442
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Control of Inducible Gene Expression in the Immune System

, &
Pages 775-795 | Published online: 15 Dec 2010

Bibliography

  • Geissmann F , ManzMG, JungS, SiewekeMH, MeradM, LeyK: Development of monocytes, macrophages, and dendritic cells.Science327(5966) , 656–661 (2010).
  • Sitnicka E : From the bone marrow to the thymus: the road map of early stages of T-cell development.Crit. Rev. Immunol.29(6) , 487–530 (2009).
  • Parra M : Epigenetic events during B lymphocyte development.Epigenetics4(7) , 462–468 (2009).
  • Bernstein BE , MeissnerA, LanderES: The mammalian epigenome.Cell128(4) , 669–681 (2007).
  • Navarro F , LiebermanJ: Small RNAs guide hematopoietic cell differentiation and function.J. Immunol.184(11) , 5939–5947 (2010).
  • Jacquier A : The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs.Nat. Rev. Genet.10(12) , 833–844 (2009).
  • Cedar H , BergmanY: Linking DNA methylation and histone modification: patterns and paradigms.Nat. Rev. Genet.10(5) , 295–304 (2009).
  • Kouzarides T : Chromatin modifications and their function.Cell128(4) , 693–705 (2007).
  • Lee BM , MahadevanLC: Stability of histone modifications across mammalian genomes: implications for ‘epigenetic‘ marking.J. Cell. Biochem.108(1) , 22–34 (2009).
  • Li B , CareyM, WorkmanJL: The role of chromatin during transcription.Cell128(4) , 707–719 (2007).
  • Talbert PB , HenikoffS: Histone variants – ancient wrap artists of the epigenome.Nat. Rev. Mol. Cell. Biol.11(4) , 264–275 (2010).
  • Clapier CR , CairnsBR: The biology of chromatin remodeling complexes.Annu. Rev. Biochem.78 , 273–304 (2009).
  • Barski A , CuddapahS, CuiK et al.: High-resolution profiling of histone methylations in the human genome.Cell129(4) , 823–837 (2007).
  • Cui K , ZangC, RohTY et al.: Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation.Cell Stem Cell4(1) , 80–93 (2009).
  • Mikkelsen TS , KuM, JaffeDB et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.Nature448(7153) , 553–560 (2007).
  • Roh TY , NgauWC, CuiK, LandsmanD, ZhaoK: High-resolution genome-wide mapping of histone modifications.Nat. Biotechnol.22(8) , 1013–1016 (2004).
  • Wang Z , ZangC, RosenfeldJA et al.: Combinatorial patterns of histone acetylations and methylations in the human genome.Nat. Genet.40(7) , 897–903 (2008).
  • Heintzman ND , StuartRK, HonG et al.: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.Nat. Genet.39(3) , 311–318 (2007).
  • Roh TY , CuddapahS, CuiK, ZhaoK: The genomic landscape of histone modifications in human T cells.Proc. Natl Acad. Sci. USA103(43) , 15782–15787 (2006).
  • Roh TY , CuddapahS, ZhaoK: Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping.Genes Dev.19(5) , 542–552 (2005).
  • Schones DE , CuiK, CuddapahS et al.: Dynamic regulation of nucleosome positioning in the human genome.Cell132(5) , 887-898 (2008).
  • Azuara V , PerryP, SauerS et al.: Chromatin signatures of pluripotent cell lines.Nat. Cell Biol.8(5) , 532–538 (2006).
  • Pokholok DK , HarbisonCT, LevineS et al.: Genome-wide map of nucleosome acetylation and methylation in yeast.Cell122(4) , 517–527 (2005).
  • Sinha I , WirenM, EkwallK: Genome-wide patterns of histone modifications in fission yeast.Chromosome Res.14(1) , 95–105 (2006).
  • Schubeler D , MacAlpineDM, ScalzoD et al.: The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote.Genes Dev.18(11) , 1263–1271 (2004).
  • Bernstein BE , KamalM, Lindblad-TohK et al.: Genomic maps and comparative analysis of histone modifications in human and mouse.Cell120(2) , 169–181 (2005).
  • Guenther MG , LevineSS, BoyerLA, JaenischR, YoungRA: A chromatin landmark and transcription initiation at most promoters in human cells.Cell130(1) , 77–88 (2007).
