20,923
Views
4
CrossRef citations to date
0
Altmetric
Review

Dna Hypomethylation In Cancer Cells

Pages 239-259 | Published online: 03 Dec 2009

Bibliography

  • Gama-Sosa MA , SlagelVA, TrewynRW et al.: The 5-methylcytosine content of DNA from human tumors.Nucleic Acids Res.11 , 6883–6894 (1983).
  • Feinberg AP , VogelsteinB: Hypomethylation distinguishes genes of some human cancers from their normal counterparts.Nature301 , 89–92 (1983).
  • Feinberg AP , VogelsteinB: Hypomethylation of ras oncogenes in primary human cancers.Biochem. Biophys. Res. Commun.111 , 47–54 (1983).
  • Bedford MT , van Helden PD: Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res.47 , 5274–5276 (1987).
  • Ehrlich M : DNA methylation in cancer:too much, but also too little.Oncogene21 , 5400–5413 (2002).
  • de Capoa A , MusolinoA, Della Rosa S et al.: DNA demethylation is directly related to tumour progression: evidence in normal, pre-malignant and malignant cells from uterine cervix samples. Oncol. Rep.10 , 545–549 (2003).
  • Brothman AR , SwansonG, MaxwellTM et al.: Global hypomethylation is common in prostate cancer cells: a quantitative predictor for clinical outcome?Cancer Genet. Cytogenet.156 , 31–36 (2005).
  • Seifert HH , SchmiemannV, MuellerM et al.: In situ detection of global DNA hypomethylation in exfoliative urine cytology of patients with suspected bladder cancer.Exp. Mol. Pathol.82(3) , 292–297 (2007).
  • Cadieux B , ChingTT, VandenbergSR, CostelloJF: Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation.Cancer Res.66 , 8469–8476 (2006).
  • Graff JR , HermanJG, LapidusRG et al.: E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas.Cancer Res.55 , 5195–5199 (1995).
  • Melki JR , VincentPC, ClarkSJ: Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia.Cancer Res.59 , 3730–3740 (1999).
  • Costello JF , FruhwaldMC, SmiragliaDJ et al.: Aberrant CpG-island methylation has non-random and tumor-type-specific patterns.Nat. Genet.24 , 132–138 (2000).
  • Issa JP : CpG island methylator phenotype in cancer.Nat. Rev. Cancer4 , 988–993 (2004).
  • Pfeifer GP , RauchTA: DNA methylation patterns in lung carcinomas.Semin. Cancer Biol.19 , 181–187 (2009).
  • Nguyen C , LiangG, NguyenTT et al.: Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells.J. Natl Cancer Inst.93 , 1465–1472 (2001).
  • Cheng P , SchmutteC, CoferKF, FelixJC, YuMC, DubeauL: Alterations in DNA methylation are early, but not initial, events in ovarian tumorigenesis.Br. J. Cancer75 , 396–402 (1997).
  • Ehrlich M , WoodsC, YuM et al.: Quantitative analysis of association between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors.Oncogene25 , 2636–2645 (2006).
  • Wahlfors J , HiltunenH, HeinonenK, HamalainenE, AlhonenL, JanneJ: Genomic hypomethylation in human chronic lymphocytic leukemia.Blood80 , 2074–2080 (1992).
  • Lin CH , HsiehSY, SheenIS et al.: Genome-wide hypomethylation in hepatocellular carcinogenesis.Cancer Res.61 , 4238–4243 (2001).
  • Kim Y -I, Giuliano A, Hatch KD et al.: Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer74 , 893–899 (1994).
  • Feinberg AP , GehrkeCW, KuoKC, EhrlichM: Reduced genomic 5-methylcytosine content in human colonic neoplasia.Cancer Res.48 , 1159–1161 (1988).
  • Ehrlich M , JiangG, FialaES et al.: Hypomethylation and hypermethylation of DNA in Wilms tumors.Oncogene21 , 6694–6702 (2002).
  • Morey SR , SmiragliaDJ, JamesSR et al.: DNA methylation pathway alterations in an autochthonous murine model of prostate cancer.Cancer Res.66 , 11659–11667 (2006).
  • Nishiyama R , QiL, TsumagariK et al.: A DNA repeat, NBL2, is hypermethylated in some cancers but hypomethylated in others.Cancer Biol. Ther.4 , 440–448 (2005).
  • Gama-Sosa MA , WangRY, KuoKC, GehrkeCW, EhrlichM: The 5-methylcytosine content of highly repeated sequences in human DNA.Nucleic Acids Res.11 , 3087–3095 (1983).
  • Smiraglia DJ , RushLJ, FruhwaldMC et al.: Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies.Hum. Mol. Genet.10 , 1413–1419 (2001).
  • Hoffmann MJ , SchulzWA: Causes and consequences of DNA hypomethylation in human cancer.Biochem. Cell Biol.83 , 296–321 (2005).
  • Weisenberger DJ , CampanM, LongTI et al.: Analysis of repetitive element DNA methylation by MethyLight.Nucleic Acids Res.33 , 6823–6836 (2005).
  • Narayan A , JiW, Zhang X-Y et al.: Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int. J. Cancer77 , 833–838 (1998).
  • Qu G , DubeauL, NarayanA, YuM, EhrlichM: Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential.Mut. Res.423 , 91–101 (1999).
  • Qu G , GrundyPE, NarayanA, EhrlichM: Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16.Cancer Genet. Cytogenet.109 , 34–39 (1999).
  • Florl AR , SteinhoffC, MullerM et al.: Coordinate hypermethylation at specific genes in prostate carcinoma precedes LINE-1 hypomethylation.Br. J. Cancer91 , 985–994 (2004).
  • Kim MJ , White-CrossJA, ShenL, IssaJP, RashidA: Hypomethylation of long interspersed nuclear element-1 in hepatocellular carcinomas.Mod. Pathol.22 , 442–449 (2009).
