289
Views
1
CrossRef citations to date
0
Altmetric
Review

Genetic and Epigenetic Dysregulation of Imprinted Genes In The Brain

&
Pages 743-763 | Published online: 15 Dec 2010

Bibliography

  • Spahn L , BarlowDP: An ICE pattern crystallizes.Nat. Genet.35 , 11–12 (2003).
  • Bartolomei MS , WebberAL, BrunkowME, TilghmanSM: Epigenetic mechanisms underlying the imprinting of the mouse H19 gene.Genes Dev.7 , 1663–1673 (1993).
  • Frevel MA , HornbergJJ, ReeveAE: A potential imprint control element: identification of a conserved 42 bp sequence upstream of H19.Trends Genet.15 , 216–218 (1999).
  • Tremblay KD , SaamJR, IngramRS, TilghmanSM, BartolomeiMS: A paternal-specific methylation imprint marks the alleles of the mouse H19 gene.Nat. Genet.9 , 407–413 (1995).
  • Tremblay KD , DuranKL, BartolomeiMS: A 5´ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development.Mol. Cell. Biol.17 , 4322–4329 (1997).
  • Brandeis M , KafriT, ArielM et al.: The ontogeny of allele-specific methylation associated with imprinted genes in the mouse.EMBO J.12 , 3669–3677 (1993).
  • Moore T , ConstanciaM, ZubairM et al.: Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2.Proc. Natl Acad. Sci. USA94 , 12509–12514 (1997).
  • Feil R , WalterJ, AllenND, ReikW: Developmental control of allelic methylation in the imprinted mouse Igf2 and H19 genes.Development120 , 2933–2943 (1994).
  • Ferguson-Smith AC , SasakiH, CattanachBM, SuraniMA: Parental-origin-specific epigenetic modification of the mouse H19 gene.Nature362 , 751–755 (1993).
  • Thorvaldsen JL , DuranKL, BartolomeiMS: Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2.Genes Dev.12 , 3693–3702 (1998).
  • Tanimoto K , ShimotsumaM, MatsuzakiH et al.: Genomic imprinting recapitulated in the human β-globin locus.Proc. Natl Acad. Sci. USA102 , 10250–10255 (2005).
  • Park KY , SellarsEA, GrinbergA, HuangSP, PfeiferK: The H19 differentially methylated region marks the parental origin of a heterologous locus without gametic DNA methylation.Mol. Cell. Biol.24 , 3588–3595 (2004).
  • Gebert C , KunkelD, GrinbergA, PfeiferK: H19 imprinting control region methylation requires an imprinted environment only in the male germ line.Mol. Cell. Biol.30 , 1108–1115 (2010).
  • Howell CY , BestorTH, DingF et al.: Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene.Cell104 , 829–838 (2001).
  • Li E , BeardC, JaenischR: Role for DNA methylation in genomic imprinting.Nature366 , 362–365 (1993).
  • Hu JF , NguyenPH, PhamNV, VuTH, HoffmanAR: Modulation of Igf2 genomic imprinting in mice induced by 5-azacytidine, an inhibitor of DNA methylation.Mol. Endocrinol.11 , 1891–1898 (1997).
  • Fournier C , GotoY, BallestarE et al.: Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes.Embo J.21 , 6560–6570 (2002).
  • Henckel A , NakabayashiK, SanzLA, FeilR, HataK, ArnaudP: Histone methylation is mechanistically linked to DNA methylation at imprinting control regions in mammals.Hum. Mol. Genet.18 , 3375–3383 (2009).
  • Umlauf D , GotoY, CaoR et al.: Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes.Nat. Genet.36 , 1296–1300 (2004).
  • Regha K , SloaneMA, HuangR et al.: Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome.Mol. Cell27 , 353–366 (2007).
  • Verona RI , ThorvaldsenJL, ReeseKJ, BartolomeiMS: The transcriptional status but not the imprinting control region determines allele-specific histone modifications at the imprinted H19 locus.Mol. Cell. Biol.28 , 71–82 (2008).
  • Delaval K , GovinJ, CerqueiraF, RousseauxS, KhochbinS, FeilR: Differential histone modifications mark mouse imprinting control regions during spermatogenesis.EMBO J.26 , 720–729 (2007).
  • Mikkelsen TS , KuM, JaffeDB et al.: Genome-wide maps of chromatin state in pluripotent and lineage-committed cells.Nature448 , 553–560 (2007).
  • Wu Q , KumagaiT, KawaharaM et al.: Regulated expression of two sets of paternally imprinted genes is necessary for mouse parthenogenetic development to term.Reproduction131 , 481–488 (2006).
  • Lewis A , MitsuyaK, UmlaufD et al.: Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation.Nat. Genet.36 , 1291–1295 (2004).