  • Koch CM , AndrewsRM, FlicekP et al.: The landscape of histone modifications across 1% of the human genome in five human cell lines.Genome Res.17(6) , 691–707 (2007).
  • Kim TH , BarreraLO, ZhengM et al.: A high-resolution map of active promoters in the human genome.Nature436(7052) , 876–880 (2005).
  • Liu CL , KaplanT, KimM et al.: Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol.3(10) , E328 (2005).
  • Martens JH , O‘SullivanRJ, BraunschweigU et al.: The profile of repeat-associated histone lysine methylation states in the mouse epigenome.EMBO J.24(4) , 800–812 (2005).
  • Rosenfeld JA , WangZ, SchonesDE, ZhaoK, DeSalleR, ZhangMQ: Determination of enriched histone modifications in non-genic portions of the human genome.BMC Genomics10 , 143 (2009).
  • Bernstein BE , MikkelsenTS, XieX et al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells.Cell125(2) , 315–326 (2006).
  • Delaval K , GovinJ, CerqueiraF, RousseauxS, KhochbinS, FeilR: Differential histone modifications mark mouse imprinting control regions during spermatogenesis.EMBO J.26(3) , 720–729 (2007).
  • Strahl BD , AllisCD: The language of covalent histone modifications.Nature403(6765) , 41–45 (2000).
  • Vakoc CR , MandatSA, OlenchockBA, BlobelGA: Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin.Mol. Cell19(3) , 381–391 (2005).
  • Bannister AJ , SchneiderR, MyersFA, ThorneAW, Crane-RobinsonC, KouzaridesT: Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes.J. Biol. Chem.280(18) , 17732–17736 (2005).
  • Farris SD , RubioED, MoonJJ, GombertWM, NelsonBH, KrummA: Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z.J. Biol. Chem.280(26) , 25298–25303 (2005).
  • Rao B , ShibataY, StrahlBD, LiebJD: Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide.Mol. Cell. Biol.25(21) , 9447–9459 (2005).
  • Vakoc CR , SachdevaMM, WangH, BlobelGA: Profile of histone lysine methylation across transcribed mammalian chromatin.Mol. Cell. Biol.26(24) , 9185–9195 (2006).
  • Edmunds JW , MahadevanLC, ClaytonAL: Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation.EMBO J.27(2) , 406–420 (2008).
  • Carrozza MJ , LiB, FlorensL et al.: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription.Cell123(4) , 581–592 (2005).
  • Wang Z , ZangC, CuiK et al.: Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.Cell138(5) , 1019–1031 (2009).
  • Bird A : DNA methylation patterns and epigenetic memory.Genes Dev.16(1) , 6–21 (2002).
  • Suzuki MM , BirdA: DNA methylation landscapes: provocative insights from epigenomics.Nat. Rev. Genet.9(6) , 465–476 (2008).
  • Khulan B , ThompsonRF, YeK et al.: Comparative isoschizomer profiling of cytosine methylation: the HELP assay.Genome Res.16(8) , 1046–1055 (2006).
  • Blackledge NP , ZhouJC, TolstorukovMY, FarcasAM, ParkPJ, KloseRJ: CpG islands recruit a histone H3 lysine 36 demethylase.Mol. Cell38(2) , 179–190 (2010).
  • Bouwman P , PhilipsenS: Regulation of the activity of Sp1-related transcription factors.Mol. Cell. Endocrinol.195(1–2) , 27–38 (2002).
  • Zelko IN , MuellerMR, FolzRJ: CpG methylation attenuates Sp1 and Sp3 binding to the human extracellular superoxide dismutase promoter and regulates its cell-specific expression.Free Radic. Biol. Med.48(7) , 895–904 (2010).
  • Orford K , KharchenkoP, LaiW et al.: Differential H3K4 methylation identifies developmentally poised hematopoietic genes.Dev. Cell14(5) , 798–809 (2008).
  • Hargreaves DC , HorngT, MedzhitovR: Control of inducible gene expression by signal-dependent transcriptional elongation.Cell138(1) , 129–145 (2009).
  • Kuo CT , LeidenJM: Transcriptional regulation of T lymphocyte development and function.Annu. Rev. Immunol.17 , 149–187 (1999).
  • Santana MA , Esquivel-GuadarramaF: Cell biology of T cell activation and differentiation.Int. Rev. Cytol.250 , 217–274 (2006).
