284
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Histone Lysine Methylation: An Epigenetic Modification?

&
Pages 151-161 | Published online: 08 Feb 2010

Bibliography

  • Kornberg RD , LorchY: Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome.Cell98 , 285–294 (1999).
  • Rea S , EisenhaberF, O‘CarrollD et al.: Regulation of chromatin structure by site-specific histone H3 methyltransferases.Nature406 , 593–599 (2000).
  • Martin C , ZhangY: The diverse functions of histone lysine methylation.Nat. Rev. Mol. Cell Biol.6 , 838–849 (2005).
  • Bannister AJ , ZegermanP, PartridgeJF et al.: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.Nature410 , 120–124 (2001).
  • Lachner M , O‘CarrollD, ReaS, MechtlerK, JenuweinT: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins.Nature410 , 116–120 (2001).
  • Cubas P , VincentC, CoenE: An epigenetic mutation responsible for natural variation in floral symmetry.Nature401 , 157–161 (1999).
  • Morgan HD , SutherlandHG, MartinDI, WhitelawE: Epigenetic inheritance at the agouti locus in the mouse.Nat. Genet.23 , 314–318 (1999).
  • Berger SL , KouzaridesT, ShiekhattarR, ShilatifardA: An operational definition of epigenetics.Genes Dev.23 , 781–783 (2009).
  • Shorter J , LindquistS: Prions as adaptive conduits of memory and inheritance.Nat. Rev. Genet.6 , 435–450 (2005).
  • Okano M , BellDW, HaberDA, LiE: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.Cell99 , 247–257 (1999).
  • Chuang LS , IanHI, KohTW, NgHH, XuG, LiBF: Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1.Science277 , 1996–2000 (1997).
  • Klose RJ , BirdAP: Genomic DNA methylation: the mark and its mediators.Trends Biochem. Sci.31 , 89–97 (2006).
  • Ptashne M : On the use of the word ‘epigenetic‘.Curr. Biol.17 , R233–R236 (2007).
  • Byvoet P , ShepherdGR, HardinJM, NolandBJ: The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells.Arch. Biochem. Biophys.148 , 558–567 (1972).
  • Duerre JA , LeeCT: In vivo methylation and turnover of rat brain histones.J. Neurochem.23 , 541–547 (1974).
  • Jackson V : In vivo studies on the dynamics of histone–DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both.Biochemistry29 , 719–731 (1990).
  • Tagami H , Ray-GalletD, AlmouzniG, NakataniY: Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis.Cell116 , 51–61 (2004).
  • Ringrose L , ParoR: Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins.Annu. Rev. Genet.38 , 413–443 (2004).
  • Cao R , WangL, WangH et al.: Role of histone H3 lysine 27 methylation in Polycomb-group silencing.Science298 , 1039–1043 (2002).
  • Czermin B , MelfiR, McCabeD, SeitzV, ImhofA, PirrottaV: Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites.Cell111 , 185–196 (2002).
  • Kuzmichev A , NishiokaK, Erdjument-BromageH, TempstP, ReinbergD: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein.Genes Dev.16 , 2893–2905 (2002).
  • Muller J , HartCM, FrancisNJ et al.: Histone methyltransferase activity of a Drosophila Polycomb group repressor complex.Cell111 , 197–208 (2002).
  • Saurin AJ , ShaoZ, Erdjument-BromageH, TempstP, KingstonRE: A Drosophila Polycomb group complex includes Zeste and dTAFII proteins.Nature412 , 655–660 (2001).
  • Bernstein BE , MikkelsenTS, XieX et al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells.Cell125 , 315–326 (2006).
  • Hansen KH , BrackenAP, PasiniD: A model for transmission of the H3K27me3 epigenetic mark.Nat. Cell Biol.10 , 1291–1300 (2008).
  • Margueron R , JustinN, OhnoK et al.: Role of the polycomb protein EED in the propagation of repressive histone marks.Nature461 , 762–767 (2009).
  • Klymenko T , MullerJ: The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins.EMBO Rep.5 , 373–377 (2004).
  • Fischle W , WangY, JacobsSA, KimY, AllisCD, KhorasanizadehS: Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains.Genes Dev.17 , 1870–1881 (2003).
  • Min J , ZhangY, XuRM: Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27.Genes Dev.17 , 1823–1828 (2003).
  • Wang H , WangL, Erdjument-BromageH et al.: Role of histone H2A ubiquitination in Polycomb silencing.Nature431 , 873–878 (2004).
  • Poux S , MelfiR, PirrottaV: Establishment of Polycomb silencing requires a transient interaction between PC and ESC.Genes Dev.15 , 2509–2514 (2001).
  • Francis NJ , FollmerNE, SimonMD, AghiaG, ButlerJD: Polycomb proteins remain bound to chromatin and DNA during DNA replication in vitro.Cell137 , 110–122 (2009).
  • Nakayama J , RiceJC, StrahlBD, AllisCD, GrewalSI: Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly.Science292 , 110–113 (2001).
  • Noma K , AllisCD, GrewalSI: Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries.Science293 , 1150–1155 (2001).
  • Hall IM , ShankaranarayanaGD, NomaK, AyoubN, CohenA, GrewalSI: Establishment and maintenance of a heterochromatin domain.Science297 , 2232–2237 (2002).
  • Volpe TA , KidnerC, HallIM, TengG, GrewalSI, MartienssenRA: Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi.Science297 , 1833–1837 (2002).
  • Kagansky A , FolcoHD, AlmeidaR et al.: Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres.Science324 , 1716–1719 (2009).
  • Motamedi MR , HongEJ, LiX et al.: HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms.Mol. Cell32 , 778–790 (2008).