  • Rodriguez J , VivesL, JordaM et al.: Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells.Nucleic Acids Res.36 , 770–784 (2008).
  • Widschwendter M , JiangG, WoodsC et al.: DNA hypomethylation and ovarian cancer biology.Cancer Res.64 , 4472–4480 (2004).
  • Ehrlich M , HopkinsN, JiangG et al.: Satellite hypomethylation in karyotyped Wilms tumors.Cancer Genet. Cytogenet.141 , 97–105 (2003).
  • Rauch TA , ZhongX, WuX et al.: High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer.Proc. Natl Acad. Sci. USA105 , 252–257 (2008).
  • Goelz SE , VogelsteinB, HamiltonSR, FeinbergAP: Hypomethylation of DNA from benign and malignant human colon neoplasms.Science228 , 187–190 (1985).
  • Wasson GR , McGlynnAP, McNultyH et al.: Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation.J. Nutr.136 , 2748–2753 (2006).
  • Kress C , ThomassinH, GrangeT: Active cytosine demethylation triggered by a nuclear receptor involves DNA strand breaks.Proc. Natl Acad. Sci. USA103 , 11112–11117 (2006).
  • Wilson AS , PowerBE, MolloyPL: DNA hypomethylation and human diseases.Biochim. Biophys. Acta1775 , 138–162 (2007).
  • Lindsey JC , LusherME, AndertonJA, GilbertsonRJ, EllisonDW, CliffordSC: Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma.Br. J. Cancer97 , 267–274 (2007).
  • Grunau C , BrunME, RivalsI et al.: BAGE hypomethylation, a new epigenetic biomarker for colon cancer detection.Cancer Epidemiol. Biomarkers Prev.17 , 1374–1379 (2008).
  • Ortmann CA , EiseleL, NuckelH et al.: Aberrant hypomethylation of the cancer-testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia.Ann. Hematol.87 , 809–818 (2008).
  • Novak P , JensenT, OshiroMM, WattsGS, KimCJ, FutscherBW: Agglomerative epigenetic aberrations are a common event in human breast cancer.Cancer Res.68 , 8616–8625 (2008).
  • Pakneshan P , TetuB, RabbaniSA: Demethylation of urokinase promoter as a prognostic marker in patients with breast carcinoma.Clin. Cancer Res.10 , 3035–3041 (2004).
  • Pulukuri SM , EstesN, PatelJ, RaoJS: Demethylation-linked activation of urokinase plasminogen activator is involved in progression of prostate cancer.Cancer Res.67 , 930–939 (2007).
  • Ateeq B , UnterbergerA, SzyfM, RabbaniSA: Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo.Neoplasia10 , 266–278 (2008).
  • De Smet C , LurquinC, LetheB, MartelangeV, BoonT: DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter.Mol. Cell. Biol.19 , 7327–7335 (1999).
  • Rosty C , UekiT, ArganiP et al.: Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation.Am. J. Pathol.160 , 45–50 (2002).
  • Sato N , FukushimaN, MatsubayashiH, GogginsM: Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling.Oncogene23 , 1531–1538 (2004).
  • Lee YM , LeeJY, KimMJ et al.: Hypomethylation of the protein gene product 9.5 promoter region in gallbladder cancer and its relationship with clinicopathological features.Cancer Sci.97 , 1205–1210 (2006).
  • Ye L , LiX, KongX et al.: Hypomethylation in the promoter region of POMC gene correlates with ectopic overexpression in thymic carcinoids.J. Endocrinol.185 , 337–343 (2005).
  • Kaneda A , TsukamotoT, Takamura-EnyaT et al.: Frequent hypomethylation in multiple promoter CpG islands is associated with global hypomethylation, but not with frequent promoter hypermethylation.Cancer Sci.95 , 58–64 (2004).
  • Grunau C , SanchezC, EhrlichM et al.: Frequent DNA hypomethylation in the human juxtacentromeric BAGE loci in cancer.Genes Chrom. Cancer43 , 11–24 (2005).
  • Salem C , LiangG, TsaiYC et al.: Progressive increases in de novo methylation of CpG islands in bladder cancer.Cancer Res.60 , 2473–2476 (2000).
  • Fruhwald MC , O‘DorisioMS, DaiZ et al.: Aberrant promoter methylation of previously unidentified target genes is a common abnormality in medulloblastomas – implications for tumor biology and potential clinical utility.Oncogene20 , 5033–5042 (2001).
  • Brock MV , GouM, AkiyamaY et al.: Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma.Clin. Cancer Res.9 , 2912–2919 (2003).
  • Jackson K , YuM, ArakawaK et al.: DNA hypomethylation is prevalent even in low-grade breast cancers.Cancer Biol. Ther.3 , 1225–1231 (2004).
  • Suzuki K , SuzukiI, LeodolterA et al.: Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage.Cancer Cell9 , 199–207 (2006).
  • Roman-Gomez J , Jimenez-VelascoA, AgirreX et al.: Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia.Leuk. Res.32 , 487–490 (2008).
  • Park SY , YooEJ, ChoNY, KimN, KangGH: Comparison of CpG island hypermethylation and repetitive DNA hypomethylation in premalignant stages of gastric cancer, stratified for Helicobacter pylori infection.J. Pathol. (2009) (Epub ahead of print).
  • Markl ID , ChengJ, LiangG, ShibataD, LairdPW, JonesPA: Global and gene-specific epigenetic patterns in human bladder cancer genomes are relatively stable in vivo and in vitro over time.Cancer Res.61 , 5875–5884 (2001).
  • Roman-Gomez J , Jimenez-VelascoA, AgirreX et al.: Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia.Oncogene24 , 7213–7223 (2005).
  • Shen L , FangJ, QiuD et al.: Correlation between DNA methylation and pathological changes in human hepatocellular carcinoma.Hepatogastroenterology45 , 1753–1759 (1998).