  • Ullman KS , NorthropJP, VerweijCL, CrabtreeGR: Transmission of signals from the T lymphocyte antigen receptor to the genes responsible for cell proliferation and immune function: the missing link.Annu. Rev. Immunol.8 , 421–452 (1990).
  • Herschman HR : Primary response genes induced by growth factors and tumor promoters.Annu. Rev. Biochem.60 , 281–319 (1991).
  • Lim PS , HardyK, BuntingKL et al.: Defining the chromatin signature of inducible genes in T cells.Genome Biol.10(10) , R107 (2009).
  • Barski A , JothiR, CuddapahS et al.: Chromatin poises miRNA- and protein-coding genes for expression.Genome Res.19(10) , 1742–1751 (2009).
  • Ramirez-Carrozzi VR , BraasD, BhattDM et al.: A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling.Cell138(1) , 114–128 (2009).
  • Roh TY , ZhaoK: High-resolution, genome-wide mapping of chromatin modifications by GMAT.Methods Mol. Biol.387 , 95–108 (2008).
  • Muse GW , GilchristDA, NechaevS et al.: RNA polymerase is poised for activation across the genome.Nat. Genet.39(12) , 1507–1511 (2007).
  • Radonjic M , AndrauJC, LijnzaadP et al.: Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit.Mol. Cell18(2) , 171–183 (2005).
  • Zeitlinger J , StarkA, KellisM et al.: RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo.Nat. Genet.39(12) , 1512–1516 (2007).
  • O‘Brien T , LisJT: RNA polymerase II pauses at the 5´ end of the transcriptionally induced Drosophila hsp70 gene.Mol. Cell. Biol.11(10) , 5285–5290 (1991).
  • Rougvie AE , LisJT: The RNA polymerase II molecule at the 5´ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged.Cell54(6) , 795–804 (1988).
  • Lis J : Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation.Cold Spring Harb. Symp. Quant. Biol.63 , 347–356 (1998).
  • Margaritis T , HolstegeFC: Poised RNA polymerase II gives pause for thought.Cell133(4) , 581–584 (2008).
  • Price DH : Poised polymerases: on your mark…get set…go!Mol. Cell30(1) , 7–10 (2008).
  • Saunders A , CoreLJ, LisJT: Breaking barriers to transcription elongation.Nat. Rev. Mol. Cell Biol.7(8) , 557–567 (2006).
  • Gilchrist DA , NechaevS, LeeC et al.: NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly.Genes Dev.22(14) , 1921–1933 (2008).
  • Lee C , LiX, HechmerA et al.: NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol. Cell. Biol.28(10) , 3290–3300 (2008).
  • Hendrix DA , HongJW, ZeitlingerJ, RokhsarDS, LevineMS: Promoter elements associated with RNA Pol II stalling in the Drosophila embryo.Proc. Natl Acad. Sci. USA105(22) , 7762–7767 (2008).
  • Krumm A , HickeyLB, GroudineM: Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation.Genes Dev.9(5) , 559–572 (1995).
  • Wu CH , YamaguchiY, BenjaminLR et al.: NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev.17(11) , 1402–1414 (2003).
  • Yamaguchi Y , TakagiT, WadaT et al.: NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation.Cell97(1) , 41–51 (1999).
  • Fuda NJ , ArdehaliMB, LisJT: Defining mechanisms that regulate RNA polymerase II transcription in vivo. Nature461(7261) , 186–192 (2009).
  • Barboric M , NissenRM, KanazawaS, Jabrane-FerratN, PeterlinBM: NF-κB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II.Mol. Cell8(2) , 327–337 (2001).
  • Eberhardy SR , FarnhamPJ: Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter.J. Biol. Chem.277(42) , 40156–40162 (2002).
  • Kanazawa S , OkamotoT, PeterlinBM: Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection.Immunity12(1) , 61–70 (2000).
  • Simone C , StieglerP, BagellaL et al.: Activation of MyoD-dependent transcription by cdk9/cyclin T2.Oncogene21(26) , 4137–4148 (2002).
  • Anderson P : Post-transcriptional regulons coordinate the initiation and resolution of inflammation.Nat. Rev. Immunol.10(1) , 24–35 (2010).
  • Curtale G , CitarellaF, CarissimiC et al.: An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes.Blood115(2) , 265–273 (2010).
