119
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Targets in Human Neoplasms

&
Pages 221-232 | Published online: 14 Apr 2010

Bibliography

  • Bhaumik SR , SmithE, ShilatifardA: Covalent modifications of histones during development and disease pathogenesis.Nat. Struct. Mol. Biol.14(11) , 1008–1016 (2007).
  • Jones PA , BaylinSB: The epigenomics of cancer.Cell128(4) , 683–692 (2007).
  • Jones PA , BaylinSB: The fundamental role of epigenetic events in cancer.Nat. Rev. Genet.3(6) , 415–428 (2002).
  • Probst AV , DunleavyE, AlmouzniG: Epigenetic inheritance during the cell cycle.Nat. Rev. Mol. Cell Biol.10(3) , 192–206 (2009).
  • Henikoff S : Nucleosome destabilization in the epigenetic regulation of gene expression.Nat. Rev. Genet.9(1) , 15–26 (2008).
  • Miao F , SmithDD, ZhangL, MinA, FengW, NatarajanR: Lymphocytes from patients with Type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes.Diabetes57(12) , 3189–3198 (2008).
  • Chao MJ , RamagopalanSV, HerreraBMet al.: Epigenetics in multiple sclerosis susceptibility: difference in transgenerational risk localizes to the major histocompatibility complex.Hum. Mol. Genet.18(2) , 261–266 (2009).
  • Javierre BM , EstellerM, BallestarE: Epigenetic connections between autoimmune disorders and haematological malignancies.Trends Immunol.29(12) , 616–623 (2008).
  • Nardone G , CompareD, De Colibus P, de Nucci G, Rocco A: Helicobacter pylori and epigenetic mechanisms underlying gastric carcinogenesis. Dig. Dis.25(3) , 225–229 (2007).
  • Olivier M , AggarwalA, AllenJet al.: A high-resolution radiation hybrid map of the human genome draft sequence.Science291(5507) , 1298–1302 (2001).
  • American Association for Cancer Research Human Epigenome Task Force, European Union Network of Excellence, Scientific Advisory Board: Moving AHEAD with an international human epigenome project. Nature454(7205) , 711–715 (2008).
  • Madhani HD , FrancisNJ, KingstonREet al.: Epigenomics: a roadmap, but to where?Science322(5898) , 43–44 (2008).
  • Pennisi E : Research funding. are epigeneticists ready for big science?Science319(5867) , 1177 (2008).
  • Bird A : Perceptions of epigenetics.Nature447(7143) , 396–3988 (2007).
  • Das C , LuciaMS, HansenKC, TylerJK: CBP/p300-mediated acetylation of histone H3 on lysine 56.Nature459(7243) , 113–117 (2009).
  • Gill G : SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?Genes Dev.18(17) , 2046–2059 (2004).
  • Shilatifard A : Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation.Curr. Opin. Cell Biol.20(3) , 341–348 (2008).
  • Weake VM , WorkmanJL: Histone ubiquitination: triggering gene activity.Mol. Cell29(6) , 653–663 (2008).
  • Van Lint C , EmilianiS, VerdinE: The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation.Gene Expr.5(4–5) , 245–253 (1996).
  • Dai Y , RahmaniM, DentP, GrantS: Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-κB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-jun N-terminal kinase 1 activation.Mol. Cell. Biol.25(13) , 5429–5444 (2005).
  • Kovacs JJ , MurphyPJ, GaillardSet al.: HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor.Mol. Cell18(5) , 601–607 (2005).
  • Marks PA , XuWS: Histone deacetylase inhibitors: potential in cancer therapy.J. Cell. Biochem.107(4) , 600–6088 (2009).
  • Nusinzon I , HorvathCM: Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1.Proc. Natl Acad. Sci. USA100(25) , 14742–147477 (2003).
  • Klampfer L , HuangJ, SwabyLA, AugenlichtL: Requirement of histone deacetylase activity for signaling by STAT1.J. Biol. Chem.279(29) , 30358–30368 (2004).
  • Klampfer L , HuangJ, ShirasawaS, SasazukiT, AugenlichtL: Histone deacetylase inhibitors induce cell death selectively in cells that harbor activated kRasV12: the role of signal transducers and activators of transcription 1 and p21.Cancer Res.67(18) , 8477–8485 (2007).
  • Yang XJ : The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases.Nucleic Acids Res.32(3) , 959–976 (2004).
  • Xu F , ZhangK, GrunsteinM: Acetylation in histone H3 globular domain regulates gene expression in yeast.Cell121(3) , 375–385 (2005).
  • Williams SK , TruongD, TylerJK: Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation.Proc. Natl Acad. Sci. USA105(26) , 9000–9005 (2008).
