668
Views
0
CrossRef citations to date
0
Altmetric
Review

Cancer Stem Cell Epigenetics And Chemoresistance

, &
Pages 63-79 | Published online: 01 Oct 2009

Bibliography

  • Lopez J , PerchardeM, ColeyHM, WebbA, CrookT: The context and potential of epigenetics in oncology.Br. J. Cancer100 , 571–577 (2009).
  • Hegi ME , LiuL, HermanJG et al.: Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity.J. Clin. Oncol.26 , 4189–4199 (2008).
  • Toyota M , SuzukiH, T Yamashita et al.: Cancer epigenomics: Implications of DNA methylation in personalized cancer therapy. Cancer Sci.100(5) , 787–791 (2009).
  • Keenen B , de la Serna IL: Chromatin remodeling in embryonic stem cells: regulating the balance between pluripotency and differentiation. J. Cell Physiol.219 , 1–7 (2009).
  • Lunyak VV , RosenfeldMG: Epigenetic regulation of stem cell fate.Hum. Mol. Genet.17 , R28–R36 (2008).
  • Dick JE : Looking ahead in cancer stem cell research.Nat. Biotechnol.27 , 44–46 (2009).
  • Warner JK , WangJC, HopeKJ, JinL, DickJE: Concepts of human leukemic development.Oncogene23 , 7164–7177 (2004).
  • Bonnet D , DickJE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.Nat. Med.3 , 730–737 (1997).
  • Mizrak D , BrittanM, AlisonMR: CD133: molecule of the moment.J. Pathol.214 , 3–9 (2008).
  • Pallini R , Ricci-VitianiL, BannaGL et al.: Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme.Clin. Cancer Res.14 , 8205–8212 (2008).
  • Glinsky GV : Death-from-cancer signatures and stem cell contribution to metastatic cancer.Cell Cycle4 , 1171–1175 (2005).
  • Hadnagy A , GabouryL, BeaulieuR, BalickiD: SP analysis may be used to identify cancer stem cell populations.Exp. Cell Res.312 , 3701–3710 (2006).
  • Wu C , AlmanBA: Side population cells in human cancers.Cancer Lett.268 , 1–9 (2008).
  • Umemoto T , YamatoM, NishidaK, YangJ, TanoY, OkanoT: p57Kip2 is expressed in quiescent mouse bone marrow side population cells.Biochem. Biophys. Res. Commun.337 , 14–21 (2005).
  • Harris MA , YangH, LowBE et al.: Cancer stem cells are enriched in the side population cells in a mouse model of glioma.Cancer Res.68 , 10051–10059 (2008).
  • Tung DC , ChaoKS: Targeting hedgehog in cancer stem cells: how a paradigm shift can improve treatment response.Future Oncol.3 , 569–574 (2007).
  • Hu Y , ChenY, DouglasL, LiS: β-catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia.Leukemia23 , 109–116 (2009).
  • Nefedova Y , SullivanDM, BolickSC, DaltonWS, GabrilovichDI: Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy.Blood111 , 2220–2229 (2008).
  • Levina V , MarrangoniAM, DeMarcoR, GorelikE, LokshinAE: Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties.PLoS ONE3 , e3077 (2008).
  • Yu F , YaoH, ZhuP et al.: let-7 regulates self renewal and tumorigenicity of breast cancer cells.Cell131 , 1109–1123 (2007).
  • Yoshikawa R , NakanoY, TaoL et al.: Hedgehog signal activation in oesophageal cancer patients undergoing neoadjuvant chemoradiotherapy.Br. J. Cancer98 , 1670–1674 (2008).
  • Yamashita Y : Asymmetric stem cell division and pathology: insights from Drosophila stem cell systems.J. Pathol.217 , 181–185 (2009).
  • Li X , ZhaoX: Epigenetic regulation of mammalian stem cells.Stem Cells Dev.17 , 1043–1052 (2008).
  • Ringrose L : Polycomb comes of age: genome-wide profiling of target sites.Curr. Opin. Cell Biol.19 , 290–297 (2007).
  • Pietersen AM , van Lohuizen M: Stem cell regulation by polycomb repressors: postponing commitment. Curr. Opin. Cell Biol.20 , 201–207 (2008).