  • Soares J , PintoAE, CunhaCV et al.: Global DNA hypomethylation in breast carcinoma: correlation with prognostic factors and tumor progression.Cancer85 , 112–118 (1999).
  • Santourlidis S , FlorlA, AckermannR, WirtzHC, SchulzWA: High frequency of alterations in DNA methylation in adenocarcinoma of the prostate.Prostate39 , 166–174 (1999).
  • Itano O , UedaM, KikuchiK et al.: Correlation of postoperative recurrence in hepatocellular carcinoma with demethylation of repetitive sequences.Oncogene21 , 789–797 (2002).
  • Ehrlich M : The controversial denouement of vertebrate DNA methylation research.Biochemistry (Mosc.)70 , 568–575 (2005).
  • Richardson BC : Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer.J. Nutr.132 , S2401–S2405 (2002).
  • Ehrlich M : The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease.Clin. Immunol.109 , 17–28 (2003).
  • Gisselsson D , ShaoC, Tuck-MullerC et al.: Interphase chromosomal abnormalities and mitotic missegregation of hypomethylated sequences in ICF syndrome cells.Chromosoma114 , 118–126 (2005).
  • Ehrlich M : Expression of various genes is controlled by DNA methylation during mammalian development.J. Cell Biochem.88 , 899–910 (2003).
  • Kersh EN , FitzpatrickDR, Murali-KrishnaK et al.: Rapid demethylation of the IFN-γ gene occurs in memory but not naive CD8 T cells.J. Immunol.176 , 4083–4093 (2006).
  • Chang HS , AnwayMD, RekowSS, SkinnerMK: Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination.Endocrinology147 , 5524–5541 (2006).
  • Murayama A , SakuraK, NakamaM et al.: A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory.EMBO J.25 , 1081–1092 (2006).
  • Dolinoy DC , WeidmanJR, JirtleRL: Epigenetic gene regulation: linking early developmental environment to adult disease.Reprod. Toxicol.23(3) , 297–307 (2006).
  • Reichard JF , SchnekenburgerM, PugaA: Long term low-dose arsenic exposure induces loss of DNA methylation.Biochem. Biophys. Res. Commun.352 , 188–192 (2007).
  • Champagne FA , CurleyJP: Epigenetic mechanisms mediating the long-term effects of maternal care on development.Neurosci. Biobehav. Rev.33 , 593–600 (2009).
  • Baccarelli A , WrightRO, BollatiV et al.: Rapid DNA methylation changes after exposure to traffic particles.Am. J. Respir. Crit. Care Med.179 , 572–578 (2009).
  • Gupta A , GodwinAK, VanderveerL, LuA, LiuJ: Hypomethylation of the synuclein g gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma.Cancer Res.63 , 664–673 (2003).
  • Ogishima T , ShiinaH, BreaultJE et al.: Increased heparanase expression is caused by promoter hypomethylation and upregulation of transcriptional factor early growth response-1 in human prostate cancer.Clin. Cancer Res.11 , 1028–1036 (2005).
  • Fan T , SchmidtmannA, XiS et al.: DNA hypomethylation caused by Lsh deletion promotes erythroleukemia development.Epigenetics3 , 134–142 (2008).
  • Ehrlich M , Gama-SosaM, Huang L-H et al.: Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res.10 , 2709–2721 (1982).
  • Gama-Sosa MA , MidgettRM, SlagelVA et al.: Tissue-specific differences in DNA methylation in various mammals.Biochim. Biophys. Acta740 , 212–219 (1983).
  • Khalkhali-Ellis Z : Maspin: the new frontier.Clin. Cancer Res.12 , 7279–7283 (2006).
  • Kim JY , SiegmundKD, TavareS, ShibataD: Age-related human small intestine methylation: evidence for stem cell niches.BMC Med.3 , 10 (2005).
  • Eads CA , LordRV, KurumboorSK et al.: Fields of aberrant CpG island hypermethylation in Barrett‘s esophagus and associated adenocarcinoma.Cancer Res.60 , 5021–5026 (2000).
  • Fanelli M , CaprodossiS, Ricci-VitianiL et al.: Loss of pericentromeric DNA methylation pattern in human glioblastoma is associated with altered DNA methyltransferases expression and involves the stem cell compartment.Oncogene27 , 358–365 (2008).
  • Iacobuzio-Donahue CA : Epigenetic changes in cancer.Annu. Rev. Pathol.4 , 229–249 (2009).
  • Plass C , SolowayPD: DNA methylation, imprinting and cancer.Eur. J. Hum. Genet.10 , 6–16 (2002).
  • Yamada Y , WatanabeH, MiuraF et al.: A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q.Genome Res.14 , 247–266 (2004).
  • Ahuja N , LiQ, MohanAL, BaylinSB, IssaJP: Aging and DNA methylation in colorectal mucosa and cancer.Cancer Res.58 , 5489–5494 (1998).
  • Flanagan JM , PopendikyteV, PozdniakovaiteN et al.: Intra- and interindividual epigenetic variation in human germ cells.Am. J. Hum. Genet.79 , 67–84 (2006).
  • Tra J , KondoT, LuQ, KuickR, HanashS, RichardsonB: Infrequent occurrence of age-dependent changes in CpG island methylation as detected by restriction landmark genome scanning.Mech. Ageing Dev.123 , 1487–1503 (2002).
  • Issa JP : Age-related epigenetic changes and the immune system.Clin. Immunol.109 , 103–108 (2003).
  • Eckhardt F , LewinJ, CorteseR et al.: DNA methylation profiling of human chromosomes 6, 20 and 22.Nat. Genet.38 , 1378–1385 (2006).
  • Kristensen LS , HansenLL: PCR-based methods for detecting single-locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment.Clin. Chem.55 , 1471–1483 (2009).