  • Engemann S , StrodickeM, PaulsenM et al.: Sequence and functional comparison in the Beckwith–Wiedemann region: implications for a novel imprinting centre and extended imprinting.Hum. Mol. Genet.9 , 2691–2706 (2000).
  • Fitzpatrick GV , SolowayPD, HigginsMJ: Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1.Nat. Genet.32 , 426–431 (2002).
  • Lee MP , DeBaunMR, MitsuyaK et al.: Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith–Wiedemann syndrome and is independent of insulin-like growth factor II imprinting.Proc. Natl Acad. Sci. USA96 , 5203–5208 (1999).
  • Smilinich NJ , DayCD, FitzpatrickGV et al.: A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith–Wiedemann syndrome.Proc. Natl Acad. Sci. USA96 , 8064–8069 (1999).
  • Green K , LewisA, DawsonC et al.: A developmental window of opportunity for imprinted gene silencing mediated by DNA methylation and the Kcnq1ot1 noncoding RNA.Mamm. Genome18 , 32–42 (2007).
  • Pandey RR , MondalT, MohammadF et al.: Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation.Mol. Cell32 , 232–246 (2008).
  • Wagschal A , SutherlandHG, WoodfineK et al.: G9a histone methyltransferase contributes to imprinting in the mouse placenta.Mol. Cell. Biol.28 , 1104–1113 (2008).
  • Tanaka M , PuchyrM, GertsensteinM et al.: Parental origin-specific expression of Mash2 is established at the time of implantation with its imprinting mechanism highly resistant to genome-wide demethylation.Mech. Dev.87 , 129–142 (1999).
  • Caspary T , ClearyMA, BakerCC, GuanXJ, TilghmanSM: Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster.Mol. Cell. Biol.18 , 3466–3474 (1998).
  • Mercer TR , DingerME, SunkinSM, MehlerMF, MattickJS: Specific expression of long noncoding RNAs in the mouse brain.Proc. Natl Acad. Sci. USA105 , 716–721 (2008).
  • Koerner MV , PaulerFM, HuangR, BarlowDP: The function of non-coding RNAs in genomic imprinting.Development136 , 1771–1783 (2009).
  • Royo H , CavailleJ: Non-coding RNAs in imprinted gene clusters.Biol. Cell100 , 149–166 (2008).
  • Wan LB , BartolomeiMS: Regulation of imprinting in clusters: noncoding RNAs versus insulators.Adv. Genet.61 , 207–223 (2008).
  • Lyle R , WatanabeD, te Vruchte D et al.: The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat. Genet.25 , 19–21 (2000).
  • Seidl CI , StrickerSH, BarlowDP: The imprinted Air ncRNA is an atypical RNAPII transcript that evades splicing and escapes nuclear export.EMBO J.25 , 3565–3575 (2006).
  • Sleutels F , ZwartR, BarlowDP: The non-coding Air RNA is required for silencing autosomal imprinted genes.Nature415 , 810–813 (2002).
  • Sleutels F , TjonG, LudwigT, BarlowDP: Imprinted silencing of Slc22a2 and Slc22a3 does not need transcriptional overlap between Igf2r and Air.EMBO J.22 , 3696–3704 (2003).
  • Nagano T , MitchellJA, SanzLA et al.: The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin.Science322 , 1717–1720 (2008).
  • Terranova R , YokobayashiS, StadlerMB et al.: Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos.Dev. Cell15 , 668–679 (2008).
  • Dekker J , RippeK, DekkerM, KlecknerN: Capturing chromosome conformation.Science295 , 1306–1311 (2002).
  • Zhao Z , TavoosidanaG, SjolinderM et al.: Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions.Nat. Genet.38 , 1341–1347 (2006).
  • Dostie J , RichmondTA, ArnaoutRA et al.: Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements.Genome Res.16 , 1299–1309 (2006).
  • Fullwood MJ , RuanY: ChIP-based methods for the identification of long-range chromatin interactions.J. Cell Biochem.107 , 30–39 (2009).
  • Simonis M , KlousP, SplinterE et al.: Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C).Nat. Genet.38 , 1348–1354 (2006).
  • Lieberman-Aiden E , van Berkum NL, Williams L et al.: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326 , 289–293 (2009).
  • Vu TH , NguyenAH, HoffmanAR: Loss of IGF2 imprinting is associated with abrogation of long-range intrachromosomal interactions in human cancer cells.Hum. Mol. Genet.19 , 901–919.
  • Nativio R , WendtKS, ItoY et al.: Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus.PLoS Genet.5 , E1000739 (2009).
  • Qiu X , VuTH, LuQ et al.: A complex deoxyribonucleic acid looping configuration associated with the silencing of the maternal Igf2 allele.Mol. Endocrinol.22 , 1476–1488 (2008).
