342
Views
0
CrossRef citations to date
0
Altmetric
Review

Hypomethylation of Repeated Dna Sequences in Cancer

, &
Pages 245-269 | Published online: 14 Apr 2010

Bibliography

  • Rollins RA , HaghighiF, EdwardsJRet al.: Large-scale structure of genomic methylation patterns.Genome Res.16(2) , 157–163 (2006).
  • Ehrlich M : Cancer-linked DNA hypomethylation and its relationship to hypermethylation. In: DNA Methylation: Development, Genetic Disease and Cancer. Doerfler W, Böhm P (Eds). Springer, Berlin, Germany, 251–274 (2006).
  • Feinberg AP , OhlssonR, HenikoffS: The epigenetic progenitor origin of human cancer.Nat. Rev. Genet.7(1) , 21–33 (2006).
  • Ting AH , McGarveyKM, BaylinSB: The cancer epigenome – components and functional correlates.Genes Dev.20(23) , 3215–3231 (2006).
  • Hoffmann MJ , SchulzWA: Causes and consequences of DNA hypomethylation in human cancer.Biochem. Cell Biol.83(3) , 296–321 (2005).
  • Wilson AS , PowerBE, MolloyPL: DNA hypomethylation and human diseases.Biochim. Biophys. Acta1775(1) , 138–162 (2007).
  • Pogribny IP , BelandFA: DNA hypomethylation in the origin and pathogenesis of human diseases.Cell. Mol. Life Sci.66(14) , 2249–2261 (2009).
  • Ehrlich M : DNA hypomethylation in cancer cells.Epigenomics1(2) , 239–259 (2009).
  • Ammerpohl O , Martin-SuberoJI, RichterJ, VaterI, SiebertR: Hunting for the 5th base: techniques for analyzing DNA methylation.Biochim. Biophys. Acta1790(9) , 847–862 (2009).
  • Chang JW , HuangTHM, WangYC: Emerging methods for analysis of the cancer methylome.Pharmacogenomics9(12) , 1869–1878 (2008).
  • Cohen CJ , LockWM, MagerDL: Endogenous retroviral LTRs as promoters for human genes: a critical assessment.Gene448(2) , 105–114 (2009).
  • Lander ES , LintonLM, BirrenBet al.: Initial sequencing and analysis of the human genome.Nature409(6822) , 860–921 (2001).
  • Cedar H , BergmanY: Linking DNA methylation and histone modification: patterns and paradigms.Nat. Rev. Genet.10(5) , 295–304 (2009).
  • Gangemi R , PaleariL, OrengoAMet al.: Cancer stem cells: a new paradigm for understanding tumor growth and progression and drug resistance.Curr. Med. Chem.16(14) , 1688–1703 (2009).
  • Jirtle RL : Epigenome: the program for human health and disease.Epigenomics1(1) , 13–16 (2009).
  • Pradhan S , EstevePO: Mammalian DNA (cytosine-5) methyltransferases and their expression.Clin. Immunol.109(1) , 6–16 (2003).
  • Hermann A , GowherH, JeltschA: Biochemistry and biology of mammalian DNA methyltransferases.Cell. Mol. Life Sci.61(19–20) , 2571–2587 (2004).
  • Goll MG , BestorTH: Eukaryotic cytosine methyltransferases.Annu. Rev. Biochem.74 , 481–514 (2005).
  • Klose RJ , BirdAP: Genomic DNA methylation: the mark and its mediators.Trends Biochem. Sci.31(2) , 89–97 (2006).
  • Schaefer CB , OoiSKT, BestorTH, Bourc‘hisD: Epigenetic decisions in mammalian germ cells.Science316(5823) , 398–399 (2007).
  • Kato Y , KanedaM, HataKet al.: Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse.Hum. Mol. Genet.16(19) , 2272–2280 (2007).
  • Chedin F , LieberMR, HsiehCL: The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a.Proc. Natl Acad. Sci. USA99(26) , 16916–16921 (2002).
  • Chen ZX , MannJR, HsiehCL, RiggsAD, ChedinF: Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family.J. Cell. Biochem.95(5) , 902–917 (2005).
  • Zhu H , GeimanTM, XiSet al.: Lsh is involved in de novo methylation of DNA.EMBO J.25(2) , 335–345 (2006).
  • De la Fuente R , BaumannC, FanT, SchmidtmannA, DobrinskiI, MueggeK: Lsh is required for meiotic chromosome synapsis and retrotransposon silencing in female germ cells.Nat. Cell Biol.8(12) , U1448–U1485 (2006).
  • Maksakova IA , MagerDL, ReissD: Keeping active endogenous retroviral-like elements in check: the epigenetic perspective.Cell. Mol. Life Sci.65(21) , 3329–3347 (2008).
  • Kurihara Y , KawamuraY, UchijimaYet al.: Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1.Dev. Biol.313(1) , 335–346 (2008).
  • Mertineit C , YoderJA, TaketoT, LairdDW, TraslerJM, BestorTH: Sex-specific exons control DNA methyltransferase in mammalian germ cells.Development125(5) , 889–897 (1998).
  • Okano M , BellDW, HaberDA, LiE: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development.Cell99(3) , 247–257 (1999).
  • Yamagata K , YamazakiT, MikiHet al.: Centromeric DNA hypomethylation as an epigenetic signature discriminates between germ and somatic cell lineages.Dev. Biol.312(1) , 419–426 (2007).
  • Lane N , DeanW, ErhardtSet al.: Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse.Genesis35(2) , 88–93 (2003).
  • Muegge K : Lsh, a guardian of heterochromatin at repeat elements.Biochem. Cell Biol.83(4) , 548–554 (2005).