  • Sepulveda AR , JonesD, OginoS et al.: CpG methylation analysis – current status of clinical assays and potential applications in molecular diagnostics: a report of the association for molecular pathology.J. Mol. Diagn.11 , 266–278 (2009).
  • Chu T , BurkeB, BunceK, SurtiU, Allen Hogge W, Peters DG: A microarray-based approach for the identification of epigenetic biomarkers for the noninvasive diagnosis of fetal disease. Prenat. Diagn.29(11) , 1020–1030 (2009).
  • Rodenhiser DI , AndrewsJ, KennetteW et al.: Epigenetic mapping and functional analysis in a breast cancer metastasis model using whole-genome promoter tiling microarrays.Breast Cancer Res.10 , R62 (2008).
  • Azhikina T , GainetdinovI, SkvortsovaY, SverdlovE: Methylation-free site patterns along a 1-Mb locus on Chr19 in cancerous and normal cells are similar. A new fast approach for analyzing unmethylated CCGG sites distribution.Mol. Genet. Genomics275 , 615–622 (2006).
  • Frommer M , McDonaldLE, MillarDS et al.: A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands.Proc. Natl Acad. Sci. USA89 , 1827–1831 (1992).
  • Laird CD , PleasantND, ClarkAD et al.: Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules.Proc. Natl Acad. Sci. USA101 , 204–209 (2004).
  • Nishiyama R , QiL, LaceyM, EhrlichM: Both hypomethylation and hypermethylation in a 0.2-kb region of a DNA repeat in cancer.Mol. Cancer Res.3 , 617–626 (2005).
  • Shao C , LaceyM, DubeauL, EhrlichM: Hemimethylation footprints of DNA demethylation in cancer.Epigenetics4 , 165–175 (2009).
  • Novak P , JensenTJ, GarbeJC, StampferMR, FutscherBW: Stepwise DNA methylation changes are linked to escape from defined proliferation barriers and mammary epithelial cell immortalization.Cancer Res.69 , 5251–5258 (2009).
  • Morey Kinney SR , SmiragliaDJ, JamesSR, MoserMT, FosterBA, KarpfAR: Stage-specific alterations of DNA methyltransferase expression, DNA hypermethylation, and DNA hypomethylation during prostate cancer progression in the transgenic adenocarcinoma of mouse prostate model.Mol Cancer Res.6 , 1365–1374 (2008).
  • Tsumagari K , QiL, JacksonK et al.: Epigenetics of a tandem DNA repeat: chromatin DNaseI sensitivity and opposite methylation changes in cancers.Nucleic Acids Res.36 , 2196–2207 (2008).
  • Choi SH , WorswickS, ByunHM et al.: Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer.Int. J. Cancer125 , 723–729 (2009).
  • Pogribny IP , MillerBJ, JamesSJ: Alterations in hepatic p53 gene methylation patterns during tumor progression with folate/methyl deficiency in the rat.Cancer Lett.115 , 31–38 (1997).
  • Jacobsen SE , MeyerowitzEM: Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis.Science277 , 1100–1103 (1997).
  • Lee HS , KimBH, ChoNY et al.: Prognostic implications of and relationship between CpG island hypermethylation and repetitive DNA hypomethylation in hepatocellular carcinoma.Clin. Cancer Res.15 , 812–820 (2009).
  • Tryndyak VP , KovalchukO, PogribnyIP: Loss of DNA methylation and histone H4 lysine 20 trimethylation in human breast cancer cells is associated with aberrant expression of DNA methyltransferase 1, Suv4–20h2 histone methyltransferase and methyl-binding proteins.Cancer Biol. Ther.5 , 65–70 (2006).
  • Deng G , NguyenA, TanakaH et al.: Regional hypermethylation and global hypomethylation are associated with altered chromatin conformation and histone acetylation in colorectal cancer.Int. J. Cancer118 , 2999–3005 (2006).
  • Nagarajan RP , CostelloJF: Molecular epigenetics and genetics in neuro-oncology.Neurotherapeutics6 , 436–446 (2009).
  • Florl AR , LowerR, Schmitz-DragerBJ, SchulzWA: DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas.Br. J. Cancer80 , 1312–1321 (1999).
  • Katargin AN , PavlovaLS, KisseljovFL, KisseljovaNP: Hypermethylation of genomic 3.3-kb repeats is frequent event in HPV-positive cervical cancer.BMC Med. Genomics2 , 30 (2009).
  • Ehrlich M : Cancer-linked DNA hypomethylation and its relationship to hypermethylation.Curr. Top. Microbiol. Immunol.310 , 251–274 (2006).
  • Clark SJ : Action at a distance: epigenetic silencing of large chromosomal regions in carcinogenesis.Hum. Mol. Genet.16(Spec. 1) , R88–R95 (2007).
  • Cheng CW , WuPE, YuJC et al.: Mechanisms of inactivation of E-cadherin in breast carcinoma: modification of the two-hit hypothesis of tumor suppressor gene.Oncogene20 , 3814–3823 (2001).
  • Taniguchi T , TischkowitzM, AmezianeN et al.: Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors.Nat. Med.9 , 568–574 (2003).
  • Saluz HP , JiricnyJ, JostJP: Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA demethylation of the overlapping estradiol/glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis.Proc. Natl Acad. Sci. USA83 , 7167–7171 (1986).
  • Pfeifer GP , SteigerwaldSD, HansenRS, GartlerSM, RiggsAD: Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability.Proc. Natl Acad. Sci. USA87 , 8252–8256 (1990).
  • Barreto G , SchaferA, MarholdJ et al.: Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation.Nature445 , 671–675 (2007).
  • Niehrs C : Active demethylation and DNA repair.Differentiation77 , 1–11 (2009).
  • Miller CA , CampbellSL, SweattJD: DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity.Neurobiol. Learn. Mem.89 , 599–603 (2008).
  • Metivier R , GallaisR, TiffocheC et al.: Cyclical DNA methylation of a transcriptionally active promoter.Nature452 , 45–50 (2008).