  • Androulidaki A , IliopoulosD, ArranzA et al.: The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs.Immunity31(2) , 220–231 (2009).
  • Gan Q , YoshidaT, McDonaldOG, OwensGK: Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells.Stem Cells25(1) , 2–9 (2007).
  • Byun JS , WongMM, CuiW et al.: Dynamic bookmarking of primary response genes by p300 and RNA polymerase II complexes.Proc. Natl Acad. Sci. USA106(46) , 19286–19291 (2009).
  • Juelich T , SutcliffeE, DentonA et al.: Interplay between chromatin remodeling and epigenetic changes during lineage-specific commitment to granzyme B expression.J. Immunol.183(11) , 7063–7072 (2009).
  • Smith JL , FreebernWJ, CollinsI et al.: Kinetic profiles of p300 occupancy in vivo predict common features of promoter structure and coactivator recruitment.Proc. Natl Acad. Sci. USA101(32) , 11554–11559 (2004).
  • Aung HT , SchroderK, HimesSR et al.: LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression.FASEB J.20(9) , 1315–1327 (2006).
  • Ghisletti S , BarozziI, MiettonF et al.: Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages.Immunity32(3) , 317–328 (2010).
  • Smith AE , ChronisC, ChristodoulakisM et al.: Epigenetics of human T cells during the G0–>G1 transition.Genome Res.19(8) , 1325–1337 (2009).
  • Liang MD , ZhangY, McDevitD, MareckiS, NikolajczykBS: The interleukin-1β gene is transcribed from a poised promoter architecture in monocytes.J. Biol. Chem.281(14) , 9227–9237 (2006).
  • Saccani S , PantanoS, NatoliG: p38-dependent marking of inflammatory genes for increased NF-κ B recruitment.Nat. Immunol.3(1) , 69–75 (2002).
  • De Santa F , TotaroMG, ProsperiniE, NotarbartoloS, TestaG, NatoliG: The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing.Cell130(6) , 1083–1094 (2007).
  • Attema JL , ReevesR, MurrayV et al.: The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T-cell activation.J. Immunol.169(5) , 2466–2476 (2002).
  • Brettingham-Moore KH , SprodOR, ChenX, OakfordP, ShannonMF, HollowayAF: Determinants of a transcriptionally competent environment at the GM-CSF promoter.Nucleic Acids Res.36(8) , 2639–2653 (2008).
  • Chen X , WangJ, WoltringD, GerondakisS, ShannonMF: Histone dynamics on the interleukin-2 gene in response to T-cell activation.Mol. Cell. Biol.25(8) , 3209–3219 (2005).
  • Rao A , AvniO: Molecular aspects of T-cell differentiation.Br. Med. Bull.56(4) , 969–984 (2000).
  • Rao S , ProckoE, ShannonMF: Chromatin remodeling, measured by a novel real-time polymerase chain reaction assay, across the proximal promoter region of the IL-2 gene.J. Immunol.167(8) , 4494–4503 (2001).
  • Zhao K , WangW, RandoOJ et al.: Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling.Cell95(5) , 625–636 (1998).
  • Ishihara S , VarmaR, SchwartzRH: A new fractionation assay, based on the size of formaldehyde-crosslinked, mildly sheared chromatin, delineates the chromatin structure at promoter regions.Nucleic Acids Res.38(11) , E124 (2010).
  • Liu H , MulhollandN, FuH, ZhaoK: Cooperative activity of BRG1 and Z-DNA formation in chromatin remodeling.Mol. Cell. Biol.26(7) , 2550–2559 (2006).
  • Sutcliffe EL , ParishIA, HeYQ et al.: Dynamic histone variant exchange accompanies gene induction in T cells.Mol. Cell. Biol.29(7) , 1972–1986 (2009).
  • Tamura T , SmithM, KannoT, DasenbrockH, NishiyamaA, OzatoK: Inducible deposition of the histone variant H3.3 in interferon-stimulated genes.J. Biol. Chem.284(18) , 12217–12225 (2009).
  • Schwartz BE , AhmadK: Transcriptional activation triggers deposition and removal of the histone variant H3.3.Genes Dev.19(7) , 804–814 (2005).
  • Jin C , FelsenfeldG: Nucleosome stability mediated by histone variants H3.3 and H2A.Z.Genes Dev.21(12) , 1519–1529 (2007).