  • Suzuki T , FarrarJE, YegnasubramanianS, ZahedM, SuzukiN, ArceciRJ: Stable knockdown of PASG enhances DNA demethylation but does not accelerate cellular senescence in TIG-7 human fibroblasts.Epigenetics3(5) , 281–291 (2008).
  • Yehezkel S , SegevY, Viegas-PequignotE, SkoreckiK, SeligS: Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions.Hum. Mol. Genet.17(18) , 2776–2789 (2008).
  • Lister R , PelizzolaM, DowenRHet al.: Human DNA methylomes at base resolution show widespread epigenomic differences.Nature462(7271) , 315–322 (2009).
  • Suetake I , MiyazakiJ, MurakamiC, TakeshimaH, TajimaS: Distinct enzymatic properties of recombinant mouse DNA methyltransferases Dnmt3a and Dnmt3b.J. Biochem.133(6) , 737–744 (2003).
  • Oakes CC , La Salle S, Smiraglia DJ, Robaire B, Trasler JM: A unique configuration of genome-wide DNA methylation patterns in the testis. Proc. Natl Acad. Sci. USA104(1) , 228–233 (2007).
  • Bourc‘his D , BestorTH: Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L.Nature431(7004) , 96–99 (2004).
  • Hata K , KusumiM, YokomineT, LiE, SasakiH: Meiotic and epigenetic aberrations in Dnmt3L-deficient male germ cells.Mol. Reprod. Dev.73(1) , 116–122 (2006).
  • Kondo T , BobekMP, KuickRet al.: Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2.Hum. Mol. Genet.9(4) , 597–604 (2000).
  • Brock GJR , CharltonJ, BirdA: Densely methylated sequences that are preferentially localized at telomere-proximal regions of human chromosomes.Gene240(2) , 269–277 (1999).
  • Gonzalo S , JacoI, FragaMFet al.: DNA methyltransferases control telomere length and telomere recombination in mammalian cells.Nat. Cell Biol.8(4) , 416-424 (2006).
  • Steinert S , ShayJW, WrightWE: Modification of subtelomeric DNA.Mol. Cell. Biol.24(10) , 4571–4580 (2004).
  • Benetti R , Garcia-CaoM, BlascoMA: Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres.Nat. Genet.39(2) , 243–250 (2007).
  • El-Maarri O , KaretaMS, MikeskaTet al.: A systematic search for DNA methyltransferase polymorphisms reveals a rare DNMT3L variant associated with subtelomeric hypomethylation.Hum. Mol. Genet.18(10) , 1755–1768 (2009).
  • Lewis A , ReikW: How imprinting centres work.Cytogenet. Genome Res.113(1–4) , 81–89 (2006).
  • Royo H , BortolinML, SeitzH, CavailleJ: Small non-coding RNAs and genomic imprinting.Cytogenet. Genome Res.113(1–4) , 99–108 (2006).
  • Migeon BR : X chromosome inactivation: theme and variations.Cytogenet. Genome Res.99(1–4) , 8–16 (2002).
  • Bernstein E , AllisCD: RNA meets chromatin.Genes Dev.19(14) , 1635–1655 (2005).
  • Martienssen RA , ZaratieguiM, GotoDB: RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe.Trends Genet.21(8) , 450–456 (2005).
  • Grewal SI , ElginSC: Transcription and RNA interference in the formation of heterochromatin.Nature447(7143) , 399–406 (2007).
  • Aravin AA , HannonGJ, BrenneckeJ: The Piwi–piRNA pathway provides an adaptive defense in the transposon arms race.Science318(5851) , 761–764 (2007).
  • Eymery A , CallananM, Vourc‘hC: The secret message of heterochromatin: new insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription.Int. J. Dev. Biol.53(2–3) , 259–268 (2009).
  • Frescas D , GuardavaccaroD, KuchaySMet al.: KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state.Cell Cycle7(22) , 3539–3547 (2008).
  • Wong LH , Brettingham-MooreKH, ChanLet al.: Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere.Genome Res.17(8) , 1146–1160 (2007).
  • Watanabe T , TotokiY, ToyodaAet al.: Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes.Nature453(7194) , 539–543 (2008).
  • Girard A , SachidanandamR, HannonGJ, CarmellMA: A germline-specific class of small RNAs binds mammalian Piwi proteins.Nature442(7099) , 199–202 (2006).
  • Aravin AA , SachidanandamR, Bourc‘hisDet al.: A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice.Mol. Cell31(6) , 785–799 (2008).
  • Aravin AA , SachidanandamR, GirardA, Fejes-TothK, HannonGJ: Developmentally regulated piRNA clusters implicate MILI in transposon control.Science316(5825) , 744–747 (2007).
  • Carmell MA , GirardA, van de Kant HJG et al.: MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell12(4) , 503–514 (2007).
  • Kuramochi-Miyagawa S , WatanabeT, GotohKet al.: DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes.Genes Dev.22(7) , 908–917 (2008).
  • Aravin AA , Bourc‘hisD: Small RNA guides for de novo DNA methylation in mammalian germ cells.Genes Dev.22(8) , 970–975 (2008).
  • Issa JP : CpG-island methylation in aging and cancer.Curr. Top. Microbiol. Immunol.249 , 101–118 (2000).
  • Fuke C , ShimabukuroM, PetronisAet al.: Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study.Ann. Hum. Genet.68(Pt 3) , 196–204 (2004).
  • Bollati V , SchwartzJ, WrightRet al.: Decline in genomic DNA methylation through aging in a cohort of elderly subjects.Mech. Ageing Dev.130(4) , 234–239 (2009).
  • Chalitchagorn K , ShuangshotiS, HourpaiNet al.: Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis.Oncogene23(54) , 8841–8846 (2004).
  • Suzuki K , SuzukiI, LeodolterAet al.: Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage.Cancer Cell9(3) , 199–207 (2006).
