349
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Architecture and miRNA: Reciprocal Regulators

, &
Pages 823-840 | Published online: 15 Dec 2010

Bibliography

  • Berger SL , KouzaridesT, ShiekhattarR, ShilatifardA: An operational definition of epigenetics.Genes Dev.23(7) , 781–783 (2009).
  • Jones PA , LairdPW: Cancer epigenetics comes of age.Nat. Genet.21(2) , 163–167 (1999).
  • Gronbaek K , HotherC, JonesPA: Epigenetic changes in cancer.APMIS115(10) , 1039–1059 (2007).
  • Sharma S , KellyTK, JonesPA: Epigenetics in cancer.Carcinogenesis31(1) , 27–36 (2010).
  • No authors listed. Time for the epigenome. Nature463(7281) , 587 (2010).
  • Wilson AS , PowerBE, MolloyPL: DNA hypomethylation and human diseases.Biochim. Biophys. Acta1775(1) , 138–162 (2007).
  • Ross JP , RandKN, MolloyPL: Hypomethylation of repeated DNA sequences in cancer.Epigenomics2(2) , 245–269 (2010).
  • Clark SJ , StathamA, StirzakerC, MolloyPL, FrommerM: DNA methylation: bisulphite modification and analysis.Nat. Protoc.1(5) , 2353–2364 (2006).
  • Laird PW : Principles and challenges of genome-wide DNA methylation analysis.Nat. Rev. Genet.11(3) , 191–203 (2010).
  • Baylin S , BestorTH: Altered methylation patterns in cancer cell genomes: cause or consequence?Cancer Cell1(4) , 299–305 (2002).
  • Clark SJ , MelkiJ: DNA methylation and gene silencing in cancer: which is the guilty party?Oncogene21(35) , 5380–5387 (2002).
  • Wilhelm BT , MargueratS, WattS et al.: Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution.Nature453(7199) , 1239–1243 (2008).
  • Preker P , NielsenJ, KammlerS et al.: RNA exosome depletion reveals transcription upstream of active human promoters.Science322(5909) , 1851–1854 (2008).
  • Seila AC , CalabreseJM, LevineSS et al.: Divergent transcription from active promoters.Science322(5909) , 1849–1851 (2008).
  • Mercer TR , DingerME, MattickJS: Long non-coding RNAs: insights into functions.Nat. Rev. Genet.10(3) , 155–159 (2009).
  • Costa FF : Non-coding RNAs: meet thy masters.Bioessays32(7) , 599–608 (2010).
  • Grewal SI , JiaS: Heterochromatin revisited.Nat. Rev. Genet.8(1) , 35–46 (2007).
  • Grewal SI : RNAi-dependent formation of heterochromatin and its diverse functions.Curr. Opin. Genet. Dev.20(2) , 134–141 (2010).
  • Brennecke J , MaloneCD, AravinAA, SachidanandamR, StarkA, HannonGJ: An epigenetic role for maternally inherited piRNAs in transposon silencing.Science322(5906) , 1387–1392 (2008).
  • Kuramochi-Miyagawa S , WatanabeT, GotohK et al.: DNA methylation of retrotransposon genes is regulated by PIWI family members MILI and MIWI2 in murine fetal testes.Genes Dev.22(7) , 908–917 (2008).
  • Morris KV , SantosoS, TurnerAM, PastoriC, HawkinsPG: Bidirectional transcription directs both transcriptional gene activation and suppression in human cells.PLoS Genet.4(11) , E1000258 (2008).
  • Han J , KimD, MorrisKV: Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells.Proc. Natl Acad. Sci. USA104(30) , 12422–12427 (2007).
  • Bartel DP : MicroRNAs: genomics, biogenesis, mechanism, and function.Cell116(2) , 281–297 (2004).
  • Guil S , EstellerM: DNA methylomes, histone codes and miRNAs: tying it all together.Int. J. Biochem. Cell. Biol.41(1) , 87–95 (2009).