  • Lau LF , NathansD: Expression of a set of growth-related immediate early genes in BALB/c 3T3 cells: coordinate regulation with c-fos or c-myc.Proc. Natl Acad. Sci. USA84(5) , 1182–1186 (1987).
  • Heintzman ND , HonGC, HawkinsRD et al.: Histone modifications at human enhancers reflect global cell-type-specific gene expression.Nature459(7243) , 108–112 (2009).
  • Kouskouti A , TalianidisI: Histone modifications defining active genes persist after transcriptional and mitotic inactivation.EMBO J.24(2) , 347–357 (2005).
  • Northrop JK , WellsAD, ShenH: Cutting edge: chromatin remodeling as a molecular basis for the enhanced functionality of memory CD8 T cells.J. Immunol.181(2) , 865–868 (2008).
  • Araki Y , WangZ, ZangC et al.: Genome-wide analysis of histone methylation reveals chromatin state-based regulation of gene transcription and function of memory CD8(+) T cells.Immunity30(6) , 912–925 (2009).
  • Mirabella F , BaxterEW, BoissinotM, JamesSR, CockerillPN: The human IL-3/granulocyte-macrophage colony-stimulating factor locus is epigenetically silent in immature thymocytes and is progressively activated during T-cell development.J. Immunol.184(6) , 3043–3054 (2010).
  • Cuddapah S , BarskiA, ZhaoK: Epigenomics of T-cell activation, differentiation, and memory.Curr. Opin. Immunol.22 , 1–7 (2010).
  • Messi M , GiacchettoI, NagataK, LanzavecchiaA, NatoliG, SallustoF: Memory and flexibility of cytokine gene expression as separable properties of human T(h)1 and T(h)2 lymphocytes.Nat. Immunol.4(1) , 78–86 (2003).
  • Avni O , RaoA: T cell differentiation: a mechanistic view.Curr. Opin. Immunol.12(6) , 654–659 (2000).
  • Fujita N , JayeDL, GeigermanC et al.: MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation.Cell119(1) , 75–86 (2004).
  • Gao H , LukinK, RamirezJ, FieldsS, LopezD, HagmanJ: Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5.Proc. Natl Acad. Sci. USA106(27) , 11258–11263 (2009).
  • Chi TH , WanM, LeePP et al.: Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development.Immunity19(2) , 169–182 (2003).
  • Jani A , WanM, ZhangJ et al.: A novel genetic strategy reveals unexpected roles of the Swi-Snf-like chromatin-remodeling BAF complex in thymocyte development.J. Exp. Med.205(12) , 2813–2825 (2008).
  • Williams CJ , NaitoT, ArcoPG et al.: The chromatin remodeler Mi-2β is required for CD4 expression and T-cell development.Immunity20(6) , 719–733 (2004).
  • Gebuhr TC , KovalevGI, BultmanS, GodfreyV, SuL, MagnusonT: The role of Brg1, a catalytic subunit of mammalian chromatin-remodeling complexes, in T cell development.J. Exp. Med.198(12) , 1937–1949 (2003).
  • Zhang F , BoothbyM: T helper type 1-specific Brg1 recruitment and remodeling of nucleosomes positioned at the IFN-γ promoter are Stat4 dependent.J. Exp. Med.203(6) , 1493–1505 (2006).
  • Wurster AL , PazinMJ: BRG1-mediated chromatin remodeling regulates differentiation and gene expression of T helper cells.Mol. Cell. Biol.28(24) , 7274–7285 (2008).
  • Gyory I , WuJ, FejerG, SetoE, WrightKL: PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing.Nat. Immunol.5(3) , 299–308 (2004).
  • Tachibana M , SugimotoK, FukushimaT, ShinkaiY: Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3.J. Biol. Chem.276(27) , 25309–25317 (2001).
  • Agarwal S , RaoA: Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation.Immunity9(6) , 765–775 (1998).
  • Agarwal S , ViolaJP, RaoA: Chromatin-based regulatory mechanisms governing cytokine gene transcription.J. Allergy Clin. Immunol.103(6) , 990–999 (1999).
  • Agarwal S , AvniO, RaoA: Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo.Immunity12(6) , 643–652 (2000).