  • Riclet R , ChendebM, VoneschJL et al.: Disruption of the interaction between transcriptional intermediary factor 1{b} and heterochromatin protein 1 leads to a switch from DNA hyper- to hypomethylation and H3K9 to H3K27 trimethylation on the MEST promoter correlating with gene reactivation.Mol. Biol. Cell.20 , 296–305 (2009).
  • Yegnasubramanian S , HaffnerMC, ZhangY et al.: DNA hypomethylation arises later in prostate cancer progression than CpG island hypermethylation and contributes to metastatic tumor heterogeneity.Cancer Res.68 , 8954–8967 (2008).
  • Carr BI , ReillyG, SmithSS, WinbergC, RiggsA: The tumorigenicity of 5-azacytidine in the male Fisher rat.Carcinogenesis5 , 1583–1590 (1984).
  • Thomas GA , WilliamsED: Production of thyroid tumours in mice by demethylating agents.Carcinogenesis13 , 1039–1042 (1992).
  • Denda A , RaoPM, RajalakshmiS, SarmaDS: 5-azacytidine potentiates initiation induced by carcinogens in rat liver.Carcinogenesis6 , 145–146 (1985).
  • Gaudet F , HodgsonJG, EdenA et al.: Induction of tumors in mice by genomic hypomethylation.Science300 , 489–492 (2003).
  • Yamada Y , Jackson-GrusbyL, LinhartH et al.: Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis.Proc. Natl Acad. Sci. USA102 , 13580–13585 (2005).
  • Poirier LA : Methyl group deficiency in hepatocarcinogenesis.Drug Metab. Rev.26 , 185–199 (1994).
  • Pogribny IP , BasnakianAG, MillerBJ, LopatinaNG, PoirierLA, JamesSJ: Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats.Cancer Res.55 , 1894–1901 (1995).
  • Pogribny IP , RossSA, WiseC et al.: Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency.Mutat. Res.593 , 80–87 (2006).
  • Cooney CA , DaveAA, WolffGL: Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring.J. Nutr.132 , S2393–S2400 (2002).
  • Dolinoy DC , WeidmanJR, WaterlandRA, JirtleRL: Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome.Environ. Health Perspect.114 , 567–572 (2006).
  • Toffoli G , De Mattia E: Pharmacogenetic relevance of MTHFR polymorphisms. Pharmacogenomics9 , 1195–1206 (2008).
  • Linhart HG , TroenA, BellGW et al.: Folate deficiency induces genomic uracil misincorporation and hypomethylation but does not increase DNA point mutations.Gastroenterology136 , 227–235 (2009).
  • Laird PW , Jackson-GrusbyL, FazeliA et al.: Suppression of intestinal neoplasia by DNA hypomethylation.Cell81 , 197–205 (1995).
  • Lin H , YamadaY, NguyenS et al.: Suppression of intestinal neoplasia by deletion of Dnmt3b.Mol. Cell. Biol.26 , 2976–2983 (2006).
  • Holm TM , Jackson-GrusbyL, BrambrinkT, YamadaY, RideoutWM 3rd, Jaenisch R: Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell8 , 275–285 (2005).
  • Howard G , EigesR, GaudetF, JaenischR, EdenA: Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice.Oncogene27 , 404–408 (2008).
  • Pogribny IP , BelandFA: DNA hypomethylation in the origin and pathogenesis of human diseases.Cell. Mol. Life Sci.66 , 2249–2261 (2009).
  • Tycko B : Genomic imprinting and human neoplasia. In: DNA and Alterations in Cancer: Genetic and Epigenetic Alterations. Ehrlich M (Ed.) , Eaton Publishing, MA, USA, 333–349 (2000).
  • Czekierdowski A , CzekierdowskaS, WielgosM, SmolenA, KaminskiP, KotarskiJ: The role of CpG islands hypomethylation and abnormal expression of neuronal protein synuclein-γ (SNCG) in ovarian cancer.Neuro Endocrinol Lett.27 , 381–386 (2006).
  • Zhao W , LiuH, LiuW et al.: Abnormal activation of the synuclein-γ gene in hepatocellular carcinomas by epigenetic alteration.Int. J. Oncol.28 , 1081–1088 (2006).
  • Liu H , LiuW, WuY et al.: Loss of epigenetic control of synuclein-γ gene as a molecular indicator of metastasis in a wide range of human cancers.Cancer Res.65 , 7635–7643 (2005).
  • Chekhun VF , LukyanovaNY, KovalchukO, TryndyakVP, PogribnyIP: Epigenetic profiling of multidrug-resistant human MCF-7 breast adenocarcinoma cells reveals novel hyper- and hypomethylated targets.Mol. Cancer Ther.6 , 1089–1098 (2007).
  • Shen R , TaoL, XuY, ChangS, Van Brocklyn J, Gao JX: Reversibility of aberrant global DNA and estrogen receptor-α gene methylation distinguishes colorectal precancer from cancer. Int. J. Clin. Exp. Pathol.2 , 21–33 (2009).
  • Kokalj-Vokac N , AlmeidaA, Viegas-PequignotE, JeanpierreM, MalfoyB, DutrillauxB: Specific induction of uncoiling and recombination by azacytidine in classical satellite-containing constitutive heterochromatin.Cytogenet. Cell Genet.63 , 11–15 (1993).
  • Ji W , HernandezR, Zhang X-Y et al.: DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutat. Res.379 , 33–41 (1997).
  • Chen RZ , PetterssonU, BeardC, Jackson-GrusbyL, JaenischR: DNA hypomethylation leads to elevated mutation rates.Nature395 , 89–93 (1998).
  • Wong N , LamWC, LaiPB, PangE, LauWY, JohnsonPJ: Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human hepatocellular carcinoma.Am. J. Pathol.159 , 465–471 (2001).