  • Maeda T , GuanJZ, OyamaJ, HiguchiY, MakinoN: Age-related changes in subtelomeric methylation in the normal Japanese population.J. Gerontol. A Biol. Sci. Med. Sci.64(4) , 426–434 (2009).
  • Maeda T , GuanJZ, HiguchiY, OyamaJ, MakinoN: Aging-related alterations of subtelomeric methylation in sarcoidosis patients.J. Gerontol. A Biol. Sci. Med. Sci.64(7) , 752–760 (2009).
  • Choi SH , WorswickS, ByunHMet al.: Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer.Int. J. Cancer125(3) , 723–729 (2009).
  • Szpakowski S , SunXG, LageJMet al.: Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements.Gene448(2) , 151–167 (2009).
  • Jones PA , BaylinSB: The fundamental role of epigenetic events in cancer.Nat. Rev. Genet.3(6) , 415–428 (2002).
  • Jones PA , BaylinSB: The epigenomics of cancer.Cell128(4) , 683–692 (2007).
  • Banerjee HN , VermaM: Epigenetic mechanisms in cancer.Biomark. Med.3(4) , 397–410 (2009).
  • Weisenberger DJ , CampanM, LongTIet al.: Analysis of repetitive element DNA methylation by MethyLight.Nucleic Acids Res.33(21) , 6823–6836 (2005).
  • Ehrlich M , WoodsCB, YuMCet al.: Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors.Oncogene18 , 2636–2645 (2006).
  • Cadieux B , ChingTT, VandenBergSR, CostelloJF: Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation.Cancer Res.66(17) , 8469–8476 (2006).
  • Park SY , YooEJ, ChoNYet al.: Comparison of CpG island hypermethylation and repetitive DNA hypomethylation in premalignant stages of gastric cancer, stratified for Helicobacter pylori infection.J. Pathol.219(4) , 410-416 (2009).
  • Bollati V , FabrisS, PegoraroVet al.: Differential repetitive DNA methylation in multiple myeloma molecular subgroups.Carcinogenesis30(8) , 1330–1335 (2009).
  • Daskalos A , NikolaidisG, XinarianosGet al.: Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer.Int. J. Cancer124(1) , 81–87 (2009).
  • Rauch TA , ZhongXY, WuXWet al.: High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer.Proc. Natl Acad. Sci. USA105(1) , 252–257 (2008).
  • Costa FF , PaixaoVA, CavalherFPet al.: SATR-1 hypomethylation is a common and early event in breast cancer.Cancer Genet. Cytogenet.165(2) , 135–143 (2006).
  • Suter CM , MartinDI, WardRL: Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue.Int. J. Colorectal Dis.19(2) , 95–101 (2004).
  • Moore LE , PfeifferRM, PoscabloCet al.: Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder Cancer Study: a case–control study.Lancet Oncol.9(4) , 359–366 (2008).
  • Choi J -Y, James SR, Link PA et al.: Association between global DNA hypomethylation in leukocytes and risk of breast cancer. Carcinogenesis30(11) , 1889–1897 (2009).
  • Pufulete M , Al-GhnaniemR, LeatherAJet al.: Folate status, genomic DNA hypomethylation, and risk of colorectal adenoma and cancer: a case–control study.Gastroenterology124(5) , 1240–1248 (2003).
  • Lim U , FloodA, ChoiSWet al.: Genomic methylation of leukocyte DNA in relation to colorectal adenoma among asymptomatic women.Gastroenterology134(1) , 47–55 (2008).
  • Hsiung DT , MarsitCJ, HousemanEAet al.: Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma.Cancer Epidemiol. Biomark. Prev.16(1) , 108–114 (2007).
  • Fenech M : The Genome Health Clinic and Genome Health Nutrigenomics concepts: diagnosis and nutritional treatment of genome and epigenome damage on an individual basis.Mutagenesis20(4) , 255–269 (2005).
  • Widschwendter M , JiangG, WoodsCet al.: DNA hypomethylation and ovarian cancer biology.Cancer Res.64(13) , 4472–4480 (2004).
  • Ogino S , NoshoK, KirknerGJet al.: A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer.J. Natl. Cancer Inst.100(23) , 1734–1738 (2008).
  • Sharma S , KellyTK, JonesPA: Epigenetics in cancer.Carcinogenesis31(1) , 27–36 (2009).
  • Yoo CB , JonesPA: Epigenetic therapy of cancer: past, present and future.Nat. Rev. Drug Discov.5(1) , 37–50 (2006).
  • Issa PJ : DNA methylation as a therapeutic target in cancer.Clin. Cancer Res.13(6) , 1634–1637 (2007).
  • Issa PJ , ByrdJC: Decitabine in chronic leukemias.Semin. Hematol.42 , S43–S49 (2005).
  • Yoo CB , ChuangJC, ByunHMet al.: Long-term epigenetic therapy with oral zebularine has minimal side effects and prevents intestinal tumors in mice.Cancer Prev. Res. (Phila. PA).1(4) , 233–240 (2008).
  • Crea F , GiovannettiE, CortesiFet al.: Epigenetic mechanisms of irinotecan sensitivity in colorectal cancer cell lines.Mol. Cancer Ther.8(7) , 1964–1973 (2009).
  • Liu ZF , LiuSJ, XieZLet al.: Characterization of in vitro and in vivo hypomethylating effects of decitabine in acute myeloid leukemia by a rapid, specific and sensitive LC-MS/MS method.Nucleic Acids Res.35(5) , E31 (2007).
  • Yang AS , DoshiKD, ChoiSWet al.: DNA methylation changes after 5-aza-2´-deoxycytidine therapy in patients with leukemia.Cancer Res.66(10) , 5495–5503 (2006).