  • Murrell A , HeesonS, ReikW: Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops.Nat. Genet.36 , 889–893 (2004).
  • Li T , HuJF, QiuX et al.: CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop.Mol. Cell. Biol.28 , 6473–6482 (2008).
  • Burke LJ , ZhangR, BartkuhnM et al.: CTCF binding and higher order chromatin structure of the H19 locus are maintained in mitotic chromatin.EMBO J.24 , 3291–3300 (2005).
  • Kurukuti S , TiwariVK, TavoosidanaG et al.: CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2.Proc. Natl Acad. Sci. USA103 , 10684–10689 (2006).
  • Yoon YS , JeongS, RongQ, ParkKY, ChungJH, PfeiferK: Analysis of the H19 ICR insulator.Mol. Cell. Biol.27 , 3499–3510 (2007).
  • Horike S , CaiS, MiyanoM, ChengJF, Kohwi-ShigematsuT: Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome.Nat. Genet.37 , 31–40 (2005).
  • Braem C , RecolinB, RancourtRC et al.: Genomic matrix attachment region and chromosome conformation capture quantitative real time PCR assays identify novel putative regulatory elements at the imprinted Dlk1/Gtl2 locus.J. Biol. Chem.283 , 18612–18620 (2008).
  • Kernohan KD , JiangY, TremblayDC et al.: ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain.Dev. Cell.18 , 191–202 (2010).
  • Han L , LeeDH, SzaboPE: CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region.Mol. Cell. Biol.28 , 1124–1135 (2008).
  • Ishihara K , OshimuraM, NakaoM: CTCF-dependent chromatin insulator is linked to epigenetic remodeling.Mol. Cell23 , 733–742 (2006).
  • Parelho V , HadjurS, SpivakovM et al.: Cohesins functionally associate with CTCF on mammalian chromosome arms.Cell132 , 422–433 (2008).
  • Wendt KS , YoshidaK, ItohT et al.: Cohesin mediates transcriptional insulation by CCCTC-binding factor.Nature451 , 796–801 (2008).
  • Guacci V , KoshlandD, StrunnikovA: A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae.Cell91 , 47–57 (1997).
  • Losada A , HiranoM, HiranoT: Identification of Xenopus SMC protein complexes required for sister chromatid cohesion.Genes Dev.12 , 1986–1997 (1998).
  • Michaelis C , CioskR, NasmythK: Cohesins: chromosomal proteins that prevent premature separation of sister chromatids.Cell91 , 35–45 (1997).
  • Toth A , CioskR, UhlmannF, GalovaM, SchleifferA, NasmythK: Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication.Genes Dev.13 , 320–333 (1999).
  • Anderson DE , LosadaA, EricksonHP, HiranoT: Condensin and cohesin display different arm conformations with characteristic hinge angles.J. Cell. Biol.156 , 419–424 (2002).
  • Gruber S , HaeringCH, NasmythK: Chromosomal cohesin forms a ring.Cell112 , 765–777 (2003).
  • McGrath J , SolterD: Completion of mouse embryogenesis requires both the maternal and paternal genomes.Cell37 , 179–183 (1984).
  • McGrath J , SolterD: Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro.Science226 , 1317–1319 (1984).
  • Surani MA , BartonSC, NorrisML: Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis.Nature308 , 548–550 (1984).
  • Frost JM , MooreGE: The importance of imprinting in the human placenta.PLoS Genet.6 , E1001015 (2010).
  • Maccani MA , MarsitCJ: Epigenetics in the placenta.Am. J. Reprod. Immunol.62 , 78–89 (2009).
  • Allen ND , LoganK, LallyG, DrageDJ, NorrisML, KeverneEB: Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior.Proc. Natl Acad. Sci. USA92 , 10782–10786 (1995).
  • Mann JR , GadiI, HarbisonML, AbbondanzoSJ, StewartCL: Androgenetic mouse embryonic stem cells are pluripotent and cause skeletal defects in chimeras: implications for genetic imprinting.Cell62 , 251–260 (1990).
  • Keverne EB , FundeleR, NarasimhaM, BartonSC, SuraniMA: Genomic imprinting and the differential roles of parental genomes in brain development.Brain Res. Dev. Brain Res.92 , 91–100 (1996).
  • Kuroiwa Y , Kaneko-IshinoT, KagitaniF et al.: Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein.Nat. Genet.12 , 186–190 (1996).
  • Wu C , OrozcoC, BoyerJ et al.: BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources.Genome Biol.10 , R130 (2009).