  • Mallanna SK , RizzinoA: Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells.Dev. Biol.344(1) , 16–25 (2010).
  • Brennecke J , StarkA, RussellRB, CohenSM: Principles of microRNA-target recognition.PLoS Biol.3(3) , E85 (2005).
  • Asli NS , PitulescuME, KesselM: MicroRNAs in organogenesis and disease.Curr. Mol. Med.8(8) , 698–710 (2008).
  • Weber B , StresemannC, BruecknerB, LykoF: Methylation of human microRNA genes in normal and neoplastic cells.Cell Cycle6(9) , 1001–1005 (2007).
  • Newman MA , HammondSM: Emerging paradigms of regulated microRNA processing.Genes Dev.24(11) , 1086–1092 (2010).
  • Yang N , CoukosG, ZhangL: MicroRNA epigenetic alterations in human cancer: one step forward in diagnosis and treatment.Int. J. Cancer122(5) , 963–968 (2008).
  • Siomi H , SiomiMC: Posttranscriptional regulation of microRNA biogenesis in animals.Mol. Cell38(3) , 323–332 (2010).
  • Barski A , JothiR, CuddapahS et al.: Chromatin poises miRNA- and protein-coding genes for expression.Genome Res.19(10) , 1742–1751 (2009).
  • Ozsolak F , PolingLL, WangZ et al.: Chromatin structure analyses identify miRNA promoters.Genes Dev.22(22) , 3172–3183 (2008).
  • Corcoran DL , PanditKV, GordonB, BhattacharjeeA, KaminskiN, BenosPV: Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data.PLoS One4(4) , E5279 (2009).
  • Kanwar JR , MahidharaG, KanwarRK: MicroRNA in human cancer and chronic inflammatory diseases.Front. Biosci. (Schol. Ed.)2 , 1113–1126 (2010).
  • Wang Y , KeysDN, Au-YoungJK, ChenC: MicroRNAs in embryonic stem cells.J. Cell. Physiol.218(2) , 251–255 (2009).
  • Griffiths-Jones S , SainiHK, Van Dongen S, Enright AJ: MiRBase: tools for microRNA genomics. Nucleic Acids Res.36(Database issue) , D154–D158 (2008).
  • Mitchell PS , ParkinRK, KrohEM et al.: Circulating microRNAs as stable blood-based markers for cancer detection.Proc. Natl Acad. Sci. USA105(30) , 10513–10518 (2008).
  • Slack FJ , WeidhaasJB: MicroRNAs as a potential magic bullet in cancer.Future Oncol.2(1) , 73–82 (2006).
  • Esquela-Kerscher A , SlackFJ: Oncomirs – microRNAs with a role in cancer.Nat. Rev. Cancer6(4) , 259–269 (2006).
  • Calin GA , SevignaniC, DumitruCD et al.: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.Proc. Natl Acad. Sci. USA101(9) , 2999–3004 (2004).
  • Ryan BM , RoblesAI, HarrisCC: Genetic variation in microRNA networks: the implications for cancer research.Nat. Rev. Cancer10(6) , 389–402 (2010).
  • Chang TC , YuD, LeeYS et al.: Widespread microRNA repression by myc contributes to tumorigenesis.Nat. Genet.40(1) , 43–50 (2008).
  • Burk U , SchubertJ, WellnerU et al.: A reciprocal repression between ZEB1 and members of the miR-200 family promotes Emt and invasion in cancer cells.EMBO Rep.9(6) , 582–589 (2008).
  • Ma L , Teruya-FeldsteinJ, WeinbergRA: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer.Nature449(7163) , 682–688 (2007).
  • Lee YB , BantounasI, LeeDY, PhylactouL, CaldwellMA, UneyJB: Twist-1 regulates the miR-199a/214 cluster during development.Nucleic Acids Res.37(1) , 123–128 (2009).
  • Cao P , DengZ, WanM et al.: MicroRNA-101 negatively regulates EZH2 and its expression is modulated by androgen receptor and HIF-1α/HIF-1β.Mol. Cancer9 , 108 (2010).