  • Kaneda A , TsukamotoT, Takamura-EnyaTet al.: Frequent hypomethylation in multiple promoter CpG islands is associated with global hypomethylation, but not with frequent promoter hypermethylation.Cancer Sci.95(1) , 58–64 (2004).
  • Grunau C , SanchezC, EhrlichMet al.: Frequent DNA hypomethylation of human juxtacentromeric BAGE loci in cancer.Genes Chromosomes Cancer43(1) , 11–24 (2005).
  • Neuhausen A , FlorlAR, GrimmMO, SchulzWA: DNA methylation alterations in urothelial carcinoma.Cancer Biol. Ther.5(8) , 982–990 (2006).
  • Furuta J , UmebayashiY, MiyamotoKet al.: Promoter methylation profiling of 30 genes in human malignant melanoma.Cancer Sci.95(12) , 962–968 (2004).
  • Bariol C , SuterC, CheongKet al.: The relationship between hypomethylation and CpG island methylation in colorectal neoplasia.Am. J. Pathol.162(4) , 1361–1371 (2003).
  • Frigola J , SoleX, PazMFet al.: Differential DNA hypermethylation and hypomethylation signatures in colorectal cancer.Hum. Mol. Genet.14(2) , 319–326 (2005).
  • Rodriguez J , FrigolaJ, VendrellEet al.: Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers.Cancer Res.66(17) , 8462–9468 (2006).
  • Ehrlich M , JiangG, FialaEet al.: Hypomethylation and hypermethylation of DNA in Wilms tumors.Oncogene21(43) , 6694–6702 (2002).
  • Pini JT , FranchinaM, TaylorJM, KayPH: Evidence that general genomic hypomethylation and focal hypermethylation are two independent molecular events of non-Hodgkin‘s lymphoma.Oncol. Res.14(7–8) , 399–405 (2004).
  • Ogino S , KawasakiT, NoshoKet al.: LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer.Int. J. Cancer122(12) , 2767–2773 (2008).
  • Matsuzaki K , DengG, TanakaH, KakarS, MiuraS, KimYS: The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer.Clin. Cancer Res.11(24) , 8564–8569 (2005).
  • Estecio MR , GharibyanV, ShenLet al.: LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability.PLoS ONE2(5) , E399 (2007).
  • Iacopetta B , GrieuF, PhillipsMet al.: Methylation levels of LINE-1 repeats and CpG island loci are inversely related in normal colonic mucosa.Cancer Sci.98(9) , 1454–1460 (2007).
  • Nosho K , ShimaK, IraharaNet al.: DNMT3B expression might contribute to CpG island methylator phenotype in colorectal cancer.Clin. Cancer Res.15(11) , 3663–3671 (2009).
  • Fan T , SchmidtmannA, XiSet al.: DNA hypomethylation caused by Lsh deletion promotes erythroleukemia development.Epigenetics3(3) , 134–142 (2008).
  • Trinh BN , LongTI, NickelAE, ShibataD, LairdPW: DNA methyltransferase deficiency modifies cancer susceptibility in mice lacking DNA mismatch repair.Mol. Cell. Biol.22(9) , 2906–2917 (2002).
  • Gaudet F , HodgsonJG, EdenAet al.: Induction of tumors in mice by genomic hypomethylation.Science300(5618) , 489–492 (2003).
  • Eden A , GaudetF, WaghmareA, JaenischR: Chromosomal instability and tumors promoted by DNA hypomethylation.Science300(5618) , 455 (2003).
  • Yamada Y , Jackson-GrusbyL, LinhartHet al.: Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis.Proc. Natl Acad. Sci. USA102(38) , 13580–13585 (2005).
  • Karpf AR , MatsuiS: Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells.Cancer Res.65(19) , 8635–8639 (2005).
  • Wong N , LamWC, LaiPBS, PangE, LauWY, JohnsonPJ: Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human hepatocellular carcinoma.Am. J. Pathol.159(2) , 465–471 (2001).
  • Ehrlich M : The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease.Clin. Immunol.109(1) , 17–28 (2003).
  • Nakagawa T , KanaiY, UshijimaS, KitamuraT, KakizoeT, HirohashiS: DNA hypomethylation on pericentromeric satellite regions significantly correlates with loss of heterozygosity on chromosome 9 in urothelial carcinomas.J. Urol.173(1) , 243–246 (2005).
  • Tsuda H , TakarabeT, KanaiY, FukutomiT, HirohashiS: Correlation of DNA hypomethylation at pericentromeric heterochromatin regions of chromosomes 16 and 1 with histological features and chromosomal abnormalities of human breast carcinomas.Am. J. Pathol.161(3) , 859–866 (2002).
  • Davidsson J , AnderssonA, PaulssonKet al.: Tiling resolution array comparative genomic hybridization, expression and methylation analyses of dup(1q) in Burkitt lymphomas and pediatric high hyperdiploid acute lymphoblastic leukemias reveal clustered near-centromeric breakpoints and overexpression of genes in 1q22–32.3.Hum. Mol. Genet.16(18) , 2215–2225 (2007).
  • Kim NW , PiatyszekMA, ProwseKRet al.: Specific association of human telomerase activity with immortal cells and cancer.Science266(5193) , 2011–2015 (1994).
  • Vera E , CanelaA, FragaMF, EstellerM, BlascoMA: Epigenetic regulation of telomeres in human cancer.Oncogene27(54) , 6817–6833 (2008).
  • Lee ME , RhaSY, JeungHC, ChungHC, OhBK: Subtelomeric DNA methylation and telomere length in human cancer cells.Cancer Lett.281(1) , 82–91 (2009).
  • Tilman G , LoriotA, Van Beneden A et al.: Subtelomeric DNA hypomethylation is not required for telomeric sister chromatid exchanges in ALT cells. Oncogene28(14) , 1682–1693 (2009).