  • Kobayashi S , KohdaT, IchikawaH et al.: Paternal expression of a novel imprinted gene, Peg12/Frat3, in the mouse 7C region homologous to the Prader–Willi syndrome region.Biochem. Biophys. Res. Commun.290 , 403–408 (2002).
  • Davies W , IslesAR, WilkinsonLS: Imprinted gene expression in the brain.Neurosci. Biobehav. Rev.29 , 421–430 (2005).
  • Lefebvre L , VivilleS, BartonSC, IshinoF, KeverneEB, SuraniMA: Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest.Nat. Genet.20 , 163–169 (1998).
  • Li L , KeverneEB, AparicioSA, IshinoF, BartonSC, SuraniMA: Regulation of maternal behavior and offspring growth by paternally expressed Peg3.Science284 , 330–333 (1999).
  • Davies W , SmithRJ, KelseyG, WilkinsonLS: Expression patterns of the novel imprinted genes Nap1l5 and Peg13 and their non-imprinted host genes in the adult mouse brain.Gene Expr. Patterns4 , 741–747 (2004).
  • Lee S , WalkerCL, WevrickR: Prader–Willi syndrome transcripts are expressed in phenotypically significant regions of the developing mouse brain.Gene Expr. Patterns3 , 599–609 (2003).
  • Lein ES , HawrylyczMJ, AoN et al.: Genome-wide atlas of gene expression in the adult mouse brain.Nature445 , 168–176 (2007).
  • Bartolomei MS , ZemelS, TilghmanSM: Parental imprinting of the mouse H19 gene.Nature351 , 153–155 (1991).
  • Kim J , LuX, StubbsL: Zim1, a maternally expressed mouse Kruppel-type zinc-finger gene located in proximal chromosome 7.Hum. Mol. Genet.8 , 847–854 (1999).
  • Liu Q , WangY, ChenY et al.: The expression analysis of Grb10 during mouse embryonic development.Yi Chuan31 , 732–740 (2009).
  • Ball ST , WilliamsonCM, HayesC, HackerT, PetersJ: The spatial and temporal expression pattern of Nesp and its antisense Nespas, in mid-gestation mouse embryos.Mech. Dev.100 , 79–81 (2001).
  • Peters J , WroeSF, WellsCA et al.: A cluster of oppositely imprinted transcripts at the Gnas locus in the distal imprinting region of mouse chromosome 2.Proc. Natl Acad. Sci. USA96 , 3830–3835 (1999).
  • McLaughlin D , VidakiM, RenieriE, KaragogeosD: Expression pattern of the maternally imprinted gene Gtl2 in the forebrain during embryonic development and adulthood.Gene Expr. Patterns6 , 394–399 (2006).
  • DeChiara TM , EfstratiadisA, RobertsonEJ: A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting.Nature345 , 78–80 (1990).
  • Hu ZQ , ZhangJY, JiCN, XieY, ChenJZ, MaoYM: Grb10 interacts with Bim L and inhibits apoptosis.Mol. Biol. Rep.37(7) , 3547–3552 (2010).
  • Hoshiya H , MeguroM, KashiwagiA, OkitaC, OshimuraM: Calcr, a brain-specific imprinted mouse calcitonin receptor gene in the imprinted cluster of the proximal region of chromosome 6.J. Hum. Genet.48 , 208–211 (2003).
  • Rougeulle C , GlattH, LalandeM: The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain.Nat. Genet.17 , 14–15 (1997).
  • Vu TH , HoffmanAR: Imprinting of the Angelman syndrome gene, UBE3A, is restricted to brain.Nat. Genet.17 , 12–13 (1997).
  • DeChiara TM , RobertsonEJ, EfstratiadisA: Parental imprinting of the mouse insulin-like growth factor II gene.Cell64 , 849–859 (1991).
  • Wang Y , JohK, MasukoS et al.: The mouse Murr1 gene is imprinted in the adult brain, presumably due to transcriptional interference by the antisense-oriented U2af1-rs1 gene.Mol. Cell. Biol.24 , 270–279 (2004).
  • Gregg C , ZhangJ, ButlerJE, HaigD, DulacC: Sex-specific parent-of-origin allelic expression in the mouse brain.Science329(5992) , 682–685 (2010).
  • Gregg C , ZhangJ, WeissbourdB et al.: High-resolution analysis of parent-of-origin allelic expression in the mouse brain.Science329(5992) , 643–648 (2010).
  • Zhou Y , ZhongY, WangY et al.: Activation of p53 by MEG3 non-coding RNA.J. Biol. Chem.282 , 24731–24742 (2007).
  • Anderson SA , EisenstatDD, ShiL, RubensteinJL: Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes.Science278 , 474–476 (1997).
  • Stuhmer T , AndersonSA, EkkerM, RubensteinJL: Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression.Development129 , 245–252 (2002).