  • Cao R , ZhangY: The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3.Curr. Opin. Genet. Dev.14 , 155–164 (2004).
  • Negishi M , SarayaA, MiyagiS et al.: Bmi1 cooperates with Dnmt1-associated protein 1 in gene silencing.Biochem. Biophys. Res. Commun.353 , 992–998 (2007).
  • Vire E , BrennerC, DeplusR et al.: The Polycomb group protein EZH2 directly controls DNA methylation.Nature439 , 871–874 (2006).
  • Wei J , ZhaiL, XuJ, WangH: Role of Bmi1 in H2A ubiquitylation and Hox gene silencing.J. Biol. Chem.281 , 22537–22544 (2006).
  • Valk-Lingbeek ME , BruggemanSW, van Lohuizen M: Stem cells and cancer; the polycomb connection. Cell118 , 409–418 (2004).
  • Jacobs JJ , KieboomK, MarinoS, DePinhoRA, van Lohuizen M: The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature397 , 164–168 (1999).
  • Oguro H , IwamaA, MoritaY, KamijoT, van Lohuizen M, Nakauchi H: Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice. J. Exp. Med.203 , 2247–2253 (2006).
  • Smith KS , ChandaSK, LingbeekM et al.: Bmi-1 regulation of INK4A-ARF is a downstream requirement for transformation of hematopoietic progenitors by E2a-Pbx1.Mol. Cell.12 , 393–400 (2003).
  • Pietersen AM , EversB, AA Prasad et al.: Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium. Curr. Biol.18 , 1094–1099 (2008).
  • Leung C , LingbeekM, ShakhovaO et al.: Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas.Nature428 , 337–341 (2004).
  • Mathews LA , CreaF, FarrarWL: Epigenetic gene regulation in stem cells and correlation to cancer.Differentiation78 , 1–17 (2009).
  • Chiba T , MiyagiS, A Saraya et al.: The polycomb gene product BMI1 contributes to the maintenance of tumor-initiating side population cells in hepatocellular carcinoma. Cancer Res.68 , 7742–7749 (2008).
  • Douglas D , HsuJH, L Hung et al.: BMI-1 promotes ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer Res.68 , 6507–6515 (2008).
  • Wiederschain D , ChenL, B Johnson et al.: Contribution of polycomb homologues Bmi-1 and Mel-18 to medulloblastoma pathogenesis. Mol. Cell. Biol.27 , 4968–4979 (2007).
  • Molofsky AV , PardalR, IwashitaT, ParkIK, ClarkeMF, MorrisonSJ: Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation.Nature425 , 962–967 (2003).
  • Fan C , HeL, KapoorA et al.: Bmi1 promotes prostate tumorigenesis via inhibiting p16(INK4A) and p14(ARF) expression.Biochim. Biophys. Acta1782 , 642–648 (2008).
  • Berezovska OP , GlinskiiAB, YangZ, LiXM, HoffmanRM, GlinskyGV: Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer.Cell Cycle5 , 1886–1901 (2006).
  • Yu J , YuJ, RhodesDR et al.: A polycomb repression signature in metastatic prostate cancer predicts cancer outcome.Cancer Res.67 , 10657–10663 (2007).
  • Cao Q , YuJ, DhanasekaranSM et al.: Repression of E-cadherin by the polycomb group protein EZH2 in cancer.Oncogene27 , 7274–7284 (2008).
  • Guo WJ , ZengMS, YadavA et al.: Mel-18 acts as a tumor suppressor by repressing Bmi-1 expression and down-regulating Akt activity in breast cancer cells.Cancer Res.67 , 5083–5089 (2007).
  • Widschwendter M , FieglH, EgleD et al.: Epigenetic stem cell signature in cancer.Nat. Genet.39 , 157–158 (2007).
  • Ohm JE , McGarveyKM, YuX et al.: A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing.Nat. Genet.39 , 237–242 (2007).
  • Kondo Y , ShenL, AS Cheng et al.: Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat. Genet.40 , 741–750 (2008).
  • Klymenko T , MullerJ: The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins.EMBO Rep.5 , 373–377 (2004).
