391
Views
0
CrossRef citations to date
0
Altmetric
Review

Histone Modifications and Chromatin Organization in Prostate Cancer

, , &
Pages 551-560 | Published online: 05 Aug 2010

Bibliography

  • Jemal A , SiegelR, WardE, HaoY, XuJ, ThunMJ: Cancer statistics, 2009.CA Cancer J. Clin.59(4) , 225–249 (2009).
  • Heinlein CA , ChangC: Androgen receptor in prostate cancer.Endocr. Rev.25(2) , 276–308 (2004).
  • Dehm SM , TindallDJ: Androgen receptor structural and functional elements: role and regulation in prostate cancer.Mol. Endocrinol.21(12) , 2855–2863 (2007).
  • Feldman BJ , FeldmanD: The development of androgen-independent prostate cancer.Nat. Rev. Cancer1(1) , 34–45 (2001).
  • Debes JD , TindallDJ: Mechanisms of androgen-refractory prostate cancer.N. Engl. J. Med.351(15) , 1488–1490 (2004).
  • Cooper CS , FosterCS: Concepts of epigenetics in prostate cancer development.Br. J. Cancer100(2) , 240–245 (2009).
  • Diaw L , WoodsonK, GillespieJW: Prostate cancer epigenetics: a review on gene regulation.Gene Regul. Syst. Biol.1 , 313–325 (2007).
  • Dobosy JR , RobertsJL, FuVX, JarrardDF: The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia.J. Urol.177(3) , 822–831 (2007).
  • Li LC : Epigenetics of prostate cancer.Front. Biosci.12 , 3377–3397 (2007).
  • Bernstein BE , MeissnerA, LanderES: The mammalian epigenome.Cell128(4) , 669–681 (2007).
  • Probst AV , DunleavyE, AlmouzniG: Epigenetic inheritance during the cell cycle.Nat. Rev. Mol. Cell. Biol.10(3) , 192–206 (2009).
  • Johannes F , ColotV, JansenRC: Epigenome dynamics: a quantitative genetics perspective.Nat. Rev. Genet.9(11) , 883–890 (2008).
  • Ting AH , McgarveyKM, BaylinSB: The cancer epigenome – components and functional correlates.Genes Dev.20(23) , 3215–3231 (2006).
  • Nelson WG , YegnasubramanianS, AgostonATet al.: Abnormal DNA methylation, epigenetics, and prostate cancer.Front. Biosci.12 , 4254–4266 (2007).
  • Schulz WA , HatinaJ: Epigenetics of prostate cancer: beyond DNA methylation.J. Cell. Mol. Med.10(1) , 100–125 (2006).
  • Barski A , CuddapahS, CuiKet al.: High-resolution profiling of histone methylations in the human genome.Cell129(4) , 823–837 (2007).
  • Mikkelsen TS , KuM, JaffeDBet al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.Nature448(7153) , 553–560 (2007).
  • Wang Z , ZangC, RosenfeldJAet al.: Combinatorial patterns of histone acetylations and methylations in the human genome.Nat. Genet.40(7) , 897–903 (2008).
  • Lister R , PelizzolaM, DowenRHet al.: Human DNA methylomes at base resolution show widespread epigenomic differences.Nature462(7271) , 315–322 (2009).
  • Meissner A , MikkelsenTS, GuHet al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells.Nature454(7205) , 766–770 (2008).
  • Schones DE , CuiK, CuddapahSet al.: Dynamic regulation of nucleosome positioning in the human genome.Cell132(5) , 887–898 (2008).
  • Alekseyenko AA , PengS, LarschanEet al.: A sequence motif within chromatin entry sites directs msl establishment on the drosophila X chromosome.Cell134(4) , 599–609 (2008).
  • Sultan M , SchulzMH, RichardHet al.: A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome.Science321(5891) , 956–960 (2008).
  • Bammler T , BeyerRP, BhattacharyaSet al.: Standardizing global gene expression analysis between laboratories and across platforms.Nat. Methods2(5) , 351–356 (2005).
  • He HH , MeyerCA, ShinHet al.: Nucleosome dynamics define transcriptional enhancers.Nat. Genet.42(4) , 343–347 (2010).
  • Li H , RuanJ, DurbinR: Mapping short DNA sequencing reads and calling variants using mapping quality scores.Genome Res.18(11) , 1851–1858 (2008).
  • Zhang Y , LiuT, MeyerCAet al.: Model-based analysis of chip-seq (macs).Genome Biol.9(9) , R137 (2008).
  • Rozowsky J , EuskirchenG, AuerbachRKet al.: Peakseq enables systematic scoring of chip-seq experiments relative to controls.Nat. Biotechnol.27(1) , 66–75 (2009).