  • Meguro M , MitsuyaK, SuiH et al.: Evidence for uniparental, paternal expression of the human GABAA receptor subunit genes, using microcell-mediated chromosome transfer.Hum. Mol. Genet.6 , 2127–2133 (1997).
  • Wagstaff J , ChailletJR, LalandeM: The GABAA receptor β 3 subunit gene: characterization of a human cDNA from chromosome 15q11q13 and mapping to a region of conserved synteny on mouse chromosome 7.Genomics11 , 1071–1078 (1991).
  • Liljelund P , HandforthA, HomanicsGE, OlsenRW: GABAA receptor β3 subunit gene-deficient heterozygous mice show parent-of-origin and gender-related differences in β3 subunit levels, EEG, and behavior.Brain Res. Dev. Brain Res.157 , 150–161 (2005).
  • Cremer T , CremerM: Chromosome territories.Cold Spring Harb. Perspect. Biol.2(3) , a003889 (2010).
  • Zhao R , BodnarMS, SpectorDL: Nuclear neighborhoods and gene expression.Curr. Opin. Genet. Dev.19 , 172–179 (2009).
  • Leung KN , ValleroRO, DuBoseAJ, ResnickJL, LaSalleJM: Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size.Hum. Mol. Genet.18 , 4227–4238 (2009).
  • Schule B , LiHH, Fisch-KohlC, PurmannC, FranckeU: DLX5 and DLX6 expression is biallelic and not modulated by MeCP2 deficiency.Am. J. Hum. Genet.81 , 492–506 (2007).
  • Miyano M , HorikeS, CaiS, OshimuraM, Kohwi-ShigematsuT: DLX5 expression is monoallelic and Dlx5 is up-regulated in the Mecp2-null frontal cortex.J. Cell. Mol. Med.12 , 1188–1191 (2008).
  • Reik W , MurrellA, LewisA et al.: Chromosome loops, insulators, and histone methylation: new insights into regulation of imprinting in clusters.Cold Spring Harb. Symp. Quant. Biol.69 , 29–37 (2004).
  • Varrault A , GueydanC, DelalbreA et al.: Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth.Dev. Cell11 , 711–722 (2006).
  • Lui JC , FinkielstainGP, BarnesKM, BaronJ: An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs.Am. J. Physiol. Regul. Integr. Comp. Physiol.295 , R189–R196 (2008).
  • Andrade AC , LuiJC, NilssonO: Temporal and spatial expression of a growth-regulated network of imprinted genes in growth plate.Pediatr. Nephrol.25 , 617–623 (2010).
  • Ling JQ , LiT, HuJF et al.: CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1.Science312 , 269–272 (2006).
  • Sandhu KS , ShiC, SjolinderM et al.: Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development.Genes Dev.23 , 2598–2603 (2009).
  • Gabory A , RipocheMA, Le Digarcher A et al.: H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development136 , 3413–3421 (2009).
  • Holm VA , CassidySB, ButlerMG et al.: Prader–Willi syndrome: consensus diagnostic criteria.Pediatrics91 , 398–402 (1993).
  • Gunay-Aygun M , SchwartzS, HeegerS, O‘RiordanMA, CassidySB: The changing purpose of Prader–Willi syndrome clinical diagnostic criteria and proposed revised criteria.Pediatrics108 , E92 (2001).
  • Relkovic D , DoeCM, HumbyT et al.: Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader–Willi syndrome.Eur. J. Neurosci.31 , 156–164 (2010).
  • Runte M , HuttenhoferA, GrossS, KiefmannM, HorsthemkeB, BuitingK: The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A.Hum. Mol. Genet.10 , 2687–2700 (2001).
  • Cavaille J , BuitingK, KiefmannM et al.: Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization.Proc. Natl Acad. Sci. USA97 , 14311–14316 (2000).
  • Bressler J , TsaiTF, WuMY et al.: The SNRPN promoter is not required for genomic imprinting of the Prader–Willi/Angelman domain in mice.Nat. Genet.28 , 232–240 (2001).
  • Yang T , AdamsonTE, ResnickJL et al.: A mouse model for Prader–Willi syndrome imprinting-centre mutations.Nat. Genet.19 , 25–31 (1998).
  • Lee S , WalkerCL, KartenB et al.: Essential role for the Prader–Willi syndrome protein necdin in axonal outgrowth.Hum. Mol. Genet.14 , 627–637 (2005).
  • Pagliardini S , RenJ, WevrickR, GreerJJ: Developmental abnormalities of neuronal structure and function in prenatal mice lacking the Prader–Willi syndrome gene necdin.Am. J. Pathol.167 , 175–191 (2005).