  • Krivtsov AV , ArmstrongSA: MLL translocations, histone modifications and leukaemia stem-cell development.Nat. Rev. Cancer7 , 823–833 (2007).
  • Calvanese V , HorrilloA, HmadchaA et al.: Cancer genes hypermethylated in human embryonic stem cells.PLoS ONE3 , e3294 (2008).
  • Jiang J , HuiCC: Hedgehog signaling in development and cancer.Dev Cell15 , 801–812 (2008).
  • Sims-Mourtada J , IzzoJG, AjaniJ, ChaoKS: Sonic Hedgehog promotes multiple drug resistance by regulation of drug transport.Oncogene26 , 5674–5679 (2007).
  • Michael LE , WestermanBA, ErmilovAN et al.: Bmi1 is required for Hedgehog pathway-driven medulloblastoma expansion.Neoplasia10 , 1343–1349, (2008).
  • Liu S , DontuG, ID Mantle et al.: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res.66 , 6063–6071 (2006).
  • Qin L , ZhangX, ZhangL et al.: Downregulation of BMI-1 enhances 5-fluorouracil-induced apoptosis in nasopharyngeal carcinoma cells.Biochem. Biophys. Res. Commun.371 , 531–535 (2008).
  • Dierks C , GrbicJ, ZirlikK et al.: Essential role of stromally induced hedgehog signaling in B-cell malignancies.Nat. Med.13 , 944–951 (2007).
  • Glinsky GV , BerezovskaO, GlinskiiAB: Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer.J. Clin. Invest.115 , 1503–1521 (2005).
  • van Leenders GJ , DukersD, HesselsD et al.: Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features.Eur. Urol.52 , 455–463 (2007).
  • Vormittag L , ThurnherD, GeleffS et al.: Co-expression of Bmi-1 and podoplanin predicts overall survival in patients with squamous cell carcinoma of the head and neck treated with radio(chemo)therapy.Int. J. Radiat. Oncol. Biol. Phys.73 , 913–918 (2009).
  • Vrzalikova K , SkardaJ, EhrmannJ et al.: Prognostic value of Bmi-1 oncoprotein expression in NSCLC patients: a tissue microarray study.J. Cancer Res. Clin. Oncol.134 , 1037–1042 (2008).
  • Ougolkov AV , BilimVN, BilladeauDD: Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2.Clin. Cancer Res.14 , 6790–6796 (2008).
  • Pietersen AM , HorlingsHM, HauptmannM et al.: EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer.Breast Cancer Res.10 , R109 (2008).
  • Barker N : The canonical Wnt/β-catenin signalling pathway.Methods Mol. Biol.468 , 5–15 (2008).
  • Chen X , YangJ, EvansPM, LiuC: Wnt signaling: the good and the bad.Acta Biochim. Biophys. Sin. (Shanghai)40 , 577–594 (2008).
  • Spaderna S , SchmalhoferO, HlubekF, JungA, KirchnerT, BrabletzT: Epithelial–mesenchymal and mesenchymal–epithelial transitions during cancer progression.Verh. Dtsch. Ges. Pathol.91 , 21–28 (2007).
  • Fodde R , BrabletzT: Wnt/β-catenin signaling in cancer stemness and malignant behavior.Curr. Opin. Cell Biol.19 , 150–158 (2007).
  • Shou J , F Ali-Osman, Multani AS, Pathak S, Fedi P, Srivenugopal KS: Human Dkk-1, a gene encoding a Wnt antagonist, responds to DNA damage and its overexpression sensitizes brain tumor cells to apoptosis following alkylation damage of DNA. Oncogene21 , 878–889 (2002).
  • Gosepath EM , EcksteinN, HamacherA et al.: Acquired cisplatin resistance in the head-neck cancer cell line Cal27 is associated with decreased DKK1 expression and can partially be reversed by overexpression of DKK1.Int. J. Cancer123 , 2013–2019 (2008).
  • Yang AD , FanF, CampER et al.: Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines.Clin. Cancer Res.12 , 4147–4153 (2006).
  • Ohigashi T , MizunoR, NakashimaJ, MarumoK, MuraiM: Inhibition of Wnt signaling downregulates Akt activity and induces chemosensitivity in PTEN-mutated prostate cancer cells.Prostate62 , 61–68 (2005).
