227
Views
0
CrossRef citations to date
0
Altmetric
Review

Roles For Nuclear Organization In The Maintenance Of Genome Stability

, &
Pages 289-305 | Published online: 14 Apr 2010

Bibliography

  • Chubb JR , BoyleS, PerryP, BickmoreWA: Chromatin motion is constrained by association with nuclear compartments in human cells.Curr. Biol.12 , 439–445 (2002).
  • Vazquez J , BelmontAS, SedatJW: Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus.Curr. Biol.11 , 1227–1239 (2001).
  • Heun P , LarocheT, ShimadaK, FurrerP, GasserSM: Chromosome dynamics in the yeast interphase nucleus.Science294 , 2181–2186 (2001).
  • Marshall WF , StraightA, MarkoJFet al.: Interphase chromosomes undergo constrained diffusional motion in living cells.Curr. Biol.7 , 930–939 (1997).
  • Robinett CC , StraightA, LiGet al.: In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition.J. Cell Biol.135 , 1685–1700 (1996).
  • Maillet L , BoscheronC, GottaM, MarcandS, GilsonE, GasserSM: Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression.Genes Dev.10 , 1796–1811 (1996).
  • Gotta M , LarocheT, FormentonA, MailletL, ScherthanH, GasserSM: The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae.J. Cell Biol.134 , 1349–1363 (1996).
  • Andrulis ED , NeimanAM, ZappullaDC, SternglanzR: Perinuclear localization of chromatin facilitates transcriptional silencing.Nature394 , 592–595 (1998).
  • Taddei A , Van Houwe G, Nagai S, Erb I, van Nimwegen E, Gasser SM: The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion. Genome Res.19 , 611–625 (2009).
  • Lanctot C , CheutinT, CremerM, CavalliG, CremerT: Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions.Nat. Rev. Genet.8 , 104–115 (2007).
  • Reddy KL , ZulloJM, BertolinoE, SinghH: Transcriptional repression mediated by repositioning of genes to the nuclear lamina.Nature452 , 243–247 (2008).
  • Kumaran RI , SpectorDL: A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence.J. Cell Biol.180 , 51–65 (2008).
  • Finlan LE , SproulD, ThomsonIet al.: Recruitment to the nuclear periphery can alter expression of genes in human cells.PLoS Genet.4 , E1000039 (2008).
  • Guelen L , PagieL, BrassetEet al.: Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions.Nature453 , 948–951 (2008).
  • Pickersgill H , KalverdaB, de Wit E, Talhout W, Fornerod M, van Steensel B: Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat. Genet.38 , 1005–1014 (2006).
  • Capell BC , CollinsFS: Human laminopathies: nuclei gone genetically awry.Nat. Rev. Genet.7 , 940–952 (2006).
  • Goldman RD , ShumakerDK, ErdosMRet al.: Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome.Proc. Natl Acad. Sci. USA101 , 8963–8968 (2004).
  • Shumaker DK , DechatT, KohlmaierAet al.: Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging.Proc. Natl Acad. Sci. USA103 , 8703–8708 (2006).
  • Taddei A , Van Houwe G, Hediger F et al.: Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature441 , 774–778 (2006).
  • Schmid M , AribG, LaemmliC, NishikawaJ, DurusselT, LaemmliUK: Nup-PI: the nucleopore-promoter interaction of genes in yeast.Mol. Cell21 , 379–391 (2006).
  • Casolari JM , BrownCR, KomiliS, WestJ, HieronymusH, SilverPA: Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization.Cell117 , 427–439 (2004).
  • Mendjan S , TaipaleM, KindJet al.: Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila.Mol. Cell21 , 811–823 (2006).
  • Meister P , TaddeiA, PontiA, BaldacciG, GasserSM: Replication foci dynamics: replication patterns are modulated by S-phase checkpoint kinases in fission yeast.EMBO J.26 , 1315–1326 (2007).
  • Pasero P , BragugliaD, GasserSM: ORC-dependent and origin-specific initiation of DNA replication at defined foci in isolated yeast nuclei.Genes Dev.11 , 1504–1518 (1997).