  • Hurd PJ , BannisterAJ, HallsKet al.: Phosphorylation of histone H3 thr-45 is linked to apoptosis.J. Biol. Chem.284(24) , 16575–16583 (2009).
  • Myohanen SK , BaylinSB, HermanJG: Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia.Cancer Res.58(4) , 591–593 (1998).
  • Herman JG , BaylinSB: Gene silencing in cancer in association with promoter hypermethylation.N. Engl. J. Med.349(21) , 2042–2054 (2003).
  • Fandy TE , CarrawayH, GoreSD: DNA demethylating agents and histone deacetylase inhibitors in hematologic malignancies.Cancer J.13(1) , 40–48 (2007).
  • House MG , HermanJG, GuoMZet al.: Aberrant hypermethylation of tumor suppressor genes in pancreatic endocrine neoplasms.Ann. Surg.238 , 423–432 (2003).
  • Yang B , GuoM, HermanJG, ClarkDP: Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma.Am. J. Pathol.163 , 1101–1107 (2003).
  • House MG , GuoM, EfronDTet al.: Tumor suppressor gene hypermethylation as a predictor of gastric stromal tumor behavior.J. Gastrointest. Surg.7 , 1004–1014 (2003).
  • Seligson DB , HorvathS, McBrianMAet al.: Global levels of histone modifications predict prognosis in different cancers.Am. J. Pathol.174(5) , 1619–1628 (2009).
  • Vatolin S , NavaratneK, WeilRJ: A novel method to detect functional microRNA targets.J. Mol. Biol.358(4) , 983–996 (2006).
  • Ambros V : The functions of animal microRNAs.Nature431(7006) , 350–355 (2004).
  • Johnson SM , GrosshansH, ShingaraJet al.: RAS is regulated by the let-7 microRNA family.Cell120(5) , 635–647 (2005).
  • Vasudevan S , TongY, SteitzJA: Switching from repression to activation: microRNAs can up-regulate translation.Science318(5858) , 1931–1934 (2007).
  • O‘Donnell KA , WentzelEA, ZellerKI, DangCV, MendellJT: c-myc-regulated microRNAs modulate E2F1 expression.Nature435(7043) , 839–843 (2005).
  • Takamizawa J , KonishiH, YanagisawaKet al.: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival.Cancer Res.64(11) , 3753–3756 (2004).
  • Chin LJ , RatnerE, LengSet al.: A SNP in a let-7 microRNA complementary site in the KRAS 3´ untranslated region increases non-small cell lung cancer risk.Cancer Res.68(20) , 8535–8540 (2008).
  • Meng F , Wehbe-JanekH, HensonR, SmithH, PatelT: Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes.Oncogene27(3) , 378–386 (2008).
  • Petri A , LindowM, KauppinenS: MicroRNA silencing in primates: towards development of novel therapeutics.Cancer Res.69(2) , 393–395 (2009).
  • Krützfeldt J , RajewskyN, BraichRet al.: Silencing of microRNAs in vivo with ‘antagomirs‘.Nature438 , 685–689 (2005).
  • Mitchell PS , ParkinRK, KrohEMet al.: Circulating microRNAs as stable blood-based markers for cancer detection.Proc. Natl Acad. Sci. USA105(30) , 10513–10518 (2008).
  • Resnick KE , AlderH, HaganJP, RichardsonDL, CroceCM, CohnDE: The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform.Gynecol. Oncol.112(1) , 55–59 (2009).
  • Chen D , WangCY, LambertJD, AiN, WelshWJ, YangCS: Inhibition of human liver catechol-O-methyltransferase by tea catechins and their metabolites: structure–activity relationship and molecular-modeling studies.Biochem. Pharmacol.69(10) , 1523–1531 (2005).
  • Fang M , ChenD, YangCS: Dietary polyphenols may affect DNA methylation.J. Nutr.137(1 Suppl.) , S223–S228 (2007).
  • Lee WJ , ZhuBT: Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols.Carcinogenesis27(2) , 269–277 (2006).
  • Isakovic L , SaavedraOM, LlewellynDBet al.: Constrained (l-)-S-adenosyl-L-homocysteine (SAH) analogues as DNA methyltransferase inhibitors.Bioorg. Med. Chem. Lett.19(10) , 2742–2746 (2009).
  • Saavedra OM , IsakovicL, LlewellynDBet al.: SAR around (l)-S-adenosyl-L-homocysteine, an inhibitor of human DNA methyltransferase (DNMT) enzymes.Bioorg. Med. Chem. Lett.19(10) , 2747–2751 (2009).