  • Deng GR , NguyenA, TanakaHet al.: Regional hypermethylation and global hypomethylation are associated with altered chromatin conformation and histone acetylation in colorectal cancer.Int. J. Cancer118(12) , 2999–3005 (2006).
  • Schulz WA , EloJP, FlorlARet al.: Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma.Genes Chromosomes Cancer35(1) , 58–65 (2002).
  • Schulz WA , AlexaA, JungVet al.: Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer.Mol. Cancer6 , 14 (2007).
  • Kolomietz E , MeynMS, PanditaA, SquireJA: The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors.Genes Chromosomes Cancer35(2) , 97–112 (2002).
  • Florl AR , SchulzWA: Peculiar structure and location of 9p21 homozygous deletion breakpoints in human cancer cells.Genes Chromosomes Cancer37(2) , 141–148 (2003).
  • Hsieh SY , ChenWY, YehTS, SheenIS, HuangSF: High-frequency Alu-mediated genomic recombination/deletion within the caspase-activated DNase gene in human hepatoma.Oncogene24(43) , 6584–6589 (2005).
  • Schulz WA , SteinhoffC, FlorlAR: Methylation of endogenous human retroelements in health and disease.Curr. Top. Microbiol. Immunol.310 , 211–250 (2006).
  • Kim M , TrinhBN, LongTI, OghamianS, LairdPW: Dnmt1 deficiency leads to enhanced microsatellite instability in mouse embryonic stem cells.Nucleic Acids Res.32(19) , 5742–5749 (2004).
  • Guo G , WangW, BradleyA: Mismatch repair genes identified using genetic screens in Blm-deficient embryonic stem cells.Nature429(6994) , 891–895 (2004).
  • Howard G , EigesR, GaudetF, JaenischR, EdenA: Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice.Oncogene27(3) , 404–408 (2008).
  • Liu J , NauMM, Zucman-RossiJ, PowellJI, AllegraCJ, WrightJJ: LINE-I element insertion at the t(11;22) translocation breakpoint of a desmoplastic small round cell tumor.Genes Chromosomes Cancer18(3) , 232–239 (1997).
  • Han JS , BoekeJD: A highly active synthetic mammalian retrotransposon.Nature429(6989) , 314–318 (2004).
  • Brouha B , SchustakJ, BadgeRMet al.: Hot L1s account for the bulk of retrotransposition in the human population.Proc. Natl Acad. Sci. USA100(9) , 5280–5285 (2003).
  • Faulkner GJ , KimuraY, DaubCOet al.: The regulated retrotransposon transcriptome of mammalian cells.Nat. Genet.41(5) , 563–571 (2009).
  • Conley AB , MillerWJ, JordanIK: Human cis natural antisense transcripts initiated by transposable elements.Trends Genet.24(2) , 53–56 (2008).
  • Matlik K , RedikK, SpeekM: L1 antisense promoter drives tissue-specific transcription of human genes.J. Biomed. Biotech.2006(1) , 71753 (2006).
  • Faulkner GJ , CarninciP: Altruistic functions for selfish DNA.Cell Cycle8(18) , 2895–2900 (2009).
  • Osato N , SuzukiY, IkeoK, GojoboriT: Transcriptional interferences in cis natural antisense transcripts of humans and mice.Genetics176(2) , 1299–1306 (2007).
  • Cruickshanks HA , TufarelliC: Isolation of cancer-specific chimeric transcripts induced by hypomethylation of the LINE-1 antisense promoter.Genomics94(6) , 397–406 (2009).
  • Lin L , WangZW, PrescottMSet al.: Multiple forms of genetic instability within a 2-Mb chromosomal segment of 3q26.3-q27 are associated with development of esophageal adenocarcinoma.Genes Chromosomes Cancer45(4) , 319–331 (2006).
  • Roman-Gomez J , Jimenez-VelascoA, AgirreXet al.: Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia.Oncogene24(48) , 7213–7223 (2005).
  • Davis CD , UthusEO: DNA methylation, cancer susceptibility, and nutrient interactions.Exp. Biol. Med. (Maywood)229(10) , 988–995 (2004).
  • Giovannucci E : Alcohol, one-carbon metabolism, and colorectal cancer: recent insights from molecular studies.J. Nutr.134(9) , S2475–S2481 (2004).
  • Pogribny IP , RossSA, WiseCet al.: Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency.Mutat. Res.593(1–2) , 80–87 (2006).
  • Lewis SJ , HarbordRM, HarrisR, SmithGD: Meta-analyses of observational and genetic association studies of folate intakes or levels and breast cancer risk.J. Natl. Cancer Inst.98(22) , 1607–1622 (2006).
  • Bollati V , BaccarelliA, HouLet al.: Changes in DNA methylation patterns in subjects exposed to low-dose benzene.Cancer Res.67(3) , 876–880 (2007).
  • Purohit V , KhalsaJ, SerranoJ: Mechanisms of alcohol-associated cancers: introduction and summary of the symposium.Alcohol35(3) , 155–160 (2005).
  • Smith IM , MydlarzWK, MithaniSK, CalifanoJA: DNA global hypomethylation in squamous cell head and neck cancer associated with smoking, alcohol consumption and stage.Int. J. Cancer121(8) , 1724–1728 (2007).
  • Figueiredo JC , GrauMV, WallaceKet al.: Global DNA hypomethyation (LINE-1) in the normal colon and lifestyle characteristics and dietary and genetic factors.Cancer Epidemiol. Biomark. Prev.18(4) , 1041–1049 (2009).
  • Minarovits J : Microbe-induced epigenetic alterations in host cells: the coming era of patho-epigenetics of microbial infections; a review.Acta Microbiol. Immunol. Hung.56(1) , 1–19 (2009).