  • Nakamura H , MoritaT, SatoC: Structural organizations of replicon domains during DNA synthetic phase in the mammalian nucleus.Exp. Cell Res.165 , 291–297 (1986).
  • Ma H , SamarabanduJ, DevdharRSet al.: Spatial and temporal dynamics of DNA replication sites in mammalian cells.J. Cell Biol.143 , 1415–1425 (1998).
  • Nakayasu H , BerezneyR: Mapping replicational sites in the eucaryotic cell nucleus.J. Cell Biol.108 , 1–11 (1989).
  • Heun P , LarocheT, RaghuramanMK, GasserSM: The positioning and dynamics of origins of replication in the budding yeast nucleus.J. Cell Biol.152 , 385–400 (2001).
  • Raghuraman MK , BrewerBJ, FangmanWL: Cell cycle-dependent establishment of a late replication program.Science276 , 806–809 (1997).
  • Cosgrove AJ , NieduszynskiCA, DonaldsonAD: Ku complex controls the replication time of DNA in telomere regions.Genes Dev.16 , 2485–2490 (2002).
  • Ebrahimi H , RobertsonED, TaddeiA, GasserSM, DonaldsonAD, HiragaSI: Early initiation of a replication origin tethered at the nuclear periphery.J. Cell. Sci. (2010) (Epub ahead of print).
  • Hiratani I , ItohTRM, YokochiTet al.: Global reorganization of replication domains during embryonic stem cell differentiation.PLoS Biol.6 , E245 (2008).
  • Aparicio JG , ViggianiCJ, GibsonDG, AparicioOM: The Rpd3–Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae.Mol. Cell. Biol.24 , 4769–4780 (2004).
  • Vogelauer M , RubbiL, LucasI, BrewerBJ, GrunsteinM: Histone acetylation regulates the time of replication origin firing.Mol. Cell10 , 1223–1233 (2002).
  • Schubeler D , ScalzoD, KooperbergC, van Steensel B, Delrow J, Groudine M: Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat. Genet.32 , 438–442 (2002).
  • Knott S , ViggianiC, TavaréS, AparicioO: Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae.Genes Dev.23 , 1077–1090 (2009).
  • Schwaiger M , StadlerMB, BellO, KohlerH, OakeleyEJ, SchubelerD: Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome.Genes Dev.23 , 589–601 (2009).
  • Hoeijmakers JH : Genome maintenance mechanisms for preventing cancer.Nature411 , 366–374 (2001).
  • Symington LS : Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair.Microbiol. Mol. Biol. Rev.66 , 630–670, table of contents (2002).
  • Aten JA , StapJ, KrawczykPMet al.: Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains.Science303 , 92–95 (2004).
  • Savage JR : Cancer. Proximity matters.Science290 , 62–63 (2000).
  • Nikiforova MN , StringerJR, BloughR, MedvedovicM, FaginJA, NikiforovYE: Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells.Science290 , 138–141 (2000).
  • Soutoglou E , DornJF, SenguptaKet al.: Positional stability of single double-strand breaks in mammalian cells.Nat. Cell Biol.9 , 675–682 (2007).
  • Gartenberg MR , NeumannFR, LarocheT, BlaszczykM, GasserSM: Sir-mediated repression can occur independently of chromosomal and subnuclear contexts.Cell119 , 955–967 (2004).
  • Haber JE , LeungWY: Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends.Proc. Natl Acad. Sci. USA93 , 13949–13954 (1996).
  • Aylon Y , LiefshitzB, Bitan-BaninG, KupiecM: Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae.Mol. Cell. Biol.23 , 1403–1417 (2003).
  • Nagai S , DubranaK, Tsai-PflugfelderMet al.: Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase.Science322 , 597–602 (2008).
  • Houston PL , BroachJR: The dynamics of homologous pairing during mating type interconversion in budding yeast.PLoS Genet.2 , E98 (2006).
  • Melo JA , CohenJ, ToczyskiDP: Two checkpoint complexes are independently recruited to sites of DNA damage in vivo.Genes Dev.15 , 2809–2821 (2001).