  • He L , HeX, LimLP et al.: A microRNA component of the p53 tumour suppressor network.Nature447(7148) , 1130–1134 (2007).
  • Emmrich S , PutzerBM: Checks and balances: E2f-microRNA crosstalk in cancer control.Cell Cycle9 , 13 (2010).
  • Pulikkan JA , DenglerV, PeramangalamPS et al.: Cell-cycle regulator e2f1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia.Blood115(9) , 1768–1778 (2010).
  • Davalos V , EstellerM: MicroRNAs and cancer epigenetics: a macrorevolution.Curr. Opin. Oncol.22(1) , 35–45 (2010).
  • Suzuki HI , YamagataK, SugimotoK, IwamotoT, KatoS, MiyazonoK: Modulation of microRNA processing by p53.Nature460(7254) , 529–533 (2009).
  • Kuchen S , ReschW, YamaneA et al.: Regulation of microRNA expression and abundance during lymphopoiesis.Immunity32 , 1–12 (2010).
  • Ku M , KocheRP, RheinbayE et al.: Genomewide analysis of prc1 and prc2 occupancy identifies two classes of bivalent domains.PLoS Genet.4(10) , E1000242 (2008).
  • Morlando M , BallarinoM, GromakN, PaganoF, BozzoniI, ProudfootNJ: Primary microRNA transcripts are processed co-transcriptionally.Nat. Struct. Mol. Biol.15(9) , 902–909 (2008).
  • Iorio MV , PiovanC, CroceCM: Interplay between microRNAs and the epigenetic machinery: an intricate network.Biochim. Biophys. Acta (doi: 10.1016/j.bbagrm.2010.05.005 (2010) (Epub ahead of print).
  • Saito Y , LiangG, EggerG et al.: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells.Cancer Cell9(6) , 435–443 (2006).
  • Datta J , KutayH, NasserMW et al.: Methylation mediated silencing of microRNA-1 gene and its role in hepatocellular carcinogenesis.Cancer Res.68(13) , 5049–5058 (2008).
  • Saito Y , SuzukiH, TsugawaH et al.: Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512–5p with downregulation of Mcl-1 in human gastric cancer cells.Oncogene28(30) , 2738–2744 (2009).
  • Brueckner B , StresemannC, KunerR et al.: The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function.Cancer Res.67(4) , 1419–1423 (2007).
  • Lujambio A , RoperoS, BallestarE et al.: Genetic unmasking of an epigenetically silenced microRNA in human cancer cells.Cancer Res.67(4) , 1424–1429 (2007).
  • Szulwach KE , LiX, SmrtRD et al.: Cross talk between microRNA and epigenetic regulation in adult neurogenesis.J. Cell Biol.189(1) , 127–141 (2010).
  • Klein ME , LioyDT, MaL, ImpeyS, MandelG, GoodmanRH: Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA.Nat. Neurosci.10(12) , 1513–1514 (2007).
  • Nomura T , KimuraM, HoriiT et al.: MeCP2-dependent repression of an imprinted miR-184 released by depolarization.Hum. Mol. Genet.17(8) , 1192–1199 (2008).
  • Bueno MJ , Perez De Castro I, Gomez De Cedron M et al.: Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR–ABL1 oncogene expression. Cancer Cell13(6) , 496–506 (2008).
  • Wiklund ED , BramsenJB, HulfT et al.: Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer.Int. J. Cancer (doi: 10.1002/ijc.25461 (2010) (Epub ahead of print).
  • Langevin SM , StoneRA, BunkerCH, GrandisJR, SobolRW, TaioliE: MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index.Carcinogenesis31(5) , 864–870 (2010).
  • Corney DC , HwangCI, MatosoA et al.: Frequent downregulation of miR-34 family in human ovarian cancers.Clin. Cancer Res.16(4) , 1119–1128 (2010).