  • Tennese AA , GeeCB, WevrickR: Loss of the Prader–Willi syndrome protein necdin causes defective migration, axonal outgrowth, and survival of embryonic sympathetic neurons.Dev. Dyn.237 , 1935–1943 (2008).
  • Kuwako K , HosokawaA, NishimuraI et al.: Disruption of the paternal necdin gene diminishes TrkA signaling for sensory neuron survival.J. Neurosci.25 , 7090–7099 (2005).
  • Andrieu D , MezianeH, MarlyF, AngelatsC, FernandezPA, MuscatelliF: Sensory defects in Necdin deficient mice result from a loss of sensory neurons correlated within an increase of developmental programmed cell death.BMC Dev. Biol.6 , 56 (2006).
  • Ingraham CA , SchorNF: Necdin and TrkA contribute to modulation by p75NTR of resistance to oxidant stress.Exp. Cell Res.315 , 3532–3542 (2009).
  • Kurita M , KuwajimaT, NishimuraI, YoshikawaK: Necdin downregulates CDC2 expression to attenuate neuronal apoptosis.J. Neurosci.26 , 12003–12013 (2006).
  • Kuwajima T , NishimuraI, YoshikawaK: Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins.J. Neurosci.26 , 5383–5392 (2006).
  • Tseng YH , ButteAJ, KokkotouE et al.: Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin.Nat. Cell Biol.7 , 601–611 (2005).
  • Bischof JM , StewartCL, WevrickR: Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader–Willi syndrome.Hum. Mol. Genet.16 , 2713–2719 (2007).
  • Skryabin BV , GubarLV, SeegerB et al.: Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation.PLoS Genet.3 , E235 (2007).
  • Ding F , LiHH, ZhangS et al.: SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice.PLoS One3 , E1709 (2008).
  • Sahoo T , del Gaudio D, German JR et al.: Prader–Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat. Genet.40 , 719–721 (2008).
  • de Smith AJ , PurmannC, WaltersRG et al.: A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism.Hum. Mol. Genet.18 , 3257–3265 (2009).
  • de los Santos T , SchweizerJ, ReesCA, FranckeU: Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader–Willi deletion region, which is highly expressed in brain.Am. J. Hum. Genet.67 , 1067–1082 (2000).
  • Ni J , TienAL, FournierMJ: Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA.Cell89 , 565–573 (1997).
  • Dunbar DA , BasergaSJ: The U14 snoRNA is required for 2´-O-methylation of the pre-18S rRNA in Xenopus oocytes.RNA4 , 195–204 (1998).
  • Kishino T , LalandeM, WagstaffJ: UBE3A/E6-AP mutations cause Angelman syndrome.Nat. Genet.15 , 70–73 (1997).
  • Matsuura T , SutcliffeJS, FangP et al.: De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome.Nat. Genet.15 , 74–77 (1997).
  • Bower BD , JeavonsPM: The ‘happy puppet‘ syndrome.Arch. Dis. Child42 , 298–302 (1967).
  • Lossie AC , WhitneyMM, AmidonD et al.: Distinct phenotypes distinguish the molecular classes of Angelman syndrome.J. Med. Genet.38 , 834–845 (2001).
  • Williams CA , BeaudetAL, Clayton-SmithJ et al.: Angelman syndrome 2005: updated consensus for diagnostic criteria.Am. J. Med. Genet. A140 , 413–418 (2006).
  • Dan B : Angelman syndrome: current understanding and research prospects.Epilepsia50 , 2331–2339 (2009).
  • Albrecht U , SutcliffeJS, CattanachBM et al.: Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons.Nat. Genet.17 , 75–78 (1997).
  • Dindot SV , AntalffyBA, BhattacharjeeMB, BeaudetAL: The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology.Hum. Mol. Genet.17 , 111–118 (2008).
  • Yamasaki K , JohK, OhtaT et al.: Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a.Hum. Mol. Genet.12 , 837–847 (2003).
  • Gustin RM , BichellTJ, BubserM et al.: Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome.Neurobiol. Dis.39(3) , 283–291 (2010).
  • Landers M , BancescuDL, Le Meur E et al.: Regulation of the large (approximately 1000 kb) imprinted murine Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn. Nucleic Acids Res.32 , 3480–3492 (2004).
  • Rougeulle C , CardosoC, FontesM, ColleauxL, LalandeM: An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript.Nat. Genet.19 , 15–16 (1998).
  • Glessner JT , WangK, CaiG et al.: Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.Nature459 , 569–573 (2009).
  • Samaco RC , HogartA, LaSalleJM: Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3.Hum. Mol. Genet.14 , 483–492 (2005).