  • Lisby M , RothsteinR, MortensenUH: Rad52 forms DNA repair and recombination centers during S phase.Proc. Natl Acad. Sci. USA98 , 8276–8282 (2001).
  • Liu Y , LiM, LeeEY, MaizelsN: Localization and dynamic relocalization of mammalian Rad52 during the cell cycle and in response to DNA damage.Curr. Biol.9 , 975–978 (1999).
  • Lisby M , MortensenUH, RothsteinR: Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre.Nat. Cell Biol.5 , 572–577 (2003).
  • Bystricky K , van Attikum H, Montiel MD, Dion V, Gehlen L, Gasser SM: Regulation of nuclear positioning and dynamics of the silent mating type loci by the yeast Ku70/Ku80 complex. Mol. Cell. Biol.29 , 835–848 (2009).
  • Nelms BE , MaserRS, MacKayJF, LagallyMG, PetriniJH: In situ visualization of DNA double-strand break repair in human fibroblasts.Science280 , 590–592 (1998).
  • Lukas C , FalckJ, BartkovaJ, BartekJ, LukasJ: Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage.Nat. Cell Biol.5 , 255–260 (2003).
  • Kruhlak MJ , CelesteA, DellaireGet al.: Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks.J. Cell Biol.172 , 823–834 (2006).
  • Cornforth MN , Greulich-BodeKM, LoucasBDet al.: Chromosomes are predominantly located randomly with respect to each other in interphase human cells.J. Cell Biol.159 , 237–244 (2002).
  • Dimitrova N , ChenYC, SpectorDL, de Lange T: 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature456 , 524–528 (2008).
  • Celli GB , DenchiEL, de Lange T: Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol.8 , 885–890 (2006).
  • Celli GB , de Lange T: DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol.7 , 712–718 (2005).
  • Barzel A , KupiecM: Finding a match: how do homologous sequences get together for recombination?Nat. Rev. Genet.9 , 27–37 (2008).
  • Wilson JH , LeungWY, BoscoG, DieuD, HaberJE: The frequency of gene targeting in yeast depends on the number of target copies.Proc. Natl Acad. Sci. USA91 , 177–181 (1994).
  • Chai B , HuangJ, CairnsB, LaurentB: Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair.Genes Dev.19 , 1656–1661 (2005).
  • van Attikum H , FritschO, HohnB, GasserSM: Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair.Cell119 , 777–788 (2004).
  • Morrison AJ , HighlandJ, KroganNJet al.: INO80 and γ-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair.Cell119 , 767–775 (2004).
  • Downs JA , NussenzweigMC, NussenzweigA: Chromatin dynamics and the preservation of genetic information.Nature447 , 951–958 (2007).
  • van Attikum H , FritschO, GasserSM: Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks.EMBO J.26 , 4113–4125 (2007).
  • Tsukuda T , FlemingA, NickoloffJ, OsleyM: Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae.Nature438 , 379–383 (2005).
  • Shen X , MizuguchiG, HamicheA, WuC: A chromatin remodelling complex involved in transcription and DNA processing.Nature406 , 541–544 (2000).
  • Langowski J , HeermannDW: Computational modeling of the chromatin fiber.Semin. Cell Dev. Biol.18 , 659–667 (2007).
  • Fung JC , MarshallWF, DernburgA, AgardDA, SedatJW: Homologous chromosome pairing in Drosophilamelanogaster proceeds through multiple independent initiations.J. Cell Biol.141 , 5–20 (1998).
  • Metz CW : Chromosome studies on the Diptera II: the paired association of chromosomes in the Diptera, and its significance.J. Exp. Zool.21 , 213–279 (1916).
  • Rong YS , GolicKG: The homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila.Genetics165 , 1831–1842 (2003).
  • Lorenz A , FuchsJ, BurgerR, LoidlJ: Chromosome pairing does not contribute to nuclear architecture in vegetative yeast cells.Eukaryot. Cell2 , 856–866 (2003).
  • Cremer M , von Hase J, Volm T et al.: Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res.9 , 541–567 (2001).