  • Park IY , SohnBH, YuEet al.: Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein.Gastroenterology132(4) , 1476–1494 (2007).
  • De Marzo AM , MarchiVL, YangES, VeeraswamyR, LinX, NelsonWG: Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis.Cancer Res.59(16) , 3855–3860 (1999).
  • Li S , ChiangTC, Richard-DavisG, BarrettJC, McLachlanJA: DNA hypomethylation and imbalanced expression of DNA methyltransferases (DNMT1, 3A, and 3B) in human uterine leiomyoma.Gynecol. Oncol.90(1) , 123–130 (2003).
  • Etoh T , KanaiY, UshijimaSet al.: Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers.Am. J. Pathol.164(2) , 689–699 (2004).
  • Agoston AT , ArganiP, YegnasubramanianSet al.: Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer.J. Biol. Chem.280(18) , 18302–18310 (2005).
  • Peng DF , KanaiY, SawadaMet al.: Increased DNA methyltransferase 1 (DNMT1) protein expression in precancerous conditions and ductal carcinomas of the pancreas.Cancer Sci.96(7) , 403–408 (2005).
  • Loriot A , De Plaen E, Boon T, De Smet C: Transient down-regulation of DNMT1 methyltransferase leads to activation and stable hypomethylation of MAGE-A1 in melanoma cells. J. Biol. Chem.281(15) , 10118–10126 (2006).
  • Kanai Y , UshijimaS, KondoY, NakanishiY, HirohashiS: DNA methyltransferase expression and DNA methylation of CPG islands and peri-centromeric satellite regions in human colorectal and stomach cancers.Int. J. Cancer91(2) , 205–212 (2001).
  • Saito Y , KanaiY, SakamotoM, SaitoH, IshiiH, HirohashiS: Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis.Hepatology33(3) , 561–568 (2001).
  • Saito Y , KanaiY, SakamotoM, SaitoH, IshiiH, HirohashiS: Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3B4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis.Proc. Natl Acad. Sci. USA99(15) , 10060–10065 (2002).
  • Almstrup K , Hoei-HansenCE, NielsenJEet al.: Genome-wide gene expression profiling of testicular carcinoma in situ progression into overt tumours.Br. J. Cancer92(10) , 1934–1941 (2005).
  • Ostler K , DavisE, PayneSet al.: Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins.Oncogene26(38) , 5553–5563 (2007).
  • Morgan HD , SantosF, GreenK, DeanW, ReikW: Epigenetic reprogramming in mammals.Hum. Mol. Genet.14(Spec. 1) , R47–R58 (2005).
  • Lucarelli M , FusoA, StromR, ScarpaS: The dynamics of myogenin site-specific demethylation is strongly correlated with its expression and with muscle differentiation.J. Biol. Chem.276(10) , 7500–7506 (2001).
  • Bruniquel D , SchwartzRH: Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process.Nat. Immunol.4(3) , 235–240 (2003).
  • Ma DK , JangMH, GuoJUet al.: Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis.Science323(5917) , 1074–1077 (2009).
  • Brown SE , SzyfM: Epigenetic programming of the rRNA promoter by MBD3.Mol. Cell. Biol.27(13) , 4938–4952 (2007).
  • Schmitz KM , SchmittN, Hoffmann-RohrerU, SchaferA, GrummtI, MayerC: TAF12 recruits Gadd45a and the nucleotide excision repair complex to the promoter of rRNA genes leading to active DNA demethylation.Mol. Cell33(3) , 344–353 (2009).
  • Niehrs C : Active DNA demethylation and DNA repair.Differentiation77(1) , 1–11 (2009).
  • Jin SG , GuoC, PfeiferGP: GADD45A does not promote DNA demethylation.PLoS Genet.4(3) , E1000013 (2008).
  • Fraga MF , BallestarE, Villar-GareaAet al.: Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.Nat. Genet.37(4) , 391–400 (2005).
  • Gallais R , DemayF, BarathPet al.: Deoxyribonucleic acid methyl transferases 3a and 3b associate with the nuclear orphan receptor COUP–TFI during gene activation.Mol. Endocrinol.21(9) , 2085–2098 (2007).
  • Detich N , BovenziV, SzyfM: Valproate induces replication-independent active DNA demethylation.J. Biol. Chem.278(30) , 27586–27592 (2003).
  • Morgan HD , DeanW, CokerHA, ReikW, Petersen-MahrtSK: Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues – implications for epigenetic reprogramming.J. Biol. Chem.279(50) , 52353–52360 (2004).
  • Kouzarides T : Chromatin modifications and their function.Cell128(4) , 693–705 (2007).
  • Schuettengruber B , ChourroutD, VervoortM, LeblancB, CavalliG: Genome regulation by Polycomb and trithorax proteins.Cell128(4) , 735–745 (2007).
  • Santos-Rosa H , CaldasC: Chromatin modifier enzymes, the histone code and cancer.Eur. J. Cancer41(16) , 2381–2402 (2005).
  • Esteller M : Cancer epigenomics: DNA methylomes and histone-modification maps.Nat. Rev. Genet.8(4) , 286–298 (2007).
  • Filippova GN : Genetics and epigenetics of the multifunctional protein CTCF.Curr. Top. Dev. Biol.80 , 337–360 (2008).
  • Chadwick BP : DXZ4 chromatin adopts an opposing conformation to that of the surrounding chromosome and acquires a novel inactive X-specific role involving CTCF and antisense transcripts.Genome Res.18(8) , 1259–1269 (2008).
  • Ottaviani A , Rival-GervierS, BoussouarAet al.: The D4Z4 macrosatellite repeat Acts as a CTCF and A-type lamins-dependent insulator in facio-scapulo-humeral dystrophy.PLoS Genet.5(2) , E1000394 (2009).