  • Placencio VR , Sharif-AfsharAR, LiX et al.: Stromal transforming growth factor-β signaling mediates prostatic response to androgen ablation by paracrine Wnt activity.Cancer Res.68 , 4709–4718 (2008).
  • Li J , SutterC, ParkerDS, BlauwkampT, FangM, CadiganKM: CBP/p300 are bimodal regulators of Wnt signaling.EMBO J.26 , 2284–2294 (2007).
  • Chen G , AJ, WangM et al.: Menin promotes the Wnt signaling pathway in pancreatic endocrine cells.Mol. Cancer Res.6 , 1894–1907 (2008).
  • Klarmann GJ , DeckerA, FarrarWL: Epigenetic gene silencing in the Wnt pathway in breast cancer.Epigenetics3 , 59–63 (2008).
  • Valencia A , Roman-GomezJ, CerveraJ et al.: Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia.Leukemia (2009) (Epub ahead of print).
  • He B , LeeAY, DadfarmayS et al.: Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in beta-catenin-deficient human mesothelioma cells.Cancer Res.65 , 743–748 (2005).
  • Roman-Gomez J , Jimenez-VelascoA, AgirreX, ProsperF, HeinigerA, TorresA: Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis.J. Clin. Oncol.23 , 7043–7049 (2005).
  • Ford CE , EkstromEJ, AnderssonT: Wnt-5a signaling restores tamoxifen sensitivity in estrogen receptor-negative breast cancer cells.Proc. Natl Acad. Sci. USA106 , 3919–3924 (2009).
  • Ying J , LiH, YuJ et al.: WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/β-catenin signaling, and is frequently methylated in colorectal cancer.Clin. Cancer Res.14 , 55–61 (2008).
  • Samowitz WS , SlatteryML, SweeneyC, HerrickJ, WolffRK, AlbertsenH: APC mutations and other genetic and epigenetic changes in colon cancer.Mol. Cancer Res.5 , 165–170 (2007).
  • Arnold CN , GoelA, D Niedzwiecki et al.: APC promoter hypermethylation contributes to the loss of APC expression in colorectal cancers with allelic loss on 5q. Cancer Biol. Ther.3 , 960–964 (2004).
  • Nichols JT , MiyamotoA, WeinmasterG: Notch signaling – constantly on the move.Traffic8 , 959–969 (2007).
  • Talora C , CampeseAF, BellaviaD et al.: Notch signaling and diseases: an evolutionary journey from a simple beginning to complex outcomes.Biochim. Biophys. Acta1782 , 489–497 (2008).
  • McKenzie G , WardG, Y Stallwood et al.: Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals. BMC Cell Biol.7 , 10 (2006).
  • Bleau AM , HambardzumyanD, OzawaT et al.: PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells.Cell Stem Cell4 , 226–235 (2009).
  • Meng RD , SheltonCC, LiYM et al.: gamma-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity.Cancer Res.69 , 573–582 (2009).
  • Wegiel B , BjartellA, CuligZ, PerssonJL: Interleukin-6 activates PI3K/Akt pathway and regulates cyclin A1 to promote prostate cancer cell survival.Int. J. Cancer122 , 1521–1529 (2008).
  • Fischer A , GesslerM: Delta-Notch – and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors.Nucleic Acids Res.35 , 4583–4596 (2007).
  • Lee H , HerrmannA, DengJH et al.: Persistently activated Stat3 maintains constitutive NF-κB activity in tumors.Cancer Cell15 , 283–293 (2009).
  • Sansone P , StorciG, TavolariS et al.: IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland.J. Clin. Invest.117 , 3988–4002 (2007).
  • Sparreboom A , DanesiR, AndoY, ChanJ, FiggWD: Pharmacogenomics of ABC transporters and its role in cancer chemotherapy.Drug Resist. Updat.6 , 71–84 (2003).
  • Robey RW , ToKK, PolgarO et al.: ABCG2: a perspective.Adv. Drug Deliv. Rev.61 , 3–13 (2009).
  • Ho MM , HoggeDE, LingV: MDR1 and BCRP1 expression in leukemic progenitors correlates with chemotherapy response in acute myeloid leukemia.Exp. Hematol.36 , 433–442 (2008).
