392
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Programming by Maternal Nutrition: Shaping Future Generations

, , &
Pages 539-549 | Published online: 05 Aug 2010

Bibliography

  • Hales CN , BarkerDJP, ClarkPMet al.: Fetal and infant growth and impaired glucose tolerance at age 64.BMJ303(6809) , 1019–1022 (1991).
  • Armitage JA , KhanIY, TaylorPD, NathanielszPW, PostonL: Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals?.J. Physiol.561 , 355–377 (2004).
  • Hales CN , BarkerDJP: The thrifty phenotype hypothesis.Br. Med. Bull.60 , 5–20 (2001).
  • Jones RH , OzanneSE: Fetal programming of glucose-insulin metabolism.Mol. Cell. Endocrinol.297 , 4–9 (2009).
  • McMillen IC , RobinsonJS: Developmental origins of the metabolic syndrome: prediction, plasticity, and programming.Physiol. Rev.85(2) , 571–633 (2005).
  • Lucas A , FewtrellMS, ColeTJ: Fetal origins of adult disease-the hypothesis revisited.BMJ319(7204) , 245–249 (1999).
  • Snoeck A , RemacleC, ReusensB, HoetJJ: Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas.Biol. Neonate57(2) , 107–118 (1990).
  • Garofano A , CzernichowP, BreantB: In utero undernutrition impairs rat β-cell development.Diabetologia40(10) , 1231–1234 (1997).
  • Petry CJ , DorlingMW, PawlakDB, OzanneSE, HalesCN: Diabetes in old male offspring of rat dams fed a reduced protein diet.Int. J. Exp. Diabetes Res.2(2) , 139–143 (2001).
  • Gardner DS , TingeyK, van Bon BW et al.: Programming of glucose-insulin metabolism in adult sheep after maternal undernutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol.289(4) , R947–R954 (2005).
  • Vickers MH , BreierBH, CutfieldWS, HofmanPL, GluckmanPD: Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition.Am. J. Physiol. Endocrinol. Metab.279(1) , 83–87 (2000).
  • Maloney CA , HaySM, ReesWD: The effects of feeding rats diets deficient in folic acid and related methyl donors on the blood pressure and glucose tolerance of the offspring.Br. J. Nutr.101(9) , 1333–1340 (2009).
  • Gambling L , MaloneyCA, AndersenHS, McArdleHJ: Maternal iron deficiency during pregnancy in the rat induces high blood pressure, obesity and dyslipidaemia in her offspring.Pediatr. Res.58(5) , 1024 (2005).
  • Gluckman PD , HansonMA: The developmental origins of the metabolic syndrome.Trends Endocrinol. Metab.15(4) , 183–187 (2004).
  • Ozanne SE , LewisR, JenningsBJ, HalesCN: Early programming of weight gain in mice prevents the induction of obesity by a highly palatable diet.Clin. Sci. (Lond).106(2) , 141–145 (2004).
  • Kouzarides T : Chromatin modifications and their function.Cell128(4) , 693–705 (2007).
  • Wigler M , LevyD, PeruchoM: The somatic replication of DNA methylation.Cell24 , 33–40 (1981).
  • Jones PA , LairdPW: Cancer epigenetics comes of age.Nat. Genet.21(2) , 163–167 (1999).
  • Suter CM , MartinDI, WardRL: Germline epimutation of MLH1 in individuals with multiple cancers.Nat. Genet.36(5) , 497–501 (2004).
  • Hitchins MP , WongJJ, SuthersGet al.: Inheritance of a cancer-associated MLH1 germ-line epimutation.N. Engl. J. Med.356(7) , 697–705 (2007).
  • Morak M , SchackertHK, RahnerNet al.: Further evidence for heritability of an epimutation in one of 12 cases with MLH1 promoter methylation in blood cells clinically displaying HNPCC.Eur. J. Hum. Genet.16(7) , 804–811 (2008).
  • Wilson VL , SmithRA, MaS, CutlerRG: Genomic 5-methyldeoxycytidine decreases with age.J. Biol. Chem.262 , 9948–9951 (1987).
  • Wilson VL , JonesPM: DNA methylation decreases in aging but not in immortal cells.Science220 , 1055–1057 (1983).