  • Hsu PY , Deatherage De, Rodriguez BA et al.: Xenoestrogen-induced epigenetic repression of microRNA-9–3 in breast epithelial cells. Cancer Res.69(14) , 5936–5945 (2009).
  • Lu L , KatsarosD, De La Longrais IA, Sochirca O, Yu H: Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res.67(21) , 10117–10122 (2007).
  • Bandres E , AgirreX, BitarteN et al.: Epigenetic regulation of microRNA expression in colorectal cancer.Int. J. Cancer125(11) , 2737–2743 (2009).
  • Huang YW , LiuJC, DeatherageDE et al.: Epigenetic repression of microRNA-129–2 leads to overexpression of sox4 oncogene in endometrial cancer.Cancer Res.69(23) , 9038–9046 (2009).
  • Hanoun N , DelpuY, SuriawinataAA et al.: The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis.Clin. Chem.56(7) , 1107–1118 (2010).
  • Lehmann U , HasemeierB, ChristgenM et al.: Epigenetic inactivation of microRNA gene HSA-miR-9–1 in human breast cancer.J. Pathol.214(1) , 17–24 (2008).
  • Kozaki K , ImotoI, MogiS, OmuraK, InazawaJ: Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer.Cancer Res.68(7) , 2094–2105 (2008).
  • Roman-Gomez J , AgirreX, Jimenez-VelascoA et al.: Epigenetic regulation of microRNAs in acute lymphoblastic leukemia.J. Clin. Oncol.27(8) , 1316–1322 (2009).
  • Lujambio A , CalinGA, VillanuevaA et al.: A microRNA DNA methylation signature for human cancer metastasis.Proc. Natl Acad. Sci. USA105(36) , 13556–13561 (2008).
  • Iorio MV , VisoneR, Di Leva G et al.: MicroRNA signatures in human ovarian cancer. Cancer Res.67(18) , 8699–8707 (2007).
  • Agirre X , Vilas-ZornozaA, Jimenez-VelascoA et al.: Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates cdk6 expression and confers a poor prognosis in acute lymphoblastic leukemia.Cancer Res.69(10) , 4443–4453 (2009).
  • Toyota M , SuzukiH, SasakiY et al.: Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer.Cancer Res.68(11) , 4123–4132 (2008).
  • Tsai KW , HuLY, WuCW et al.: Epigenetic regulation of miR-196b expression in gastric cancer.Genes Chromosomes Cancer49(11) , 969–980 (2010).
  • Li A , OmuraN, HongSM et al.: Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels.Cancer Res.70(13) , 5226–5237 (2010).
  • Gregory PA , BertAG, PatersonEL et al.: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.Nat. Cell Biol.10(5) , 593–601 (2008).
  • Park SM , GaurAB, LengyelE, PeterME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2.Genes Dev.22(7) , 894–907 (2008).
  • Shimono Y , ZabalaM, ChoRW et al.: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells.Cell138(3) , 592–603 (2009).
  • Wellner U , SchubertJ, BurkUC et al.: The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs.Nat. Cell Biol.11(12) , 1487–1495 (2009).
  • Peter ME : Let-7 and miR-200 microRNAs: Guardians against pluripotency and cancer progression.Cell Cycle8(6) , 843–852 (2009).
  • Zhang Q , WangHY, MarzecM, RaghunathPN, NagasawaT, WasikMA: Stat3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes.Proc. Natl Acad. Sci. USA102(19) , 6948–6953 (2005).
  • Brenner C , DeplusR, DidelotC et al.: Myc represses transcription through recruitment of DNA methyltransferase corepressor.EMBO J.24(2) , 336–346 (2005).
  • Di C roce L, Raker VA, Corsaro M et al.: Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science295(5557) , 1079–1082 (2002).
  • Fazi F , RacanicchiS, ZardoG et al.: Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein.Cancer Cell12(5) , 457–466 (2007).
  • Collas P : The current state of chromatin immunoprecipitation.Mol. Biotechnol.45(1) , 87–100 (2010).
  • Lujambio A , EstellerM: CpG island hypermethylation of tumor suppressor microRNAs in human cancer.Cell Cycle6(12) , 1455–1459 (2007).