  • Pfeiffer MJ , SchalkenJA: Stem cell characteristics in prostate cancer cell lines.Eur. Urol. (2009) (Epub ahead of print).
  • Calcagno AM , FostelJM, ToKK et al.: Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes.Br. J. Cancer98 , 1515–1524 (2008).
  • To KK , PolgarO, HuffLM, MorisakiK, BatesSE: Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells.Mol. Cancer Res.6 , 151–164 (2008).
  • Baba T , ConveryPA, N Matsumura et al.: Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene28 , 209–218 (2009).
  • Alvero AB , ChenR, HH Fu et al.: Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle8 , 158–166 (2009).
  • Toole BP , SlomianyMG: Hyaluronan, CD44 and Emmprin: partners in cancer cell chemoresistance.Drug Resist. Updat.11 , 110–121 (2008).
  • Marangoni E , LecomteN, DurandL et al.: CD44 targeting reduces tumour growth and prevents post-chemotherapy relapse of human breast cancers xenografts.Br. J. Cancer100 , 918–922 (2009).
  • Yan P , MuhlethalerA, BourloudKB, BeckMN, GrossN: Hypermethylation-mediated regulation of CD44 gene expression in human neuroblastoma.Genes Chromosomes Cancer36 , 129–138 (2003).
  • Woodson K , O‘ReillyKJ, WardDE et al.: CD44 and PTGS2 methylation are independent prognostic markers for biochemical recurrence among prostate cancer patients with clinically localized disease.Epigenetics1 , 183–186 (2006).
  • Lakshman M , SubramaniamV, RubenthiranU, JothyS: CD44 promotes resistance to apoptosis in human colon cancer cells.Exp. Mol. Pathol.77 , 18–25 (2004).
  • Dubrovska A , KimS, RJ Salamone et al.: The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc. Natl Acad. Sci. USA106 , 268–273 (2009).
  • Zhu WG , OttersonGA: The interaction of histone deacetylase inhibitors and DNA methyltransferase inhibitors in the treatment of human cancer cells.Curr. Med. Chem. Anticancer Agents3 , 187–199 (2003).
  • Zhang X , YashiroM, OhiraM, RenJ, HirakawaK: Synergic antiproliferative effect of DNA methyltransferase inhibitor in combination with anticancer drugs in gastric carcinoma.Cancer Sci.97 , 938–944 (2006).
  • Gozzini A , SantiniV: Butyrates and decitabine cooperate to induce histone acetylation and granulocytic maturation of t(8;21) acute myeloid leukemia blasts.Ann. Hematol.84Suppl 1, 54–60 (2005).
  • Fang K , ChiuCC, LiCH, ChangYT, HwangHT: Cisplatin-induced senescence and growth inhibition in human non-small cell lung cancer cells with ectopic transfer of p16INK4a.Oncol. Res.16 , 479–488 (2007).
  • Crea F , GiovannettiE, CortesiF et al.: Epigenetic mechanisms of irinotecan sensitivity in colorectal cancer cell lines.Mol. Cancer Ther.8(7) , 1964–1973 (2009).
  • Williams RT , SherrCJ: The INK4-ARF (CDKN2A/B) locus in hematopoiesis and BCR-ABL-induced leukemias.Cold Spring Harb. Symp. Quant. Biol.73 , 461–467 (2008).
  • Capper D , GaiserT, HartmannC et al.: Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation.Acta Neuropathol.117 , 445–456 (2009).
  • Oki Y , IssaJP: Review: recent clinical trials in epigenetic therapy.Rev. Recent Clin. Trials1 , 169–182 (2006).
  • Issa JP , Garcia-ManeroG, GilesFJ et al.: Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2‘-deoxycytidine (decitabine) in hematopoietic malignancies.Blood103 , 1635–1640 (2004).
  • Nolan L , JohnsonPW, GanesanA, PackhamG, CrabbSJ: Will histone deacetylase inhibitors require combination with other agents to fulfil their therapeutic potential?Br. J. Cancer99 , 689–694 (2008).
  • Tan J , YangX, ZhuangL et al.: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells.Genes Dev.21 , 1050–1063 (2007).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.