  • Fuke C , ShimabukuroM, PetronisAet al.: Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC study.Ann. Hum. Genet.68 , 196–204 (2004).
  • Wareham KA , LyonMF, GlenisterPH, WilliamsED: Age related reactivation of an X-linked gene.Nature327 , 725–727 (1987).
  • Bennett-Baker PE , WilkowskiJ, BurkeDT: Age-associated activation of epigenetically repressed genes in the mouse.Genetics165 , 2055–2062 (2003).
  • Barbot W , DupressoirA, LazarV, HeidmannT: Epigenetic regulation of an IAP retrotransposon in the aging mouse: progressive demethylation and de-silencing of the element by its repetitive induction.Nucleic Acids Res.30 , 2365–2373 (2002).
  • Calvanese V , LaraE, KahnA, FragaMF: The role of epigenetics in ageing and in age-related diseases.Ageing Res. Rev.8 , 268–276 (2009).
  • Fraga MF , BallestarE, PazMFet al.: Epigenetic differences arise during the lifetime of monozygotic twins.Proc. Natl Acad. Sci. USA102 , 10604–10609 (2005).
  • Reik W : Stability and flexibility of epigenetic gene regulation in mammalian development.Nature447 , 425–432 (2007).
  • Sinclair KD , McEnvoyTG, MaxfieldEKet al.: Aberrant fetal growth and development after in vitro culture of sheep zygotes.J. Reprod. Fertil.116 , 177–186 (1999).
  • Young LE , FernandesK, McEnvoyTGet al.: Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture.Nat. Genet.27 , 153–154 (2001).
  • Khosla S , DeanW, BrownD, ReikW, FeilR: Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.Biol. Reprod.64 , 918–926 (2001).
  • Doherty AS , MannMRW, TremblayKD, BartolomeiMS, SchultzRM: Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo.Biol. Reprod.62 , 1526–1535 (2000).
  • DeBaun MR , NiemitzEL, FeinbergAP: Association of in vitro fertilisation with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19.Am. J. Hum. Genet.72 , 156–160 (2003).
  • Giquel C , GastonV, MandelbaumJet al.: In vitro fertilisation may increase the risk of Beckith–Wiedemann Syndrome related to the abnormal imprinting of the KCNQ1OT gene.Am. J. Hum. Genet.72 , 1338–1341 (2003).
  • Cox GF , BürgerJ, LipVet al.: Intracytoplasmic sperm injection may increase the risk of imprinting defects.Am. J. Hum. Genet.71 , 162–164 (2002).
  • Ørstavik KH , EiklidK, van der Hagen CB et al.: Another case of imprinting defect in a girl with Angelman Syndrome who was conceived by intracytoplasmic sperm injection. Am. J. Hum. Genet.72 , 218–219 (2003).
  • Morgan HD , JinXL, LiA, WhitelawE, O‘NeillC: The culture of zygotes to the blastocyst stage changes the postnatal expression of the epigenetically labile allele, Agouti viable yellow, in mice.Biol. Reprod.79 , 618–623 (2008).
  • Kues WAS , SudheerS, CarnwathJW, HavlicekVet al.: Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo.Proc. Natl Acad. Sci. USA105 , 19768–19773 (2008).
  • Niemann H , CarnwathJW, HerrmannDet al.: DNA methylation patterns reflect epigenetic reprogramming in bovine embryos.Cell. Reprogram.12 , 33–42 (2010).
  • Cropley JE , SuterCM: An epigenetic basis for fetal programming.Highlights16(1) , 22–25 (2008).
  • Thompson RF , EinsteinFH: Epigenetic basis for fetal origins of age-related disease.J. Womens Health19 , 581–587 (2010).
  • Gluckman PD , HansonMA: Living with the past: evolution, development, and patterns of disease.Science305(5691) , 1733–1736 (2004).
  • Waterland RA , GarzaC: Potential mechanisms of metabolic imprinting that lead to chronic disease.Am. J. Clin. Nutr.69 , 179–197 (1999).
  • Martin DI , CropleyJE, SuterCM: Environmental influence on epigenetic inheritance at the Avy allele.Nutr. Rev.66(Suppl. 1) , S12–S14 (2008).