  • Rabl C : Über Zellteilung.Gegenbaurs Morphol. Jahrb.10 , 214–330 (1885).
  • Mathog D , HochstrasserM, GruenbaumY, SaumweberH, SedatJ: Characteristic folding pattern of polytene chromosomes in Drosophila salivary gland nuclei.Nature308 , 414–421 (1984).
  • Schober H , KalckV, Vega-PalasMAet al.: Controlled exchange of chromosomal arms reveals principles driving telomere interactions in yeast.Genome Res.18 , 261–271 (2008).
  • Jin Q , Trelles-StickenE, ScherthanH, LoidlJ: Yeast nuclei display prominent centromere clustering that is reduced in nondividing cells and in meiotic prophase.J. Cell Biol.141 , 21–29 (1998).
  • Bystricky K , LarocheT, van Houwe G, Blaszczyk M, Gasser SM: Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J. Cell Biol.168 , 375–387 (2005).
  • Zickler D : From early homolog recognition to synaptonemal complex formation.Chromosoma115 , 158–174 (2006).
  • Funabiki H , HaganI, UzawaS, YanagidaM: Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast.J. Cell Biol.121 , 961–976 (1993).
  • Haaf T , SchmidM: Chromosome topology in mammalian interphase nuclei.Exp. Cell Res.192 , 325–332 (1991).
  • Palladino F , LarocheT, GilsonE, AxelrodA, PillusL, GasserSM: SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres.Cell75 , 543–555 (1993).
  • Marvin M , GriffinC, EyreD, BartonD, LouisE: Saccharomyces cerevisiae, yKu and subtelomeric core X sequences repress homologous recombination near telomeres as part of the same pathway.Genetics183 , 441–451 (2009).
  • Marvin M , BeckerM, NoelP, HardyS, BertuchA, LouisE: The association of yKu with subtelomeric core X sequences prevents recombination involving telomeric sequencesGenetics183 , 453–467 (2009).
  • Osborne CS , ChakalovaL, BrownKEet al.: Active genes dynamically colocalize to shared sites of ongoing transcription.Nat. Genet.36 , 1065–1071 (2004).
  • Osborne CS , ChakalovaL, MitchellJAet al.: Myc dynamically and preferentially relocates to a transcription factory occupied by Igh.PLoS Biol.5 , E192 (2007).
  • Taddei A , HedigerF, NeumannFR, BauerC, GasserSM: Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins.EMBO J.23 , 1301–1312 (2004).
  • Andrulis ED , ZappullaDC, AnsariAet al.: Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning.Mol. Cell. Biol.22 , 8292–8301 (2002).
  • Brickner JH , WalterP: Gene recruitment of the activated INO1 locus to the nuclear membrane.PLoS Biol.2 , E342 (2004).
  • Capelson M , CorcesVG: The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator.Mol. Cell20 , 105–116 (2005).
  • Yusufzai TM , TagamiH, NakataniY, FelsenfeldG: CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species.Mol. Cell13 , 291–298 (2004).
  • Saijo M , HiraiT, OgawaA, KobayashiA, KamiuchiS, TanakaK: Functional TFIIH is required for UV-induced translocation of CSA to the nuclear matrix.Mol. Cell. Biol.27 , 2538–2547 (2007).
  • Mladenov E , AnachkovaB, TsanevaI: Sub-nuclear localization of Rad51 in response to DNA damage.Genes Cells11 , 513–524 (2006).
  • Perry JJ , TainerJA, BoddyMN: A SIM-ultaneous role for SUMO and ubiquitin.Trends Biochem. Sci.33 , 201–208 (2008).
  • Oza P , JaspersenSL, MieleA, DekkerJ, PetersonCL: Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery.Genes Dev.23 , 912–927 (2009).
  • Kalocsay M , HillerNJ, JentschS: Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break.Mol. Cell33 , 335–343 (2009).
  • Schober H , FerreiraH, KalckV, GehlenLR, GasserSM: Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination.Genes Dev.23 , 928–938 (2009).
  • Potts PR , YuH: The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins.Nat. Struct. Mol. Biol.14 , 581–590 (2007).