  • Coolen MW , StathamAL, Gardiner-GardenM, ClarkSJ: Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements.Nucleic Acids Res.35(18) , E119 (2007).
  • Vrba L , JensenTJ, GarbeJC et al.: Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells.PLoS One5(1) , E8697 (2010).
  • Robinson M , StathamAL, StirzakerC, SpeedTP, ClarkSJ: Protocol matters: which methylome are you actually studying?Epigenomics2 , 587–598 (2010).
  • Lister R , O‘MalleyRC, Tonti-FilippiniJ et al.: Highly integrated single-base resolution maps of the epigenome in arabidopsis.Cell133(3) , 523–536 (2008).
  • Meissner A , MikkelsenTS, GuH et al.: Genome-scale DNA methylation maps of pluripotent and differentiated cells.Nature454(7205) , 766–770 (2008).
  • Lister R , PelizzolaM, DowenRH et al.: Human DNA methylomes at base resolution show widespread epigenomic differences.Nature462(7271) , 315–322 (2009).
  • Laurent L , WongE, LiG et al.: Dynamic changes in the human methylome during differentiation.Genome Res.20(3) , 320–331 (2010).
  • Flusberg BA , WebsterDR, LeeJH et al.: Direct detection of DNA methylation during single-molecule, real-time sequencing.Nat. Methods7(6) , 461–465 (2010).
  • Robinson MD , StathamAL, SpeedTP, ClarkSJ: Protocol matters: which methylome are you actually studying?Epigenomics2(4) , 587–598 (2010).
  • Fabbri M , GarzonR, CimminoA et al.: MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3a and 3b.Proc. Natl Acad. Sci. USA104(40) , 15805–15810 (2007).
  • Garzon R , LiuS, FabbriM et al.: MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3a and 3b and indirectly DNMT1.Blood113(25) , 6411–6418 (2009).
  • Ng EK , TsangWP, NgSS et al.: MicroRNA-143 targets DNA methyltransferases 3a in colorectal cancer.Br. J. Cancer101(4) , 699–706 (2009).
  • Duursma AM , KeddeM, SchrierM, Le Sage C, Agami R: Mir-148 targets human DNMT3b protein coding region. RNA14(5) , 872–877 (2008).
  • Braconi C , HuangN, PatelT: MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes.Hepatology51(3) , 881–890 (2010).
  • Ostenfeld MS , BramsenJB, LamyP et al.: Mir-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in TA bladder tumors.Oncogene29(7) , 1073–1084 (2010).
  • Akao Y , NakagawaY, KitadeY, KinoshitaT, NaoeT: Downregulation of microRNAs-143 and -145 in B-cell malignancies.Cancer Sci.98(12) , 1914–1920 (2007).
  • Girault I , TozluS, LidereauR, BiecheI: Expression analysis of DNA methyltransferases 1, 3a, and 3b in sporadic breast carcinomas.Clin. Cancer Res.9(12) , 4415–4422 (2003).
  • Sinkkonen L , HugenschmidtT, BerningerP et al.: MicroRNAs controlde novo (dNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol.15(3) , 259–267 (2008).
  • Varambally S , CaoQ, ManiRS et al.: Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer.Science322(5908) , 1695–1699 (2008).
  • Friedman JM , LiangG, LiuCC et al.: The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2.Cancer Res.69(6) , 2623–2629 (2009).
  • Wong CF , TellamRL: MicroRNA-26a targets the histone methyltransferase enhancer of zeste homolog 2 during myogenesis.J. Biol. Chem.283(15) , 9836–9843 (2008).
  • Tamminga J , KathiriaP, KoturbashI, KovalchukO: DNA damage-induced upregulation of miR-709 in the germline downregulates boris to counteract aberrant DNA hypomethylation.Cell Cycle7(23) , 3731–3736 (2008).
  • Chen JF , MandelEM, ThomsonJM et al.: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation.Nat. Genet.38(2) , 228–233 (2006).