  • Wolff GL , KodellRL, MooreSR, CooneyCA: Maternal epigenetics and methyl supplements affect Agouti gene expression in Avy/a mice.FASEB J.12 , 949–957 (1998).
  • Waterland RA , JirtleRL: Transposable elements: targets for early nutritional effects on epigenetic gene regulation.Mol. Cell. Biol.23 , 5293–5300 (2003).
  • Cooney CA , DaveAA, WolffG L: Maternal methyl supplements in mice affect epigenetic variation and DNA methylation in offspring. J. Nutr.132 , 2393S–2400S (2002).
  • Cropley JE , SuterCM, BeckmanKB, MartinDIK: Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation.Proc. Natl Acad. Sci. USA103 , 17308–17312 (2006).
  • Anway MD , CuppAS, UzumcuM, SkinnerMK: Epigenetic transgenerational actions of endocrine disruptors and male fertility.Science308 , 1466–1469 (2005).
  • Pembrey ME , BygrenLO, KaatiGet al.: Sex-specific, male-line transgenerational responses in humans.Eur. J. Hum. Genet.14 , 159–166 (2006).
  • Zambrano E , Martinez-SamayoaPM, BautistaCJet al.: Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation.J. Physiol.566(Pt 1) , 225–236 (2005).
  • Tobi EW , LumeyLH, TalensRPet al.: DNA methylation differences after exposure to prenatal famine are common and timing- and sex specific.Hum. Mol. Genet.18 , 4046–4053 (2009).
  • Dolinoy DC , WeidmanJR, WaterlandRA, JirtleRL: Maternal genistein alters coat colour and protects Avy mouse offspring from obesity by modifying the fetal epigenome.Environ. Health Perspect.114 , 567–572 (2006).
  • Waterland RA , DolinoyDC, LinJRet al.: Maternal methyl supplements increase offspring DNA methylation at Axin Fused.Genesis44 , 401–406 (2006).
  • Lillycrop KA , PhillipsES, JacksonAA, HansonMA, BurdgeGC: Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring.J. Nutr.135 , 1382–1386 (2005).
  • Lillycrop KA , PhillipsES, TorrensCet al.: Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPARα promoter of the offspring.Br. J. Nutr.100 , 278–282 (2008).
  • Park JH , StoffersDA, NichollsRD, SimmonsRA: Development of Type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1.J. Clin. Invest.118 , 2316–2324 (2008).
  • Pham TD , MacLennanNK, ChiuCTet al.: Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term intrauterine growth restriction (IUGR) rat kidney.Am. J. Physiol. Regul. Integr. Comp. Physiol.285 , 962–970 (2003).
  • Nijland MJ , MitsuyaK, LiCet al.: Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability.J. Physiol.588(Pt 8) , 1349–1359 (2010).
  • Zhang S , RattanatrayZS, MaclaughlinSMet al.: Periconceptional undernutrition in normal and overweight ewes leads to increased adrenal growth and epigenetic changes in adrenal IGF2/H19 gene in offspring.FASEB J. (2010) (Epub ahead of print).
  • Lumey LH , SteinAD, KahnAet al.: Cohort profile: the Dutch Hunger Winter families study.Int. J. Epidemiol.36 , 1196–1204 (2007).
  • Heijmans BT , TobiEW, SteinADet al.: Persistent epigenetic differences associated with prenatal exposure to famine in humans.Proc. Natl Acad. Sci. USA105 , 17046–17049 (2008).
  • Gemma C , SookoianS, AlvariñasJet al.: Maternal pregestational BMI is associated with methylation of the PPARGC1A promoter in newborns.Obesity17 , 1032–1039 (2009).
  • Waddington CH : Canalization of development and the inheritance of acquired characters.Nature150 , 563–565 (1942).
  • Stöger R : The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes?.Bioessays30 , 156–166 (2008).
  • Einstein FH , ThompsonRF, BhagatTD, FazzariMJet al.: Cytosine methylation dysregulation in neonates following intrauterine growth restriction.PLoS ONE5 , e8887 (2010).