  • Lee DW , ZhangK, Ning Z-Q et al.: Proliferation-associated SNF2-like gene (PASG): a SNF2 family member altered in leukemia. Cancer Res.60(13) , 3612–3622 (2000).
  • Yano M , OuchidaM, ShigematsuHet al.: Tumor-specific exon creation of the HELLS/SMARCA6 gene in non-small cell lung cancer.Int. J. Cancer112(1) , 8–13 (2004).
  • Lehnertz B , UedaY, DerijckAAet al.: Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin.Curr. Biol.13(14) , 1192–1200 (2003).
  • Pauler FM , SloaneMA, HuangRet al.: H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome.Genome Res.19(2) , 221–233 (2009).
  • Martens JHA , O‘SullivanRJ, BraunschweigUet al.: The profile of repeat-associated histone lysine methylation states in the mouse epigenome.EMBO J.24(4) , 800–812 (2005).
  • Ellinger J , KahlP, von der Gathen J et al.: Global levels of histone modifications predict prostate cancer recurrence. Prostate70(1) , 61–69 (2010).
  • Seligson DB , HorvathS, McBrianMAet al.: Global levels of histone modifications predict prognosis in different cancers.Am. J. Pathol.174(5) , 1619–1628 (2009).
  • Fraga MF , BallestarE, Villar-GareaAet al.: Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.Nat. Genet.37(4): 391–400 (2005).
  • Wiemer EAC : The role of microRNAs in cancer: no small matter.Eur. J. Cancer43(10) , 1529–1544 (2007).
  • Ryazansky SS , GvozdevVA: Small RNAs and cancerogenesis.Biochemistry (Mosc.)73(5) , 514–527 (2008).
  • Calin GA , SevignaniC, DumitruCDet al.: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc. Natl Acad. Sci. USA101(9) , 2999–3004 (2004).
  • Smalheiser NR , TorvikVI: Mammalian microRNAs derived from genomic repeats.Trends Genet.21(6) , 322–326 (2005).
  • Michael MZ , O‘ConnorSM, van Holst Pellekaan NG, Young GP, James RJ: Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res.1(12) , 882–891 (2003).
  • Ng EKO , TsangWP, NgSSMet al.: MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer.Br. J. Cancer101(4) , 699–706 (2009).
  • Fabbri M , GarzonR, CimminoAet al.: MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B.Proc. Natl Acad. Sci. USA104(40) , 15805–15810 (2007).
  • Sharma AK , NelsonMC, BrandtJEet al.: Human CD34(+) stem cells express the HIWI gene, a human homologue of the Drosophila gene piwi.Blood97(2) , 426–434 (2001).
  • Taubert H , GreitherT, KaushalDet al.: Expression of the stem cell self-renewal gene HIWI and risk of tumour-related death in patients with soft-tissue sarcoma.Oncogene26(7) , 1098–1100 (2007).
  • Grochola LF , GreitherT, TaubertHet al.: The stem cell-associated HIWI gene in human adenocarcinoma of the pancreas: expression and risk of tumour-related death.Br. J. Cancer99(7) , 1083–1088 (2008).
  • Qiao D , ZeemanAM, DengW, LooijengaLH, LinHF: Molecular characterization of HIWI, a human member of the piwi gene family whose overexpression is correlated to seminomas.Oncogene21(25) , 3988–3999 (2002).
  • Lee JH , SchutteD, WulfGet al.: Stem-cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl-X-L pathway.Hum. Mol. Genet.15(2) , 201–211 (2006).
  • Gao JX : Cancer stem cells: the lessons from pre-cancerous stem cells.J. Cell. Mol. Med.12(1) , 67–96 (2008).
  • Thanasupawat T , PhokaewC, MutiranguraA: The association between Piwil2 expression and LINE-1 methylation in cancer cells.Asian Biomed.3(3) , 279–285 (2009).
  • Jeffery L , NakielnyS: Components of the DNA methylation system of chromatin control are RNA-binding proteins.J. Biol. Chem.279(47) , 49479–49487 (2004).
  • Kapranov P , ChengJ, DikeSet al.: RNA maps reveal new RNA classes and a possible function for pervasive transcription.Science316(5830) , 1484–1488 (2007).
  • Zuo T , TyckoB, Liu T-M, Lin H-JL, Huang TH-M: Methods in DNA methylation profiling. Epigenomics1(2) , 331–345 (2009).
  • Horard B , EymeryA, FourelGet al.: Global analysis of DNA methylation and transcription of human repetitive sequences.Epigenetics4(5) , 339–350 (2009).
  • Schulz WA : L1 retrotransposons in human cancers.J. Biomed. Biotech.2006(1) , 83672 (2006).
  • Batzer MA , DeiningerPL: Alu repeats and human genomic diversity.Nat. Rev. Genet.3(5) , 370–379 (2002).
  • Pace JK , FeschotteC: The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage.Genome Res.17(4) , 422–432 (2007).
  • Gilbert N , LabudaD: CORE-SINEs: eukaryotic short interspersed retroposing elements with common sequence motifs.Proc. Natl Acad. Sci. USA96(6) , 2869–2874 (1999).
  • Smit AF , RiggsAD: MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation.Nucleic Acids Res.23(1) , 98–102 (1995).
  • Strichman-Almashanu LZ , LeeRS, OnyangoPOet al.: A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes.Genome Res.12(4) , 543–554 (2002).
  • Ostertag EM , GoodierJL, ZhangY, KazazianHH Jr: SVA elements are nonautonomous retrotransposons that cause disease in humans. Am. J. Hum. Genet.73(6) , 1444–1451 (2003).
  • Wang H , XingJ, GroverDet al.: SVA elements: a hominid-specific retroposon family.J. Mol. Biol.354(4) , 994–1007 (2005).