  • Eden A , GaudetF, WaghmareA, JaenischR: Chromosomal instability and tumors promoted by DNA hypomethylation.Science300 , 455 (2003).
  • Jeanpierre M , TurleauC, AuriasA et al.: An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome.Hum. Mol. Genet.2 , 731–735 (1993).
  • Tuck-Muller CM , NarayanA, TsienF et al.: DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients.Cytogenet. Cell Genet.89 , 121–128 (2000).
  • Vilain A , BernardinoJ, Gerbault-SeureauM et al.: DNA methylation and chromosome instability in lymphoblastoid cell lines.Cytogenet. Cell Genet.90 , 93–101 (2000).
  • Tsien F , YounB, FialaES et al.: Prolonged culture of chorionic villus cells yields ICF syndrome-like chromatin decondensation and rearrangements.Cytogen. Genome Res.98 , 13–21 (2002).
  • Mitelman F , MertensF, JohanssonB: A breakpoint map of recurrent chromosomal rearrangements in human neoplasia.Nat. Genet.15(Spec.) , 417–474 (1997).
  • Ehrlich M : DNA methylation and cancer-associated genetic instability. In: Genome Instability and Cancer. Nigg E (Ed.), Kluwer, NY, USA (2004).
  • Schulz WA , EloJP, FlorlAR et al.: Genome-wide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma.Genes Chromosomes Cancer35 , 58–65 (2002).
  • Ehrlich M , EhrlichKC: Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA. In: DNA Methylation: Biological Significance. Jost JP, Saluz HP (Eds), Birkhauser Verlag, MA, USA, 145–168 (1993).
  • Wade PA : Methyl CpG binding proteins: coupling chromatin architecture to gene regulation.Oncogene20 , 3166–3173 (2001).
  • Fuks F , HurdPJ, WolfD, NanX, BirdAP, KouzaridesT: The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation.J. Biol. Chem.278 , 4035–4040 (2003).
  • Xu Y , SenguptaPK, SetoE, SmithBD: Regulatory factor for X-box family proteins differentially interact with histone deacetylases to repress collagen α2(I) gene (COL1A2) expression.J. Biol. Chem.281 , 9260–9270 (2006).
  • Sabbattini P , LundgrenM, GeorgiouA, ChowC, WarnesG, DillonN: Binding of Ikaros to the lambda5 promoter silences transcription through a mechanism that does not require heterochromatin formation.EMBO J.20 , 2812–2822 (2001).
  • Gibbons RJ , McDowellTL, RamanS et al.: Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation.Nat. Genet.24 , 368–371 (2000).
  • Denegri M , MoralliD, RocchiM et al.: Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies.Mol. Biol. Cell13 , 2069–2079 (2002).
  • Tang QQ , LaneMD: Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation.Genes Dev.13 , 2231–2241 (1999).
  • Bozhenok L , WadePA, Varga-WeiszP: WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci.EMBO J.21 , 2231–2241 (2002).
  • Bachman KE , RountreeMR, BaylinSB: Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin.J. Biol. Chem.276 , 32282–32287 (2001).
  • Craig JM , EarleE, CanhamP, WongLH, AndersonM, ChooKH: Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns.Hum. Mol. Genet.12 , 3109–3121 (2003).
  • Nan X , TateP, LiE, BirdA: DNA methylation specifies chromosomal localization of MeCP2.Mol. Cell. Biol.16 , 414–421 (1996).
  • Cammas F , Oulad-AbdelghaniM, VoneschJL, Huss-GarciaY, ChambonP, LossonR: Cell differentiation induces TIF1β association with centromeric heterochromatin via an HP1 interaction.J. Cell Sci.115 , 3439–3448 (2002).
  • Jolly C , MetzA, GovinJ et al.: Stress-induced transcription of satellite III repeats.J. Cell Biol.164 , 25–33 (2004).
  • Gasser SM : Positions of potential: nuclear organization and gene expression.Cell104 , 639–642 (2001).
  • Kosak ST , SkokJA, MedinaKL et al.: Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development.Science296 , 158–162 (2002).
  • Papait R , PistoreC, GraziniU et al.: The PHD domain of Np95 (mUHRF1) is involved in large-scale reorganization of pericentromeric heterochromatin.Mol. Biol. Cell19 , 3554–3563 (2008).
  • Enukashvily NI , MalashichevaAB, WaisertreigerIS: Satellite DNA spatial localization and transcriptional activity in mouse embryonic E-14 and IOUD2 stem cells.Cytogenet. Genome Res.124 , 277–287 (2009).
  • Volpe TA , KidnerC, HallIM, TengG, GrewalSI, MartienssenRA: Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi.Science297 , 1833–1837 (2002).
  • Rizzi N , DenegriM, ChiodiI et al.: Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock.Mol. Biol. Cell15 , 543–551 (2004).
  • Iorio MV , VisoneR, Di Leva G et al.: MicroRNA signatures in human ovarian cancer. Cancer Res.67 , 8699–8707 (2007).
  • Lee KH , LottermanC, KarikariC et al.: Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer.Pancreatology9 , 293–301 (2009).
  • Delcuve GP , RastegarM, DavieJR: Epigenetic control.J. Cell Physiol.219 , 243–250 (2009).
  • Widschwendter M , FieglH, EgleD et al.: Epigenetic stem cell signature in cancer.Nat. Genet.39 , 157–158 (2007).
  • Werbowetski-Ogilvie TE , BhatiaM: Pluripotent human stem cell lines: what we can learn about cancer initiation.Trends Mol. Med.14 , 323–332 (2008).
  • Meissner A , MikkelsenTS, GuH et al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells.Nature454 , 766–770 (2008).
  • Gowher H , StuhlmannH, FelsenfeldG: Vezf1 regulates genomic DNA methylation through its effects on expression of DNA methyltransferase Dnmt3b.Genes Dev.22 , 2075–2084 (2008).