  • Noonan EJ , PlaceRF, PookotD et al.: miR-449a targets HDAC-1 and induces growth arrest in prostate cancer.Oncogene28(14) , 1714–1724 (2009).
  • Orom UA , LundAH: Experimental identification of microRNA targets.Gene451(1–2) , 1–5 (2010).
  • Matzke MA , BirchlerJA: RNAi-mediated pathways in the nucleus.Nat. Rev. Genet.6(1) , 24–35 (2005).
  • Suzuki K , KelleherAD: Transcriptional regulation by promoter targeted RNAs.Curr. Top. Med. Chem.9(12) , 1079–1087 (2009).
  • Wassenegger M , HeimesS, RiedelL, SangerHL: RNA-directed de novo methylation of genomic sequences in plants.Cell76(3) , 567–576 (1994).
  • Molnar A , MelnykCW, BassettA, HardcastleTJ, DunnR, BaulcombeDC: Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells.Science328(5980) , 872–875 (2010).
  • Wassenegger M : RNA-directed DNA methylation.Plant Mol. Biol.43(2–3) , 203–220 (2000).
  • Aufsatz W , MetteMF, Van Der Winden J, Matzke AJ, Matzke M: RNA-directed DNA methylation in Arabidopsis. Proc. Natl Acad. Sci. USA99(Suppl. 4) , 16499–16506 (2002).
  • Jones L , HamiltonAJ, VoinnetO, ThomasCL, MauleAJ, BaulcombeDC: RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing.Plant Cell11(12) , 2291–2301 (1999).
  • Mette MF , AufsatzW, Van Der Winden J, Matzke MA, Matzke AJ: Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J.19(19) , 5194–5201 (2000).
  • Huettel B , KannoT, DaxingerL et al.: RNA-directed DNA methylation mediated by DRD1 and Pol IVb: A versatile pathway for transcriptional gene silencing in plants.Biochim. Biophys. Acta1769(5–6) , 358–374 (2007).
  • Wu L , ZhouH, ZhangQ et al.: DNA methylation mediated by a microRNA pathway.Mol. Cell38(3) , 465–475 (2010).
  • Khraiwesh B , ArifMA, SeumelGI et al.: Transcriptional control of gene expression by microRNAs.Cell140(1) , 111–122 (2010).
  • Verdel A , JiaS, GerberS et al.: RNAi-mediated targeting of heterochromatin by the RITS complex.Science303(5658) , 672–676 (2004).
  • Malecova B , MorrisKV: Transcriptional gene silencing through epigenetic changes mediated by non-coding RNAs.Curr. Opin. Mol. Ther.12(2) , 214–222 (2010).
  • Ting AH , SchuebelKE, HermanJG, BaylinSB: Short double-stranded RNA induces transcriptional gene silencing in human cancer cells in the absence of DNA methylation.Nat. Genet.37(8) , 906–910 (2005).
  • Weinberg MS , VilleneuveLM, EhsaniA et al.: The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells.RNA12(2) , 256–262 (2006).
  • Gonzalez S , PisanoDG, SerranoM: Mechanistic principles of chromatin remodeling guided by siRNAs and miRNAs.Cell Cycle7(16) , 2601–2608 (2008).
  • Kim DH , VilleneuveLM, MorrisKV, RossiJJ: Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells.Nat. Struct. Mol. Biol.13(9) , 793–797 (2006).
  • Janowski BA , HuffmanKE, SchwartzJC et al.: Inhibiting gene expression at transcription start sites in chromosomal DNA with antigene RNAs.Nat. Chem. Biol.1(4) , 216–222 (2005).
  • Morris KV , ChanSW, JacobsenSE, LooneyDJ: Small interfering RNA-induced transcriptional gene silencing in human cells.Science305(5688) , 1289–1292 (2004).
  • Hawkins PG , SantosoS, AdamsC, AnestV, MorrisKV: Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells.Nucleic Acids Res.37(9) , 2984–2995 (2009).