  • Hillier LW , MarthGT, QuinlanARet al.: Whole-genome sequencing and variant discovery in c. Elegans.Nat. Methods5(2) , 183–188 (2008).
  • Van Steensel B : Mapping of genetic and epigenetic regulatory networks using microarrays.Nat. Genet.37(Suppl.) , S18–S24 (2005).
  • Scacheri PC , DavisS, OdomDTet al.: Genome-wide analysis of menin binding provides insights into men1 tumorigenesis.PLoS Genet.2(4) , E51 (2006).
  • Yang A , ZhuZ, KapranovPet al.: Relationships between p63 binding, DNA sequence, transcription activity, and biological function in human cells.Mol. Cell24(4) , 593–602 (2006).
  • Krig SR , JinVX, BiedaMCet al.: Identification of genes directly regulated by the oncogene znf217 using chromatin immunoprecipitation (chip)–chip assays.J. Biol. Chem.282(13) , 9703–9712 (2007).
  • Martone R , EuskirchenG, BertonePet al.: Distribution of NF-kb-binding sites across human chromosome 22.Proc. Natl Acad. Sci. USA100(21) , 12247–12252 (2003).
  • Lieberman-Aiden E , Van Berkum NL, Williams L et al.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326(5950) , 289–293 (2009).
  • Fullwood MJ , LiuMH, PanYFet al.: An oestrogen-receptor-a-bound human chromatin interactome.Nature462(7269) , 58–64 (2009).
  • Kouzarides T : Chromatin modifications and their function.Cell128(4) , 693–705 (2007).
  • Martin C , ZhangY: The diverse functions of histone lysine methylation.Nat. Rev. Mol. Cell. Biol.6(11) , 838–849 (2005).
  • Struhl K : Histone acetylation and transcriptional regulatory mechanisms.Genes Dev.12(5) , 599–606 (1998).
  • Hu X , LazarMA: Transcriptional repression by nuclear hormone receptors.Trends Endocrinol. Metab.11(1) , 6–10 (2000).
  • Wang Q , CarrollJS, BrownM: Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking.Mol. Cell19(5) , 631–642 (2005).
  • Shang Y , MyersM, BrownM: Formation of the androgen receptor transcription complex.Mol. Cell9(3) , 601–610 (2002).
  • Kang Z , JanneOA, PalvimoJJ: Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor.Mol. Endocrinol.18(11) , 2633–2648 (2004).
  • Heemers HV , TindallDJ: Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the ar transcriptional complex.Endocr. Rev.28(7) , 778–808 (2007).
  • Yamane K , ToumazouC, TsukadaYet al.: JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor.Cell125(3) , 483–495 (2006).
  • Wissmann M , YinN, MullerJMet al.: Cooperative demethylation by JmjD2c and LSD1 promotes androgen receptor-dependent gene expression.Nat. Cell Biol.9(3) , 347–353 (2007).
  • Metzger E , WissmannM, YinNet al.: LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription.Nature437(7057) , 436–439 (2005).
  • Van Ree JH , JeganathanKB, MalureanuL, Van Deursen JM: Overexpression of the E2 ubiquitin-conjugating enzyme UBCH10 causes chromosome missegregation and tumor formation. J. Cell. Biol.188(1) , 83–100 (2010).
  • Wang Q , LiW, ZhangYet al.: Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer.Cell138(2) , 245–256 (2009).
  • Bernstein BE , MikkelsenTS, XieXet al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells.Cell125(2) , 315–326 (2006).
  • Roh TY , CuddapahS, CuiK, ZhaoK: The genomic landscape of histone modifications in human T cells.Proc. Natl Acad. Sci. USA103(43) , 15782–15787 (2006).
  • Wei G , WeiL, ZhuJet al.: Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells.Immunity30(1) , 155–167 (2009).
  • Ke XS , QuY, RostadKet al.: Genome-wide profiling of histone H3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis.PLoS One4(3) , E4687 (2009).
  • Schones DE , ZhaoK: Genome-wide approaches to studying chromatin modifications.Nat. Rev. Genet.9(3) , 179–191 (2008).
  • Wang Z , SchonesDE, ZhaoK: Characterization of human epigenomes.Curr. Opin. Genet. Dev.19(2) , 127–134 (2009).
  • Heintzman ND , StuartRK, HonGet al.: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.Nat. Genet.39(3) , 311–318 (2007).
  • Heintzman ND , HonGC, HawkinsRDet al.: Histone modifications at human enhancers reflect global cell-type-specific gene expression.Nature459(7243) , 108–112 (2009).
  • Yu J , YuJ, RhodesDRet al.: A polycomb repression signature in metastatic prostate cancer predicts cancer outcome.Cancer Res.67(22) , 10657–10663 (2007).
  • Kondo Y , ShenL, ChengASet al.: Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation.Nat. Genet.40(6) , 741–750 (2008).