  • Makedonski K , AbuhatziraL, KaufmanY, RazinA, ShemerR: MeCP2 deficiency in Rett syndrome causes epigenetic aberrations at the PWS/AS imprinting center that affects UBE3A expression.Hum. Mol. Genet.14 , 1049–1058 (2005).
  • Jedele KB : The overlapping spectrum of Rett and Angelman syndromes: a clinical review.Semin. Pediatr. Neurol.14 , 108–117 (2007).
  • Jiang YH , ArmstrongD, AlbrechtU et al.: Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation.Neuron21 , 799–811 (1998).
  • Miura K , KishinoT, LiE et al.: Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice.Neurobiol. Dis.9 , 149–159 (2002).
  • Yashiro K , RidayTT, CondonKH et al.: Ube3a is required for experience-dependent maturation of the neocortex.Nat. Neurosci.12 , 777–783 (2009).
  • Sato M , StrykerMP: Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a.Proc. Natl Acad. Sci. USA107 , 5611–5616 (2010).
  • Weeber EJ , JiangYH, ElgersmaY et al.: Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome.J. Neurosci.23 , 2634–2644 (2003).
  • Kumar S , TalisAL, HowleyPM: Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination.J. Biol. Chem.274 , 18785–18792 (1999).
  • Reiter LT , SeagrovesTN, BowersM, BierE: Expression of the Rho-GEF Pbl/ECT2 is regulated by the UBE3A E3 ubiquitin ligase.Hum. Mol. Genet.15 , 2825–2835 (2006).
  • Louria-Hayon I , Alsheich-BartokO, Levav-CohenY et al.: E6AP promotes the degradation of the PML tumor suppressor.Cell Death Differ.16 , 1156–1166 (2009).
  • Greer PL , HanayamaR, BloodgoodBL et al.: The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc.Cell140 , 704–716.
  • Good CD , LawrenceK, ThomasNS et al.: Dosage-sensitive X-linked locus influences the development of amygdala and orbitofrontal cortex, and fear recognition in humans.Brain126 , 2431–2446 (2003).
  • Elsheikh M , DungerDB, ConwayGS, WassJA: Turner‘s syndrome in adulthood.Endocr. Rev.23 , 120–140 (2002).
  • McCauley E , KayT, ItoJ, TrederR: The Turner syndrome: cognitive deficits, affective discrimination, and behavior problems.Child Dev.58 , 464–473 (1987).
  • McCauley E , FeuillanP, KushnerH, RossJL: Psychosocial development in adolescents with Turner syndrome.J. Dev. Behav. Pediatr.22 , 360–365 (2001).
  • Ross JL , RoeltgenD, FeuillanP, KushnerH, CutlerGB Jr: Use of estrogen in young girls with Turner syndrome: effects on memory. Neurology54 , 164–170 (2000).
  • Skuse DH , JamesRS, BishopDV et al.: Evidence from Turner‘s syndrome of an imprinted X-linked locus affecting cognitive function.Nature387 , 705–708 (1997).
  • Bishop DV , CanningE, ElgarK, MorrisE, JacobsPA, SkuseDH: Distinctive patterns of memory function in subgroups of females with Turner syndrome: evidence for imprinted loci on the X-chromosome affecting neurodevelopment.Neuropsychologia38 , 712–721 (2000).
  • Donnelly SL , WolpertCM, MenoldMM et al.: Female with autistic disorder and monosomy X (Turner syndrome): parent-of-origin effect of the X chromosome.Am. J. Med. Genet.96 , 312–316 (2000).
  • Murphy DG , DeCarliC, DalyE et al.: X-chromosome effects on female brain: a magnetic resonance imaging study of Turner‘s syndrome.Lancet342 , 1197–1200 (1993).
  • Reiss AL , MazzoccoMM, GreenlawR, FreundLS, RossJL: Neurodevelopmental effects of X monosomy: a volumetric imaging study.Ann. Neurol.38 , 731–738 (1995).
  • Kesler SR , GarrettA, BenderB, YankowitzJ, ZengSM, ReissAL: Amygdala and hippocampal volumes in Turner syndrome: a high-resolution MRI study of X-monosomy.Neuropsychologia42 , 1971–1978 (2004).
  • Kesler SR , BlaseyCM, BrownWE et al.: Effects of X-monosomy and X-linked imprinting on superior temporal gyrus morphology in Turner syndrome.Biol. Psychiatry54 , 636–646 (2003).
  • Lynn PM , DaviesW: The 39,XO mouse as a model for the neurobiology of Turner syndrome and sex-biased neuropsychiatric disorders.Behav. Brain Res.179 , 173–182 (2007).
  • Raefski AS , O‘NeillMJ: Identification of a cluster of X-linked imprinted genes in mice.Nat. Genet.37 , 620–624 (2005).