  • Schoenborn JR , DorschnerMO, SekimataM et al.: Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-γ.Nat. Immunol.8(7) , 732–742 (2007).
  • Miller SA , HuangAC, MiazgowiczMM, BrassilMM, WeinmannAS: Coordinated but physically separable interaction with H3K27-demethylase and H3K4-methyltransferase activities are required for T-box protein-mediated activation of developmental gene expression.Genes Dev.22(21) , 2980–2993 (2008).
  • Tong Y , AuneT, BoothbyM: T-bet antagonizes mSin3a recruitment and transactivates a fully methylated IFN-γ promoter via a conserved T-box half-site.Proc. Natl Acad. Sci. USA102(6) , 2034–2039 (2005).
  • Spilianakis CG , LaliotiMD, TownT, LeeGR, FlavellRA: Interchromosomal associations between alternatively expressed loci.Nature435(7042) , 637–645 (2005).
  • Spilianakis CG , FlavellRA: Long-range intrachromosomal interactions in the T helper type 2 cytokine locus.Nat. Immunol.5(10) , 1017–1027 (2004).
  • Cai S , LeeCC, Kohwi-ShigematsuT: SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes.Nat. Genet.38(11) , 1278–1288 (2006).
  • Stock JK , GiadrossiS, CasanovaM et al.: Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells.Nat. Cell Biol.9(12) , 1428–1435 (2007).
  • Noer A , LindemanLC, CollasP: Histone H3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells.Stem Cells Dev.18(5) , 725–736 (2009).
  • Rodriguez CR , ChoEJ, KeoghMC, MooreCL, GreenleafAL, BuratowskiS: Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II.Mol. Cell. Biol.20(1) , 104–112 (2000).
  • Wei G , WeiL, ZhuJ et al.: Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells.Immunity30(1) , 155–167 (2009).
  • Weishaupt H , SigvardssonM, AttemaJL: Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells.Blood115(2) , 247–256 (2010).
  • Mukasa R , BalasubramaniA, LeeYK et al.: Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage.Immunity32(5) , 616–627 (2010).
  • Celniker SE , DillonLA, GersteinMB et al.: Unlocking the secrets of the genome.Nature459(7249) , 927–930 (2009).
  • Perales R , BentleyD: ‘Cotranscriptionality‘: the transcription elongation complex as a nexus for nuclear transactions.Mol. Cell36(2) , 178–191 (2009).
  • Massie CE , MillsIG: ChIPping away at gene regulation.EMBO Rep.9(4) , 337–343 (2008).
  • Impey S , McCorkleSR, Cha-MolstadH et al.: Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions.Cell119(7) , 1041–1054 (2004).
  • Johnson DS , MortazaviA, MyersRM, WoldB: Genome-wide mapping of in vivo protein–DNA interactions.Science316(5830) , 1497–1502 (2007).
  • Robertson G , HirstM, BainbridgeM et al.: Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing.Nat. Methods4(8) , 651–657 (2007).
  • Schones DE , ZhaoK: Genome-wide approaches to studying chromatin modifications.Nat. Rev. Genet.9(3) , 179–191 (2008).
  • Wei CL , WuQ, VegaVB et al.: A global map of p53 transcription-factor binding sites in the human genome.Cell124(1) , 207–219 (2006).
  • Kaufmann SH : The contribution of immunology to the rational design of novel antibacterial vaccines.Nat. Rev. Microbiol.5(7) , 491–504 (2007).
  • Dong C : Diversification of T-helper-cell lineages: finding the family root of IL-17–producing cells.Nat. Rev. Immunol.6(4) , 329–333 (2006).
  • Weaver CT , HarringtonLE, ManganPR, GavrieliM, MurphyKM: Th17: an effector CD4 T cell lineage with regulatory T cell ties.Immunity24(6) , 677–688 (2006).
  • Mosmann TR , CoffmanRL: TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties.Annu. Rev. Immunol.7 , 145–173 (1989).
  • Korn T , BettelliE, OukkaM, KuchrooVK: IL-17 and Th17 Cells.Annu. Rev. Immunol.27 , 485–517 (2009).
  • Corthay A : How do regulatory T cells work?Scand. J. Immunol.70(4) , 326–336 (2009).
  • Santana MA , RosensteinY: What it takes to become an effector T cell: the process, the cells involved, and the mechanisms.J. Cell. Physiol.195(3) , 392–401 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.