ScacheriPC et al.: DNase-chip: a high-resolution method to identify DNase I hypersensitive sites using tiled microarrays.Nat. Methods3(7) , 503–509 (2006).
  • Crawford GE , HoltIE, MullikinJC et al.: Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites.Proc. Natl Acad. Sci. USA101(4) , 992–997 (2004).
  • Crawford GE , HoltIE, WhittleJ et al.: Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS).Genome Res.16(1) , 123–131 (2006).
  • Giresi PG , KimJ, McDaniellRM, IyerVR, LiebJD: FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin.Genome Res.17(6) , 877–885 (2007).
  • Giresi PG , LiebJD: Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (formaldehyde assisted isolation of regulatory elements).Methods48(3) , 233–239 (2009).
  • Hesselberth JR , ChenX, ZhangZ et al.: Global mapping of protein-DNA interactions in vivo by digital genomic footprinting.Nat. Methods6(4) , 283–289 (2009).
  • Kang SH , VieiraK, BungertJ: Combining chromatin immunoprecipitation and DNA footprinting: A novel method to analyze protein-DNA interactions in vivo. Nucleic Acids Res.30(10) , E44 (2002).
  • Lanctot C , CheutinT, CremerM, CavalliG, CremerT: Dynamic genomic architecture in the nuclear space: regulation of gene expression in three dimensions.Nat. Rev. Genet.8(2) , 104–115 (2007).
  • Dekker J , RippeK, DekkerM, KlecknerN: Capturing chromosome conformation.Science295(5558) , 1306–1311 (2002).
  • Zhao Z , TavoosidanaG, SjolinderM et al.: Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions.Nat. Genet.38(11) , 1341–1347 (2006).
  • Simonis M , KlousP, SplinterE et al.: Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C).Nat. Genet.38(11) , 1348–1354 (2006).
  • Dostie J , RichmondTA, ArnaoutRA et al.: Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements.Genome Res.16(10) , 1299–1309 (2006).
  • Dekker J : Gene regulation in the third dimension.Science319(5871) , 1793–1794 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.