  • Yeager TR , NeumannAA, EnglezouA, HuschtschaLI, NobleJR, ReddelRR: Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body.Cancer Res.59 , 4175–4179 (1999).
  • McEachern MJ , KrauskopfA, BlackburnEH: Telomeres and their control.Annu. Rev. Genet.34 , 331–358 (2000).
  • Weisshaar SR , KeusekottenK, KrauseAet al.: Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML.FEBS Lett.582 , 3174–3178 (2008).
  • Tatham MH , GeoffroyMC, ShenLet al.: RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation.Nat. Cell Biol.10 , 538–546 (2008).
  • Lallemand-Breitenbach V , JeanneM, BenhendaSet al.: Arsenic degrades PML or PML-RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway.Nat. Cell Biol.10 , 547–555 (2008).
  • Bernardi R , PandolfiPP: Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies.Nat. Rev. Mol. Cell Biol.8 , 1006–1016 (2007).
  • Azam M , LeeJY, AbrahamV, ChanouxR, SchoenlyKA, JohnsonFB: Evidence that the S. cerevisiae Sgs1 protein facilitates recombinational repair of telomeres during senescence.Nucleic Acids Res.34 , 506–516 (2006).
  • McEachern MJ , HaberJE: Break-induced replication and recombinational telomere elongation in yeast.Annu. Rev. Biochem.75 , 111–135 (2006).
  • Khadaroo B , TeixeiraMT, LucianoPet al.: The DNA damage response at eroded telomeres and tethering to the nuclear pore complex.Nat. Cell Biol.11 , 980–987 (2009).
  • Abdallah P , LucianoP, RungeKWet al.: A two-step model for senescence triggered by a single critically short telomere.Nat. Cell Biol.11 , 988–993 (2009).
  • Garvik B , CarsonM, HartwellL: Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint.Mol. Cell. Biol.15 , 6128–6138 (1995).
  • Collins SR , MillerKM, MaasNLet al.: Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.Nature446 , 806–810 (2007).
  • Petes TD : Yeast ribosomal DNA genes are located on chromosome XII.Proc. Natl Acad. Sci. USA76(1) , 410–414 (1979).
  • Sinclair DA , GuarenteL: Extrachromosomal rDNA circles – a cause of aging in yeast.Cell91 , 1033–1042 (1997).
  • Smith GP : Unequal crossover and the evolution of multigene families.Cold Spring Harb. Symp. Quant. Biol.38 , 507–513 (1974).
  • Kobayashi T , HeckDJ, NomuraM, HoriuchiT: Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I.Genes Dev.12 , 3821–3830 (1998).
  • Keil RL , RoederGS: Cis-acting, recombination-stimulating activity in a fragment of the ribosomal DNA of S. cerevisiae.Cell39 , 377–386 (1984).
  • Petes TD : Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes.Cell19 , 765–774 (1980).
  • Torres-Rosell J , SunjevaricI, De Piccoli G et al.: The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol.9 , 923–931 (2007).
  • Oakes M , ArisJP, BrockenbroughJS, WaiH, VuL, NomuraM: Mutational analysis of the structure and localization of the nucleolus in the yeast Saccharomyces cerevisiae.J. Cell Biol.143 , 23–34 (1998).
  • Mekhail K , SeebacherJ, GygiSP, MoazedD: Role for perinuclear chromosome tethering in maintenance of genome stability.Nature456 , 667–670 (2008).
  • King MC , LuskCP, BlobelG: Karyopherin-mediated import of integral inner nuclear membrane proteins.Nature442 , 1003–1007 (2006).
  • Gottlieb S , EspositoRE: A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA.Cell56 , 771–776 (1989).
  • Laroche T , MartinSG, GottaMet al.: Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres.Curr. Biol.8 , 653–656 (1998).
  • Zaidi SK , YoungDW, JavedAet al.: Nuclear microenvironments in biological control and cancer.Nat. Rev. Cancer7 , 454–463 (2007).
  • Maeshima K , JanssenS, LaemmliU: Specific targeting of insect and vertebrate telomeres with pyrrole and imidazole polyamides.EMBO J.20 , 3218–3228 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.