  • Chuang JC , YooCB, KwanJMet al.: Comparison of biological effects of non-nucleoside DNA methylation inhibitors versus 5-aza-2´-deoxycytidine.Mol. Cancer Ther.4(10) , 1515–1520 (2005).
  • Pufulete M , Al-GhnaniemR, LeatherAJet al.: Folate status, genomic DNA hypomethylation, and risk of colorectal adenoma and cancer: a case control study.Gastroenterology124(5) , 1240–1248 (2003).
  • Song J , MedlineA, MasonJB, GallingerS, KimYI: Effects of dietary folate on intestinal tumorigenesis in the apcMin mouse.Cancer Res.60(19) , 5434–5440 (2000).
  • Bashir O , FitzGeraldAJ, GoodladRA: Both suboptimal and elevated vitamin intake increase intestinal neoplasia and alter crypt fission in the ApcMin/+ mouse.Carcinogenesis25(8) , 1507–1515 (2004).
  • Trasler J , DengL, MelnykSet al.: Impact of Dnmt1 deficiency, with and without low folate diets, on tumor numbers and DNA methylation in min mice.Carcinogenesis24(1) , 39–45 (2003).
  • Figueiredo JC , GrauMV, WallaceKet al.: Global DNA hypomethylation (LINE-1) in the normal colon and lifestyle characteristics and dietary and genetic factors.Cancer Epidemiol. Biomarkers Prev.18(4) , 1041–1049 (2009).
  • Stempak JM , SohnKJ, ChiangEP, ShaneB, KimYI: Cell and stage of transformation-specific effects of folate deficiency on methionine cycle intermediates and DNA methylation in an in vitro model.Carcinogenesis26(5) , 981–990 (2005).
  • Geisel J , SchorrH, BodisMet al.: The vegetarian lifestyle and DNA methylation.Clin. Chem. Lab. Med.43(10) , 1164–1169 (2005).
  • Wainfan E , PoirierLA: Methyl groups in carcinogenesis: effects on DNA methylation and gene expression.Cancer Res.52(7 Suppl.) , S2071–S2077 (1992).
  • Schermelleh L , SpadaF, EaswaranHPet al.: Trapped in action: direct visualization of DNA methyltransferase activity in living cells.Nat. Methods2(10) , 751–756 (2005).
  • Davis AJ , GelmonKA, SiuLLet al.: Phase I and pharmacologic study of the human DNA methyltransferase antisense oligodeoxynucleotide MG98 given as a 21-day continuous infusion every 4 weeks.Invest. New Drugs21(1) , 85–97 (2003).
  • Stewart DJ , DonehowerRC, EisenhauerEAet al.: A Phase I pharmacokinetic and pharmacodynamic study of the DNA methyltransferase 1 inhibitor MG98 administered twice weekly.Ann. Oncol.14(5) , 766–774 (2003).
  • Winquist E , KnoxJ, AyoubJPet al.: Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada clinical trials group investigational new drug study.Invest. New Drugs24(2) , 159–167 (2006).
  • Klisovic RB , StockW, CatalandSet al.: A Phase I biological study of MG98, an oligodeoxynucleotide antisense to DNA methyltransferase 1, in patients with high-risk myelodysplasia and acute myeloid leukemia.Clin. Cancer Res.14(8) , 2444–2449 (2008).
  • Robert MF , MorinS, BeaulieuNet al.: DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells.Nat. Genet.33(1) , 61–65 (2003).
  • Brueckner B , Garcia Boy R, Siedlecki P et al.: Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res.65(14) , 6305–6311 (2005).
  • Watanabe-Okochi N , KitauraJ, OnoRet al.: AML1 mutations induced MDS and MDS/AML in a mouse BMT model.Blood111(8) , 4297–4308 (2008).
  • Slape C , LiuLY, BeachyS, AplanPD: Leukemic transformation in mice expressing a NUP98-HOXD13 transgene is accompanied by spontaneous mutations in Nras, Kras, and Cbl.Blood112(5) , 2017–2019 (2008).
  • Choi CW , ChungYJ, SlapeC, AplanPD: Impaired differentiation and apoptosis of hematopoietic precursors in a mouse model of myelodysplastic syndrome.Haematologica93(9) , 1394–1397 (2008).
  • Slape C , LinYW, HartungH, ZhangZ, WolffL, AplanPD: NUP98-HOX translocations lead to myelodysplastic syndrome in mice and men.J. Natl Cancer Inst. Monogr.39 , 64–68 (2008).
  • Chung YJ , ChoiCW, SlapeC, FryT, AplanPD: Transplantation of a myelodysplastic syndrome by a long-term repopulating hematopoietic cell.Proc. Natl Acad. Sci. USA105(37) , 14088–14093 (2008).