  • Janowski BA , HuffmanKE, SchwartzJC et al.: Involvement of AGO1 and AGO2 in mammalian transcriptional silencing.Nat. Struct. Mol. Biol.13(9) , 787–792 (2006).
  • Fuks F , BurgersWA, GodinN, KasaiM, KouzaridesT: DNMT3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription.EMBO J.20(10) , 2536–2544 (2001).
  • Vire E , BrennerC, DeplusR et al.: The polycomb group protein EZH2 directly controls DNA methylation.Nature439(7078) , 871–874 (2006).
  • Kim DH , SaetromP, SnoveO Jr, Rossi JJ: MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc. Natl Acad. Sci. USA105(42) , 16230–16235 (2008).
  • Vasudevan S , TongY, SteitzJA: Switching from repression to activation: MicroRNAs can up-regulate translation.Science318(5858) , 1931–1934 (2007).
  • Li LC , OkinoST, ZhaoH et al.: Small dsRNAs induce transcriptional activation in human cells.Proc. Natl Acad. Sci. USA103(46) , 17337–17342 (2006).
  • Janowski BA , YoungerST, HardyDB, RamR, HuffmanKE, CoreyDR: Activating gene expression in mammalian cells with promoter-targeted duplex RNAs.Nat. Chem. Biol.3(3) , 166–173 (2007).
  • Place RF , LiLC, PookotD, NoonanEJ, DahiyaR: MicroRNA-373 induces expression of genes with complementary promoter sequences.Proc. Natl Acad. Sci. USA105(5) , 1608–1613 (2008).
  • Schwartz JC , YoungerST, NguyenNB et al.: Antisense transcripts are targets for activating small RNAs.Nat. Struct. Mol. Biol.15(8) , 842–848 (2008).
  • Morin RD , O‘ConnorMD, GriffithM et al.: Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells.Genome Res.18(4) , 610–621 (2008).
  • Yu W , GiusD, OnyangoP et al.: Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA.Nature451(7175) , 202–206 (2008).
  • Allo M , BuggianoV, FededaJP et al.: Control of alternative splicing through siRNA-mediated transcriptional gene silencing.Nat. Struct. Mol. Biol.16(7) , 717–724 (2009).
  • Budhu A , JiaHL, ForguesM et al.: Identification of metastasis-related microRNAs in hepatocellular carcinoma.Hepatology47(3) , 897–907 (2008).
  • Gottardo F , LiuCG, FerracinM et al.: Micro-RNA profiling in kidney and bladder cancers.Urol. Oncol.25(5) , 387–392 (2007).
  • Baffa R , FassanM, VoliniaS et al.: MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets.J. Pathol.219(2) , 214–221 (2009).
  • Schetter AJ , LeungSY, SohnJJ et al.: MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma.JAMA299(4) , 425–436 (2008).
  • Raponi M , DosseyL, JatkoeT et al.: MicroRNA classifiers for predicting prognosis of squamous cell lung cancer.Cancer Res.69(14) , 5776–5783 (2009).
  • Mi S , LuJ, SunM et al.: MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia.Proc. Natl Acad. Sci. USA104(50) , 19971–19976 (2007).
  • Hummel R , HusseyDJ, HaierJ: MicroRNAs: Predictors and modifiers of chemo- and radiotherapy in different tumour types.Eur. J. Cancer46(2) , 298–311 (2010).
  • Brase JC , JohannesM, SchlommT et al.: Circulating miRNAs are correlated with tumor progression in prostate cancer.Int. J. Cancer (doi: 10.1002/ijc.25376 (2010) (Epub ahead of print).
  • Ferracin M , VeroneseA, NegriniM: Micromarkers: MiRNAs in cancer diagnosis and prognosis.Expert Rev. Mol. Diagn.10(3) , 297–308 (2010).
  • Lodes MJ , CaraballoM, SuciuD, MunroS, KumarA, AndersonB: Detection of cancer with serum miRNAs on an oligonucleotide microarray.PLoS ONE4(7) , E6229 (2009).