  • Thompson RF , FazzariMJ, NiuHet al.: Experimental IUGR induces alterations in DNA methylation and gene expression in pancreatic islets of rats.J. Biol. Chem.285(20) , 15111–15118 (2010).
  • Sinclair KD , AllegrucciC, SinghRet al.: DNA methylation, insulin resistance and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status.Proc. Natl Acad. Sci. USA104 , 19351–19356 (2007).
  • Mayer W , NiveleauA, WalterJ, FundeleR, HaafH: Demethylation of the zygotic paternal genome.Nature403 , 501–502 (2000).
  • Oswald J , EngemannS, LaneNet al.: Active demethylation of the paternal genome in the mouse zygote.Current Biology10 , 475–478 (2000).
  • Rougier N , Bourc‘hisD, GomesDet al.: Chromosome methylation patterns during mammalian preimplantation development.Genes Dev.12 , 2108–2113 (1998).
  • Carlson LL , PageAW, BestorTH: Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting.Genes Dev.6 , 2536–2541 (1992).
  • Santos F , HendrichB, ReikW, DeanW: Dynamic reprogramming of DNA methylation in the early mouse embryo.Dev. Biol.241 , 172–182 (2002).
  • Morgan HD , SantosF, GreenK, DeanW, ReikW: Epigenetic reprogramming in mammals.Hum. Mol. Genet.14 , R47–R58 (2005).
  • Hemberger M , DeanW, ReikW: Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington‘s canal.Nat. Rev. Mol. Cell Biol.10 , 526–537 (2009).
  • Gehring M , ReikW, HenikoffS: DNA demethylation by DNA repair.Trends Genet.25 , 82–90 (2009).
  • Tremblay KD , DuranKL, BartolomeiMS: A 5´ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development.Mol. Cell. Biol.17 , 4322–4329 (1997).
  • Seki Y , HayashiK, ItohKet al.: Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice.Dev. Biol.278 , 440–458 (2005).
  • Seki Y , YamajiM, YabutaYet al.: Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells.Development134 , 2627–2638 (2007).
  • Hajkova P , ErhardtS, LaneNet al.: Epigenetic reprogramming in mouse primordial germ cells.Mech. Dev.117 , 15–23 (2002).
  • Hajkova P , AncelinK, WaldmannTet al.: Chromatin dynamics during epigenetic reprogramming in the mouse germ line.Nature452 , 877–881 (2008).
  • Lane N , DeanW, ErhardtSet al.: Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance.Genesis35 , 88–93 (2003).
  • Monk M : Epigenetic programming of differential gene expression in development and evolution.Dev. Genet.17 , 188–197 (1995).
  • Yoder JA , WalshCP, BestorTH: Cytosine methylation and the ecology of intragenomic parasites.Trends Genet.13 , 335–340 (1997).
  • Dickies M : A new viable yellow mutation in the house mouse.J. Hered.53 , 84–86 (1962).
  • Furamura M , SakaiC, Abdel-MalekZ, BarshGS, HearingVJ: The interaction of Agouti signal protein and melanocyte stimulating hormone to regulate melanin formation in mammals.Pigment Cell Res.9 , 191–203 (1996).
  • Duhl DM , VrielingH, MillerKA, WolffGL, BarshGS: Neomorphic Agouti mutations in obese yellow mice.Nat. Genet.8 , 59–65 (1994).
  • Wolff GL : Body composition and coat colour correlation in different phenotypes of ‘viable yellow‘ mice.Science147 , 1145–1147 (1965).
  • Wolff GL : Obesity, diabetes and neoplasia in yellow A(vy)/- mice: ectopic expression of the Agouti gene.FASEB J.8 , 479–488 (1994).
  • Morgan HD , SutherlandHG, MartinDIK, WhitelawE: Epigenetic inheritance at the Agouti locus in the mouse.Nat. Genet.23 , 314–318 (1999).
  • Cropley JE , SuterCM, BeckmanKB, MartinDI: CpG methylation of a silent controlling element in the murine Avy allele is incomplete and unresponsive to methyl donor supplementation.PLoS ONE5 , E9055 (2010).
  • Wolff GL : Influence of the maternal phenotype on metabolic differentiation of Agouti locus mutants in the mouse.Genetics88 , 529–539 (1978).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.