  • Yu J , CaoQ, MehraRet al.: Integrative genomics analysis reveals silencing of β-adrenergic signaling by polycomb in prostate cancer.Cancer Cell12(5) , 419–431 (2007).
  • Cao R , ZhangY: The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3.Curr. Opin. Genet. Dev.14(2) , 155–164 (2004).
  • Bryant RJ , WinderSJ, CrossSS, HamdyFC, CunliffeVT: The polycomb group protein EZH2 regulates actin polymerization in human prostate cancer cells.Prostate68(3) , 255–263 (2008).
  • Varambally S , DhanasekaranSM, ZhouMet al.: The polycomb group protein EZH2 is involved in progression of prostate cancer.Nature419(6907) , 624–629 (2002).
  • Varambally S , CaoQ, ManiRSet al.: Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer.Science322(5908) , 1695–1699 (2008).
  • Seligson DB , HorvathS, ShiTet al.: Global histone modification patterns predict risk of prostate cancer recurrence.Nature435(7046) , 1262–1266 (2005).
  • Zhou LX , LiT, HuangYR, ShaJJ, SunP, LiD: Application of histone modification in the risk prediction of the biochemical recurrence after radical prostatectomy.Asian J. Androl.12(2) , 171–179 (2010).
  • Seligson DB , HorvathS, McbrianMAet al.: Global levels of histone modifications predict prognosis in different cancers.Am. J. Pathol.174(5) , 1619–1628 (2009).
  • Ellinger J , KahlP, Von Der Gathen J et al.: Global levels of histone modifications predict prostate cancer recurrence. Prostate70(1) , 61–69 (2010).
  • Henikoff S : Nucleosome destabilization in the epigenetic regulation of gene expression.Nat. Rev. Genet.9(1) , 15–26 (2008).
  • Ling JQ , HoffmanAR: Epigenetics of long-range chromatin interactions.Pediatr. Res.61(5 Pt 2) , 11R–16R (2007).
  • Lin JC , JeongS, LiangGet al.: Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island.Cancer Cell12(5) , 432–444 (2007).
  • Choi JK , BaeJB, LyuJ, KimTY, KimYJ: Nucleosome deposition and DNA methylation at coding region boundaries.Genome Biol.10(9) , R89 (2009).
  • Bondarenko VA , SteeleLM, UjvariAet al.: Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II.Mol. Cell24(3) , 469–479 (2006).
  • Kornblihtt AR : Chromatin, transcript elongation and alternative splicing.Nat. Struct. Mol. Biol.13(1) , 5–7 (2006).
  • Jia L , BermanBP, JariwalaUet al.: Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity.PLoS One3(11) , E3645 (2008).
  • Takayama K , KaneshiroK, TsutsumiSet al.: Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis.Oncogene26(30) , 4453–4463 (2007).
  • Wang Q , LiW, LiuXSet al.: A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth.Mol. Cell27(3) , 380–392 (2007).
  • Bolton EC , SoAY, ChaivorapolC, HaqqCM, LiH, YamamotoKR: Cell- and gene-specific regulation of primary target genes by the androgen receptor.Genes Dev.21(16) , 2005–2017 (2007).
  • Cairns BR : The logic of chromatin architecture and remodelling at promoters.Nature461(7261) , 193–198 (2009).
  • Gondor A , OhlssonR: Chromosome crosstalk in three dimensions.Nature461(7261) , 212–217 (2009).
  • Dekker J : Gene regulation in the third dimension.Science319(5871) , 1793–1794 (2008).
  • Li T , HuJF, QiuXet al.: CTCF regulates allelic expression of IGF2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop.Mol. Cell Biol.28(20) , 6473–6482 (2008).
  • Murrell A , HeesonS, ReikW: Interaction between differentially methylated regions partitions the imprinted genes IGF2 and H19 into parent-specific chromatin loops.Nat. Genet.36(8) , 889–893 (2004).
  • Kurukuti S , TiwariVK, TavoosidanaGet al.: CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to IGF2.Proc. Natl Acad. Sci. USA103(28) , 10684–10689 (2006).
  • Dekker J , RippeK, DekkerM, KlecknerN: Capturing chromosome conformation.Science295(5558) , 1306–1311 (2002).
  • Clark JP , CooperCS: ETS gene fusions in prostate cancer.Nat. Rev. Urol.6(8) , 429–439 (2009).
  • Kumar-Sinha C , TomlinsSA, ChinnaiyanAM: Recurrent gene fusions in prostate cancer.Nat. Rev. Cancer8(7) , 497–511 (2008).
  • Mani RS , TomlinsSA, CallahanKet al.: Induced chromosomal proximity and gene fusions in prostate cancer.Science326(5957) , 1230 (2009).
  • Lin C , YangL, TanasaBet al.: Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer.Cell139(6) , 1069–1083 (2009).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.