308
Views
0
CrossRef citations to date
0
Altmetric
Review

Next-Generation Sequencing Technologies for Dna Methylation Analyses in Cancer Genomics

, , &
Pages 199-207 | Published online: 14 Apr 2010

Bibliography

  • Hattori M , FujiyamaA, TaylorTDet al.: The DNA sequence of human chromosome 21.Nature405(6784), 311–319 (2000).
  • Mardis ER : Next-generation DNA sequencing methods.Annu. Rev. Genomics Hum. Genet.9 , 387–402 (2008).
  • Thomas RK , BakerAC, DebiasiRMet al.: High-throughput oncogene mutation profiling in human cancer.Nat. Genet.39(3) , 347–351 (2007).
  • Margulies M , EgholmM, AltmanWEet al.: Genome sequencing in microfabricated high-density picolitre reactors.Nature437(7057) , 376–380 (2005).
  • Bock C , WalterJ, PaulsenM, LengauerT: Inter-individual variation of DNA methylation and its implications for large-scale epigenome mapping.Nucleic Acids Res.36(10) , E55 (2008).
  • Feinberg AP : Phenotypic plasticity and the epigenetics of human disease.Nature447(7143) , 433–440 (2007).
  • Banerjee HN , VermaM: Epigenetic mechanisms in cancer.Biomark. Med.3(4) , 397–410 (2009).
  • Beck S , RakyanVK: The methylome: approaches for global DNA methylation profiling.Trends Genet.24(5) , 231–237 (2008).
  • Pomraning KR , SmithKM, FreitagM: Genome-wide high throughput analysis of DNA methylation in eukaryotes.Methods47(3) , 142–150 (2009).
  • Lister R , EckerJR: Finding the fifth base: genome-wide sequencing of cytosine methylation.Genome Res.19(6) , 959–966 (2009).
  • Lister R , PelizzolaM, DowenRHet al.: Human DNA methylomes at base resolution show widespread epigenomic differences.Nature462(7271) , 315–322 (2009).
  • Weber M , DaviesJJ, WittigDet al.: Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells.Nat. Genet.37(8) , 853–862 (2005).
  • Keshet I , SchlesingerY, FarkashSet al.: Evidence for an instructive mechanism of de novo methylation in cancer cells.Nat. Genet.38(2) , 149–153 (2006).
  • Cross SH , CharltonJA, NanX, BirdAP: Purification of CpG islands using a methylated DNA binding column.Nat. Genet.6(3) , 236–244 (1994).
  • Rakyan VK , DownTA, ThorneNPet al.: An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (TDMRs).Genome Res.18(9) , 1518–1529 (2008).
  • Ball MP , LiJB, GaoYet al.: Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells.Nat. Biotechnol.27(4) , 361–368 (2009).
  • Weber M , HellmannI, StadlerMBet al.: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome.Nat. Genet.39(4) , 457–466 (2007).
  • Down TA , RakyanVK, TurnerDJet al.: A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis.Nat. Biotechnol.26(7) , 779–785 (2008).
  • Eckhardt F , LewinJ, CorteseRet al.: DNA methylation profiling of human chromosomes 6, 20 and 22.Nat. Genet.38(12) , 1378–1385 (2006).
  • Frigola J , SongJ, StirzakerC, HinshelwoodRA, PeinadoMA, ClarkSJ: Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band.Nat. Genet.38(5) , 540–549 (2006).
  • Serre D , LeeBH, TingAH: MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome.Nucleic Acids Res.38(2) , 391–399 (2009).
  • Frommer M , McdonaldLE, MillarDSet al.: A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands.Proc. Natl Acad. Sci. USA89(5) , 1827–1831 (1992).
  • Esteller M : CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future.Oncogene21(35) , 5427–5440 (2002).
  • Ranade SS , ChungCB, ZonG, BoydVL: Preparation of genome-wide DNA fragment libraries using bisulfite in polyacrylamide gel electrophoresis slices with formamide denaturation and quality control for massively parallel sequencing by oligonucleotide ligation and detection.Anal. Biochem.390(2) , 126–135 (2009).
  • Xi Y , LiW: BSMAP: whole genome bisulfite sequence MAPping program.BMC Bioinformatics10 , 232 (2009).
  • Cokus SJ , FengS, ZhangXet al.: Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.Nature452(7184) , 215–219 (2008).
  • Lister R , O‘MalleyRC, Tonti-FilippiniJet al.: Highly integrated single-base resolution maps of the epigenome in Arabidopsis.Cell133(3) , 523–536 (2008).
  • Taylor KH , KramerRS, DavisJWet al.: Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing.Cancer Res.67(18) , 8511–8518 (2007).
  • Korshunova Y , MaloneyRK, LakeyNet al.: Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA.Genome Res.18(1) , 19–29 (2008).
  • Meissner A , MikkelsenTS, GuHet al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells.Nature454(7205) , 766–770 (2008).
  • Brunner AL , JohnsonDS, KimSWet al.: Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver.Genome Res.19(6) , 1044–1056 (2009).
  • Li JB , GaoY, AachJet al.: Multiplex padlock targeted sequencing reveals human hypermutable CpG variations.Genome Res.19(9) , 1606–1615 (2009).
  • Lopez J , PerchardeM, ColeyHM, WebbA, CrookT: The context and potential of epigenetics in oncology.Br. J. Cancer100(4) , 571–577 (2009).
  • Bian YS , YanP, OsterheldMC, FontollietC, BenhattarJ: Promoter methylation analysis on microdissected paraffin-embedded tissues using bisulfite treatment and PCR–SSCP.BioTechniques30(1) , 66–72 (2001).
  • Schweiger MR , KerickM, TimmermannBet al.: Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis.PLoS ONE4(5) , E5548 (2009).
  • Kerjean A , VieillefondA, ThiounnN, SibonyM, JeanpierreM, JouannetP: Bisulfite genomic sequencing of microdissected cells.Nucleic Acids Res.29(21) , E106–E106 (2001).
  • Van De Vijver MJ , HeYD, Van‘t Veer LJ et al.: A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med.347(25) , 1999–2009 (2002).
  • Dobosy JR , RobertsJL, FuVX, JarrardDF: The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia.J. Urol.177(3) , 822–831 (2007).
  • Pushkarev D , NeffNF, QuakeSR: Single-molecule sequencing of an individual human genome.Nat. Biotechnol.27(9) , 847–852 (2009).
  • Lund J , ParvizBA: Scanning probe and nanopore DNA sequencing: core techniques and possibilities.Methods Mol. Biol.578 , 113–122 (2009).
  • Branton D , DeamerDW, MarzialiAet al.: The potential and challenges of nanopore sequencing.Nat. Biotechnol.26(10) , 1146–1153 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.