  • Brown CJ , WillardHF: The human X-inactivation centre is not required for maintenance of X-chromosome inactivation.Nature368 , 154–156 (1994).
  • Csankovszki G , PanningB, BatesB, PehrsonJR, JaenischR: Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation.Nat. Genet.22 , 323–324 (1999).
  • Heard E , RougeulleC, ArnaudD, AvnerP, AllisCD, SpectorDL: Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation.Cell107 , 727–738 (2001).
  • Mermoud JE , PopovaB, PetersAH, JenuweinT, BrockdorffN: Histone H3 lysine 9 methylation occurs rapidly at the onset of random X chromosome inactivation.Curr. Biol.12 , 247–251 (2002).
  • Peters AH , O‘CarrollD, ScherthanH et al.: Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability.Cell107 , 323–337 (2001).
  • Tariq M , SazeH, ProbstAV, LichotaJ, HabuY, PaszkowskiJ: Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin.Proc. Natl Acad. Sci. USA100 , 8823–8827 (2003).
  • Sarraf SA , StanchevaI: Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly.Mol. Cell15 , 595–605 (2004).
  • Lee DY , NorthropJP, KuoMH, StallcupMR: Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors.J. Biol. Chem.281 , 8476–8485 (2006).
  • Yuan X , FengW, ImhofA, GrummtI, ZhouY: Activation of RNA polymerase I transcription by cockayne syndrome group B protein and histone methyltransferase G9a.Mol. Cell27 , 585–595 (2007).
  • Tachibana M , SugimotoK, NozakiM et al.: G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis.Genes Dev.16 , 1779–1791 (2002).
  • Esteve PO , ChinHG, SmallwoodA et al.: Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication.Genes Dev.20 , 3089–3103 (2006).
  • Espada J , BallestarE, FragaMF et al.: Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern.J. Biol. Chem.279 , 37175–37184 (2004).
  • Lehnertz B , UedaY, DerijckAA et al.: Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin.Curr. Biol.13 , 1192–1200 (2003).
  • Tamaru H , SelkerEU: A histone H3 methyltransferase controls DNA methylation in Neurospora crassa.Nature414 , 277–283 (2001).
  • Bachman KE , ParkBH, RheeI et al.: Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene.Cancer Cell3 , 89–95 (2003).
  • Briggs SD , BrykM, StrahlBD et al.: Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae.Genes Dev.15 , 3286–3295 (2001).
  • Miller T , KroganNJ, DoverJ et al.: COMPASS: a complex of proteins associated with a trithorax-related SET domain protein.Proc. Natl Acad. Sci. USA98 , 12902–12907 (2001).
  • Roguev A , SchaftD, ShevchenkoA et al.: The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4.EMBO J.20 , 7137–7148 (2001).
  • Ng HH , RobertF, YoungRA, StruhlK: Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity.Mol. Cell11 , 709–719 (2003).
  • Ingham PW : A clonal analysis of the requirement for the trithorax gene in the diversification of segments in Drosophila.J. Embryol. Exp. Morphol.89 , 349–365 (1985).
  • Seward DJ , CubberleyG, KimS et al.: Demethylation of trimethylated histone H3 Lys4 in vivo by JARID1 JmjC proteins.Nat. Struct. Mol. Biol.14 , 240–242 (2007).
  • Kouskouti A , TalianidisI: Histone modifications defining active genes persist after transcriptional and mitotic inactivation.EMBO J.24 , 347–357 (2005).
  • Guenther MG , LevineSS, BoyerLA, JaenischR, YoungRA: A chromatin landmark and transcription initiation at most promoters in human cells.Cell130 , 77–88 (2007).
  • McKittrick E , GafkenPR, AhmadK, HenikoffS: Histone H3.3 is enriched in covalent modifications associated with active chromatin.Proc. Natl Acad. Sci. USA101 , 1525–1530 (2004).
  • Ng RK , GurdonJB: Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription.Nat. Cell Biol.10 , 102–109 (2008).
  • Heintzman ND , HonGC, HawkinsRD et al.: Histone modifications at human enhancers reflect global cell-type-specific gene expression.Nature459 , 108–112 (2009).
  • Jin C , ZangC, WeiG et al.: H3.3/H2A.Z double variant-containing nucleosomes mark ‘nucleosome-free regions‘ of active promoters and other regulatory regions.Nat. Genet.41 , 941–945 (2009).
  • Katz DJ , EdwardsTM, ReinkeV, KellyWG: A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory.Cell137 , 308–320 (2009).
  • Di Stefano L , JiJY, MoonNS, HerrA, DysonN: Mutation of Drosophila Lsd1 disrupts H3-K4 methylation, resulting in tissue-specific defects during development.Curr. Biol.17 , 808–812 (2007).
  • Rudolph T , YonezawaM, LeinS et al.: Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3–3.Mol. Cell26 , 103–115 (2007).
  • Hodl M , BaslerK: Transcription in the absence of histone H3.3.Curr. Biol.19 , 1221–1226 (2009).
  • Ooi SL , PriessJR, HenikoffS: Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans.PLoS Genet.2 , E97 (2006).
  • Barski A , CuddapahS, CuiK et al.: High-resolution profiling of histone methylations in the human genome.Cell129 , 823–837 (2007).
  • Parks BA , JiangL, ThomasPM et al.: Top-down proteomics on a chromatographic time scale using linear ion trap fourier transform hybrid mass spectrometers.Anal. Chem.79 , 7984–7991 (2007).
  • Thomas CE , KelleherNL, MizzenCA: Mass spectrometric characterization of human histone H3: a bird‘s eye view.J. Proteome Res.5 , 240–247 (2006).
  • Klose RJ , ZhangY: Regulation of histone methylation by demethylimination and demethylation.Nat. Rev. Mol. Cell Biol.8 , 307–318 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.