  • Chapman V , ForresterL, SanfordJ, HastieN, RossantJ: Cell lineage-specific undermethylation of mouse repetitive DNA.Nature307 , 284–286 (1984).
  • Sanford JP , ClarkHJ, ChapmanVM, RossantJ: Differences in DNA methylation during oogenesis and spermatogenesis and their persistence during early embryogenesis in the mouse.Genes Dev.1 , 1039–1046 (1987).
  • Jost JP , OakeleyEJ, ZhuB et al.: 5-methylcytosine DNA glycosylase participates in the genome-wide loss of DNA methylation occurring during mouse myoblast differentiation.Nucleic Acids Res.29 , 4452–4461 (2001).
  • Mayer W , NiveleauA, WalterJ, FundeleR, HaafT: Demethylation of the zygotic paternal genome.Nature403 , 501–502 (2000).
  • Oswald J , EngemannS, LaneN et al.: Active demethylation of the paternal genome in the mouse zygote.Curr. Biol.10 , 475–478 (2000).
  • Santos F , HendrichB, ReikW, DeanW: Dynamic reprogramming of DNA methylation in the early mouse embryo.Dev. Biol.241 , 172–182 (2002).
  • Park JS , JeongYS, ShinST, LeeKK, KangYK: Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes.Dev. Dyn.236 , 2523–2533 (2007).
  • Zhu J , KapoorA, SridharVV, AgiusF, ZhuJK: The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis.Curr. Biol.17 , 54–59 (2007).
  • Bhattacharya SK , RamchandaniS, CervoniN, SzyfM: A mammalian protein with specific demethylase activity for mCpG DNA.Nature397 , 579–583 (1999).
  • Jin SG , GuoC, PfeiferGP: GADD45A does not promote DNA demethylation.PLoS Genet.4 , E1000013 (2008).
  • Ooi SK , BestorTH: The colorful history of active DNA demethylation.Cell133 , 1145–1148 (2008).
  • Vilkaitis G , SuetakeI, KlimasauskasS, TajimaS: Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase.J. Biol. Chem.280 , 64–72 (2005).
  • Bostick M , KimJK, EstevePO, ClarkA, PradhanS, JacobsenSE: UHRF1 plays a role in maintaining DNA methylation in mammalian cells.Science317 , 1760–1764 (2007).
  • Jeltsch A : On the enzymatic properties of Dnmt1: specificity, processivity, mechanism of linear diffusion and allosteric regulation of the enzyme.Epigenetics1 , 63–66 (2006).
  • Orend G , KuhlmannI, DoerflerW: Spreading of DNA methylation across integrated foreign (adenovirus type 12) genomes in mammalian cells.J. Virol.65 , 4301–4308 (1991).
  • Porecha RH , StiversJT: Uracil DNA glycosylase uses DNA hopping and short-range sliding to trap extrahelical uracils.Proc. Natl Acad. Sci. USA105 , 10791–10796 (2008).
  • Lacey M , EhrlichM: Modeling dependence in methylation patterns with application to ovarian carcinomas.Stat. Appl. Genet. Mol. Biol.8 , 40 (2009).
  • Handa V , JeltschA: Profound flanking sequence preference of Dnmt3a and Dnmt3b mammalian DNA methyltransferases shape the human epigenome.J. Mol. Biol.348 , 1103–1112 (2005).
  • Garzon R , LiuS, FabbriM et al.: MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1.Blood113 , 6411–6418 (2009).
  • De La Fuente R , BaumannC, FanT, SchmidtmannA, DobrinskiI, MueggeK: Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells.Nat. Cell Biol.8 , 1448–1454 (2006).
  • Ostler KR , DavisEM, PayneSL et al.: Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins.Oncogene26 , 5553–5563 (2007).
  • Nimura K , IshidaC, KoriyamaH et al.: Dnmt3a2 targets endogenous Dnmt3L to ES cell chromatin and induces regional DNA methylation.Genes Cells11 , 1225–1237 (2006).
  • Weisenberger DJ , VelicescuM, ChengJC, GonzalesFA, LiangG, JonesPA: Role of the DNA methyltransferase variant DNMT3b3 in DNA methylation.Mol. Cancer Res.2 , 62–72 (2004).
  • Jiang YL , RigoletM, Bourc‘hisD et al.: DNMT3B mutations and DNA methylation defect define two types of ICF syndrome.Hum. Mutat.25 , 56–63 (2005).
  • Caiafa P , GuastafierroT, ZampieriM: Epigenetics: poly(ADP-ribosyl)ation of PARP-1 regulates genomic methylation patterns.FASEB J.23 , 672–678 (2009).
  • Minarovits J : Microbe-induced epigenetic alterations in host cells: the coming era of patho-epigenetics of microbial infections. A review.Acta Microbiol. Immunol. Hung.56 , 1–19 (2009).
  • Piyathilake CJ , FrostAR, BellWC et al.: Altered global methylation of DNA: an epigenetic difference in susceptibility for lung cancer is associated with its progression.Hum. Pathol.32 , 856–862 (2001).
  • Hernandez-Blazquez FJ , HabibM, DumollardJM et al.: Evaluation of global DNA hypomethylation in human colon cancer tissues by immunohistochemistry and image analysis.Gut47 , 689–693 (2000).
  • Galusca B , DumollardJM, LassandreS et al.: Global DNA methylation evaluation: potential complementary marker in differential diagnosis of thyroid neoplasia.Virchows Arch.447 , 18–23 (2005).
  • Lubbert M , WijermansP, KunzmannR et al.: Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2´- deoxycytidine.Br. J. Haematol.114 , 349–357 (2001).
  • Silverman LR , DemakosEP, PetersonBL et al.: Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B.J. Clin. Oncol.20 , 2429–2440 (2002).
  • Mack GS : Epigenetic cancer therapy makes headway.J. Natl Cancer Inst.98 , 1443–1444 (2006).