  • Cheng JC , MatsenCB, GonzalesFAet al.: Inhibition of DNA methylation and reactivation of silenced genes by zebularine.J. Natl Cancer Inst.95(5) , 399–409 (2003).
  • Cheng JC , WeisenbergerDJ, GonzalesFAet al.: Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells.Mol. Cell. Biol.24(3) , 1270–1278 (2004).
  • Cheng JC , YooCB, WeisenbergerDJet al.: Preferential response of cancer cells to zebularine.Cancer Cell6(2) , 151–158 (2004).
  • Balzarini J , KruiningJ, WedgwoodOet al.: Conversion of 2´, 3´-dideoxyadenosine (ddA) and 2´, 3´-didehydro-2´, 3´-dideoxyadenosine (d4A) to their corresponding aryloxyphosphoramidate derivatives markedly potentiates their activity against human immunodeficiency virus and hepatitis B virus.FEBS Lett.410(2–3) , 324–328 (1997).
  • Yoo CB , ValenteR, CongiatuCet al.: Activation of p16 gene silenced by DNA methylation in cancer cells by phosphoramidate derivatives of 2´-deoxyzebularine.J. Med. Chem.51(23) , 7593–7601 (2008).
  • Bakker J , LinX, NelsonWG: Methyl-CpG binding domain protein 2 represses transcription from hypermethylated p-class glutathione S-transferase gene promoters in hepatocellular carcinoma cells.J. Biol. Chem.277(25) , 22573–22580 (2002).
  • Zhou Q , AtadjaP, DavidsonNE: Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor a (ER) gene expression without loss of DNA hypermethylation.Cancer Biol. Ther.6(1) , 64–69 (2007).
  • Lopes EC , VallsE, FigueroaMEet al.: Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines.Cancer Res.68(18) , 7258–7263 (2008).
  • Yamane K , ToumazouC, TsukadaYet al.: JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor.Cell125(3) , 483–495 (2006).
  • Shi Y , LanF, MatsonCet al.: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1.Cell119(7) , 941–953 (2004).
  • Tsukada Y , FangJ, Erdjument-BromageHet al.: Histone demethylation by a family of JmjC domain-containing proteins.Nature439(7078) , 811–816 (2006).
  • Cao R , ZhangY: The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3.Curr. Opin. Genet. Dev.14(2) , 155–164 (2004).
  • Bracken AP , PasiniD, CapraM, ProsperiniE, ColliE, HelinK: EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer.EMBO J.22(20) , 5323–5335 (2003).
  • Visser HP , GunsterMJ, Kluin-NelemansHCet al.: The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma.Br. J. Haematol.112(4) , 950–958 (2001).
  • Varambally S , DhanasekaranSM, ZhouMet al.: The Polycomb group protein EZH2 is involved in progression of prostate cancer.Nature419(6907) , 624–629 (2002).
  • Miranda TB , CortezCC, YooCB et al.: DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation.Mol. Cancer Ther.8(6) , 1579–1588 (2009).
  • Tan J , YangX, ZhuangLet al.: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells.Genes Dev.21(9) , 1050–1063 (2007).
  • Huang Y , GreeneE, Murray Stewart T et al.: Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc. Natl Acad. Sci. USA104(19) , 8023–8028 (2007).
  • Fenaux P , MuftiGJ, Hellstrom-LindbergEet al.: Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, Phase III study.Lancet Oncol.10(3) , 223–232 (2009).
  • Silverman LR , DemakosEP, PetersonBLet al.: Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group.Br. J. Clin. Oncol.20(10) , 2429–2440 (2002).
  • Kantarjian H , IssaJP, RosenfeldCSet al.: Decitabine improves patient outcomes in myelodysplastic syndromes: results of a Phase III randomized study.Cancer106(8) , 1794–1803 (2006).
  • Raj K , JohnA, HoAet al.: CDKN2B methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine.Leukemia21(9) , 1937–1944 (2007).
  • Fandy TE , HermanJG, KernsPet al.: Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies.Blood114(13) , 2764–2773 (2009).
  • Garcia-Manero G , KantarjianHM, Sanchez-GonzalezBet al.: Phase 1/2 study of the combination of 5-aza-2´-deoxycytidine with valproic acid in patients with leukemia.Blood108(10) , 3271–3279 (2006).
  • Qin T , JelinekJ, SiJ, ShuJ, IssaJP: Mechanisms of resistance to 5-aza-2´-deoxycytidine in human cancer cell lines.Blood113(3) , 659–667 (2009).
  • Esquela-Kerscher A , SlackFJ: Oncomirs – microRNAs with a role in cancer.Nat. Rev. Cancer6 , 259–269 (2006).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.