  • Xie Y , ToddNW, LiuZ et al.: Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer.Lung Cancer67(2) , 170–176 (2010).
  • Tanaka M , OikawaK, TakanashiM et al.: Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients.PLoS One4(5) , E5532 (2009).
  • Castanotto D , RossiJJ: The promises and pitfalls of RNA-interference-based therapeutics.Nature457(7228) , 426–433 (2009).
  • Elmen J , LindowM, SchutzS et al.: LNA-mediated microRNA silencing in non-human primates.Nature452(7189) , 896–899 (2008).
  • Lanford RE , Hildebrandt-EriksenES, PetriA et al.: Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.Science327(5962) , 198–201 (2010).
  • Davis ME , ZuckermanJE, ChoiCH et al.: Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles.Nature464(7291) , 1067–1070 (2010).
  • Lu Y , XiaoJ, LinH et al.: A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference.Nucleic Acids Res.37(3) , E24 (2009).
  • Cortez CC , JonesPA: Chromatin, cancer and drug therapies.Mutat. Res.647(1–2) , 44–51 (2008).
  • Yamagishi M , IshidaT, MiyakeA et al.: Retroviral delivery of promoter-targeted shRNA induces long-term silencing of HIV-1 transcription.Microbes Infect.11(4) , 500–508 (2009).
  • Viswanathan SR , DaleyGQ, GregoryRI: Selective blockade of microRNA processing by Lin28.Science320(5872) , 97–100 (2008).
  • Lee YS , DuttaA: The tumor suppressor microRNA let-7 represses the HMGA2 oncogene.Genes Dev.21(9) , 1025–1030 (2007).
  • Guo LM , PuY, HanZ et al.: MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-κB1.FEBS J.276(19) , 5537–5546 (2009).
  • Huse JT , BrennanC, HambardzumyanD et al.: The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo.Genes Dev.23(11) , 1327–1337 (2009).
  • Zhang X , LiuS, HuT, HeY, SunS: Up-regulated microRNA-143 transcribed by nuclear factor κB enhances hepatocarcinoma metastasis by repressing fibronectin expression.Hepatology50(2) , 490–499 (2009).
  • Zaman MS , ChenY, DengG et al.: The functional significance of microRNA-145 in prostate cancer.Br. J. Cancer103(2) , 256–264 (2010).
  • Pan W , ZhuS, YuanM et al.: MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ t cells by directly and indirectly targeting DNA methyltransferase 1.J. Immunol.184(12) , 6773–6781 (2010).
  • Hashimoto Y , AkiyamaY, OtsuboT, ShimadaS, YuasaY: Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis.Carcinogenesis31(5) , 777–784 (2010).
  • Popovic R , RiesbeckLE, VeluCS et al.: Regulation of miR-196b by MLL and its overexpression by MLL fusions contributes to immortalization.Blood113(14) , 3314–3322 (2009).
  • Song H , BuG: MicroRNA-205 inhibits tumor cell migration through down-regulating the expression of the LDL receptor-related protein 1.Biochem. Biophys. Res. Commun.388(2) , 400–405 (2009).
  • Iorio MV , CasaliniP, PiovanC et al.: microRNA-205 regulates HER3 in human breast cancer.Cancer Res.69(6) , 2195–2200 (2009).
  • Mouillet JF , ChuT, NelsonDM, MishimaT, SadovskyY: Mir-205 silences MED1 in hypoxic primary human trophoblasts.FASEB J.24(6) , 2030–2039 (2010).
  • Sun G , LiH, RossiJJ: Sequence context outside the target region influences the effectiveness of miR-223 target sites in the RhoB 3´UTR.Nucleic Acids Res.38(1) , 239–252 (2010).
  • Grady WM , ParkinRK, MitchellPS et al.: Epigenetic silencing of the intronic microRNA Hsa-miR-342 and its host gene EVL in colorectal cancer.Oncogene27(27) , 3880–3888 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.