  • Sessa C , ten Bokkel Huinink W, Stoter G, Renard J, Cavalli F: Phase II study of 5-aza-2´-deoxycytidine in advanced ovarian carcinoma. The EORTC Early Clinical Trials Group. Eur. J. Cancer26 , 137–138 (1990).
  • Vermorken JB , TumoloS, RoozendaalKJ, GuastallaJP, SplinterTA, RenardJ: 5-aza-2´-deoxycytidine in advanced or recurrent cancer of the uterine cervix.Eur. J. Cancer27 , 216–217 (1991).
  • Aparicio A , WeberJS: Review of the clinical experience with 5-azacytidine and 5-aza-2´-deoxycytidine in solid tumors.Curr. Opin. Investig. Drugs3 , 627–633 (2002).
  • Silverman LR : Targeting hypomethylation of DNA to achieve cellular differentiation in myelodysplastic syndromes (MDS).Oncologist6 , 8–14 (2001).
  • Kornblith AB , HerndonJE 2nd, Silverman LR et al.: Impact of azacytidine on the quality of life of patients with myelodysplastic syndrome treated in a randomized Phase III trial: a Cancer and Leukemia Group B study. J. Clin. Oncol.20 , 2441–2452 (2002).
  • Kantarjian H , OkiY, Garcia-ManeroG et al.: Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia.Blood109 , 52–57 (2007).
  • Garcia-Manero G , KantarjianHM, Sanchez-GonzalezB et al.: Phase 1/2 study of the combination of 5-aza-2´-deoxycytidine with valproic acid in patients with leukemia.Blood108 , 3271–3279 (2006).
  • Issa JP , GharibyanV, CortesJ et al.: Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate.J. Clin. Oncol.23 , 3948–3956 (2005).
  • Reu FJ , BaeSI, CherkasskyL et al.: Overcoming resistance to interferon-induced apoptosis of renal carcinoma and melanoma cells by DNA demethylation.J. Clin. Oncol.24 , 3771–3779 (2006).
  • Gore SD , BaylinS, SugarE et al.: Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms.Cancer Res.66 , 6361–6369 (2006).
  • Koschmieder S , AgrawalS, RadomskaHS et al.: Decitabine and vitamin D3 differentially affect hematopoietic transcription factors to induce monocytic differentiation.Int. J. Oncol.30 , 349–355 (2007).
  • Watanabe Y , LePageS, ElliottM et al.: Characterization of preexisting humoral immunity specific for two cancer-testis antigens overexpressed at the mRNA level in non-small cell lung cancer.Cancer Immun.6 , 3 (2006).
  • Hoeppner LH , DubovskyJA, DunphyEJ, McNeelDG: Humoral immune responses to testis antigens in sera from patients with prostate cancer.Cancer Immun.6 , 1 (2006).
  • Karpf AR , LasekAW, RirieTO, HanksAN, GrossmanD, JonesDA: Limited gene activation in tumor and normal epithelial cells treated with the DNA methyltransferase inhibitor 5-aza-2´-deoxycytidine.Mol. Pharmacol.65 , 18–27 (2004).
  • Dubovsky JA , McNeelDG, PowersJJ, GordonJ, SotomayorEM, Pinilla-IbarzJA: Treatment of chronic lymphocytic leukemia with a hypomethylating agent induces expression of NXF2, an immunogenic cancer testis antigen.Clin. Cancer Res.15 , 3406–3415 (2009).
  • Gjerstorff MF , JohansenLE, NielsenO, KockK, DitzelHJ: Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy.Br. J. Cancer94 , 1864–1873 (2006).
  • Mund C , HackansonB, StresemannC, LubbertM, LykoF: Characterization of DNA demethylation effects induced by 5-aza-2´-deoxycytidine in patients with myelodysplastic syndrome.Cancer Res.65 , 7086–7090 (2005).
  • Garcia-Manero G : Demethylating agents in myeloid malignancies.Curr. Opin. Oncol.20 , 705–710 (2008).
  • Daskalakis M , NguyenTT, NguyenC et al.: Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2´-deoxycytidine (decitabine) treatment.Blood100 , 2957–2964 (2002).
  • Yang AS , DoshiKD, ChoiSW et al.: DNA methylation changes after 5-aza-2´-deoxycytidine therapy in patients with leukemia.Cancer Res.66 , 5495–5503 (2006).
  • Davidson S , CrowtherP, RadleyJ, WoodcockD: Cytotoxicity of 5-aza-2´-deoxycytidine in a mammalian cell system.Eur. J. Cancer28 , 362–368 (1992).
  • Juttermann R , LiE, JaenischR: Toxicity of 5-aza-2´-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation.Proc. Natl Acad. Sci. USA91 , 11797–11801 (1994).
  • Scott SA , DongWF, IchinohasamaR et al.: 5-aza-2´-deoxycytidine (decitabine) can relieve p21WAF1 repression in human acute myeloid leukemia by a mechanism involving release of histone deacetylase 1 (HDAC1) without requiring p21WAF1 promoter demethylation.Leuk. Res.30 , 69–76 (2006).
  • Fandy TE : Development of DNA methyltransferase inhibitors for the treatment of neoplastic diseases.Curr. Med. Chem.16 , 2075–2085 (2009).
  • Jackson-Grusby L , LairdPW, MaggeSN, MoellerBJ, JaenischR: Mutagenicity of 5-aza-2´-deoxycytidine is mediated by the mammalian DNA methyltransferase.Proc. Natl Acad. Sci. USA94 , 4681–4685 (1997).
  • Ehrlich M , JiangG: DNA Hypo- vs hypermethylation in cancer: tumor specificity, tumor progression, and therapeutic implications. In: DNA Methylation and Cancer. Szyf M (Ed.). Kluwer Academic/Plenum Publishers and Landes Bioscience/Eurekah.com, Washington, DC, USA (2003).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.