  • Warburton PE , HassonD, GuillemF, LescaleC, JinXP, AbrusanG: Analysis of the largest tandemly repeated DNA families in the human genome.BMC Genomics9 , 533 (2008).
  • Thoraval D , AsakawaJ, WimmerKet al.: Demethylation of repetitive DNA sequences in neuroblastoma.Genes Chromosomes Cancer17(4) , 234–244 (1996).
  • Ihaka R , GentlemanR: R: A language for data analysis and graphics.J. Comput. Graph. Stat.5 , 299–314 (1996).
  • Cleveland WS : Robust locally weighted regression and smoothing scatterplots.J. Am. Stat. Assoc.74 , 829–836 (1979).
  • Qu G , DubeauL, NarayanA, YuMC, EhrlichM: Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential.Mutat. Res.423(1–2) , 91–101 (1999).
  • Narayan A , JiWZ, ZhangXYet al.: Hypomethylation of pericentromeric DNA in breast adenocarcinomas.Int. J. Cancer77(6) , 833–838 (1998).
  • Jackson K , YuMC, ArakawaKet al.: DNA hypomethylation is prevalent even in low-grade breast cancers.Cancer Biol. Ther.3(12) , 1225–1231 (2004).
  • Fanelli M , CaprodossiS, Ricci-VitianiLet al.: Loss of pericentromeric DNA methylation pattern in human glioblastoma is associated with altered DNA methyltransferases expression and involves the stem cell compartment.Oncogene27(3) , 358–365 (2008).
  • Park SY , KimN, YooEJ, ChoNY, KangGH: DNA methylation changes in multistep gastric carcinogenesis and their relationship with H-pylori infection and association of gastric cancer.Lab. Investig.89 , 648 (2009).
  • Tsumagari K , QiL, JacksonKet al.: Epigenetics of a tandem DNA repeat: chromatin DNaseI sensitivity and opposite methylation changes in cancers.Nucleic Acids Res.36(7) , 2196–2207 (2008).
  • Katargin A , PavlovaL, KisseljovF, KisseljovaN: Hypermethylation of genomic 3.3-kb repeats is frequent event in HPV-positive cervical cancer.BMC Med. Genomics2(1) , 30 (2009).
  • Nagai H , KimYS, YasudaTet al.: A novel sperm-specific hypomethylation sequence is a demethylation hotspot in human hepatocellular carcinomas.Gene237(1) , 15–20 (1999).
  • Itano O , UedaM, KikuchiKet al.: Correlation of postoperative recurrence in hepatocellular carcinoma with demethylation of repetitive sequences.Oncogene21(5) , 789–797 (2002).
  • Nishiyama R , QiLX, LaceyM, EhrlichM: Both hypomethylation and hypermethylation in a 0.2-kb region of a DNA repeat in cancer.Mol. Cancer Res.3(11) , 617–626 (2005).
  • Nishiyama R , QiLX, TsumagariKet al.: A DNA repeat, NBL-2, is hypermethylated in some cancers but hypomethylated in others.Cancer Biol. Ther.4(4) , 440–448 (2005).
  • Cho NY , KimBH, YooEJet al.: Hypermethylation of CpG island loci and hypomethylation of LINE-I and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features.J. Pathol.211(3) , 269–277 (2007).
  • Florl AR , LowerR, Schmitz-DragerBJ, SchulzWA: DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas.Br. J. Cancer80(9) , 1312–1321 (1999).
  • Menendez L , BenignoBB, McDonaldJF: L1 and HERV-W retrotransposons are hypomethylated in human ovarian carcinomas.Mol. Cancer3 , 12 (2004).
  • Takai D , YagiY, HabibN, SugimuraT, UshijimaT: Hypomethylation of LINE1 retrotransposon in human hepatocellular carcinomas, but not in surrounding liver cirrhosis.Jpn. J. Clin. Oncol.30(7) , 306–309 (2000).
  • Hervouet E , DebienE, CampionLet al.: Folate supplementation limits the aggressiveness of glioma via the remethylation of DNA repeats element and genes governing apoptosis and proliferation.Clin. Cancer Res.15(10) , 3519–3529 (2009).
  • Watts G , FutscherB, HoltanN, DeGeestK, DomannF, RoseS: DNA methylation changes in ovarian cancer are cumulative with disease progression and identify tumor stage.BMC Med. Genomics1(1) , 47 (2008).
  • Brothman AR , SwansonG, MaxwellTMet al.: Global hypomethylation is common in prostate cancer cells: a quantitative predictor for clinical outcome?Cancer Genet. Cytogenet.156(1) , 31–36 (2005).
  • Nakagawa T , KanaiY, UshijimaS, KitamuraT, KakizoeT, HirohashiS: DNA hypermethylation on multiple CpG islands associated with increased DNA methyltransferase DNMT1 protein expression during multistage urothelial carcinogenesis.J. Urol.173(5) , 1767–1771 (2005).
  • Tangkijvanich P , HourpaiN, RattanatanyongP, WisedopasN, MahachaiV, MutiranguraA: Serum LINE-1 hypomethylation as a potential prognostic marker for hepatocellular carcinoma.Clin. Chim. Acta379(1–2) , 127–133 (2007).
  • Qu GZ , GrundyPE, NarayanA, EhrlichM: Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16.Cancer Genet. Cytogenet.109(1) , 34–39 (1999).
  • Ehrlich M , HopkinsNE, JiangGet al.: Satellite DNA hypomethylation in karyotyped Wilms tumors.Cancer Genet. Cytogenet.141(2) , 97–105 (2003).
  • Wiemels JL , HofmannJ, KangMet al.: Chromosome 12p deletions in TEL–AML1 childhood acute lymphoblastic leukemia are associated with retrotransposon elements and occur postnatally.Cancer Res.68(23) , 9935–9944 (2008).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.