  • Davies W , IslesA, SmithR et al.: Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice.Nat. Genet.37 , 625–629 (2005).
  • Escalier D , AllenetB, BadrichaniA, GarchonHJ: High level expression of the Xlr nuclear protein in immature thymocytes and colocalization with the matrix-associated region-binding SATB1 protein.J. Immunol.162 , 292–298 (1999).
  • Martinez-Garay I , JablonkaS, SutajovaM, SteuernagelP, GalA, KutscheK: A new gene family (FAM9) of low-copy repeats in Xp22.3 expressed exclusively in testis: implications for recombinations in this region.Genomics80 , 259–267 (2002).
  • Cubelos B , Sebastian-SerranoA, BeccariL et al.: Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex.Neuron66 , 523–535 (2010).
  • Thomas NS , SharpAJ, BrowneCE, SkuseD, HardieC, DennisNR: Xp deletions associated with autism in three females.Hum. Genet.104 , 43–48 (1999).
  • Milunsky J , HuangXL, WyandtHE, MilunskyA: Schizophrenia susceptibility gene locus at Xp22.3.Clin. Genet.55 , 455–460 (1999).
  • Dobson MJ , PearlmanRE, KaraiskakisA, SpyropoulosB, MoensPB: Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction.J. Cell Sci.107(Pt. 10) , 2749–2760 (1994).
  • Shahbazian MD , ZoghbiHY: Molecular genetics of Rett syndrome and clinical spectrum of MECP2 mutations.Curr. Opin. Neurol.14 , 171–176 (2001).
  • Armstrong DD : Neuropathology of Rett syndrome.Ment. Retard. Dev. Disabil. Res. Rev.8 , 72–76 (2002).
  • Amir RE , Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet.23 , 185–188 (1999).
  • Lewis JD , MeehanRR, HenzelWJ et al.: Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA.Cell69 , 905–914 (1992).
  • Meehan RR , LewisJD, BirdAP: Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA.Nucleic Acids Res.20 , 5085–5092 (1992).
  • Kishi N , MacklisJD: MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions.Mol. Cell Neurosci.27 , 306–321 (2004).
  • Balmer D , GoldstineJ, RaoYM, LaSalleJM: Elevated methyl-CpG-binding protein 2 expression is acquired during postnatal human brain development and is correlated with alternative polyadenylation.J. Mol. Med.81 , 61–68 (2003).
  • Nan X , NgHH, JohnsonCA et al.: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex.Nature393 , 386–389 (1998).
  • Jordan C , LiHH, KwanHC, FranckeU: Cerebellar gene expression profiles of mouse models for Rett syndrome reveal novel MeCP2 targets.BMC Med. Genet.8 , 36 (2007).
  • Nuber UA , KriaucionisS, RoloffTC et al.: Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome.Hum. Mol. Genet.14 , 2247–2256 (2005).
  • Tudor M , AkbarianS, ChenRZ, JaenischR: Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain.Proc. Natl Acad. Sci. USA99 , 15536–15541 (2002).
  • Urdinguio RG , Lopez-SerraL, Lopez-NievaP et al.: Mecp2-null mice provide new neuronal targets for Rett syndrome.PLoS One3 , E3669 (2008).
  • Young JI , HongEP, CastleJC et al.: Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2.Proc. Natl Acad. Sci. USA102 , 17551–17558 (2005).
  • Skene PJ , IllingworthRS, WebbS et al.: Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state.Mol. Cell37 , 457–468 (2010).
  • Chen RZ , AkbarianS, TudorM, JaenischR: Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice.Nat. Genet.27 , 327–331 (2001).
  • Guy J , HendrichB, HolmesM, MartinJE, BirdA: A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome.Nat. Genet.27 , 322–326 (2001).
  • Shahbazian M , YoungJ, Yuva-PaylorL et al.: Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3.Neuron35 , 243–254 (2002).
  • Luikenhuis S , GiacomettiE, BeardCF, JaenischR: Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice.Proc. Natl Acad. Sci. USA101 , 6033–6038 (2004).
  • Giacometti E , LuikenhuisS, BeardC, JaenischR: Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2.Proc. Natl Acad. Sci. USA104 , 1931–1936 (2007).
  • Tropea D , GiacomettiE, WilsonNR et al.: Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice.Proc. Natl Acad. Sci. USA106 , 2029–2034 (2009).
  • Guy J , GanJ, SelfridgeJ, CobbS, BirdA: Reversal of neurological defects in a mouse model of Rett syndrome.Science315 , 1143–1147 (2007).
  • LaSalle JM : The odyssey of MeCP2 and parental imprinting.Epigenetics2 , 5–10 (2007).
  • Jordan C , FranckeU: Ube3a expression is not altered in Mecp2 mutant mice.Hum. Mol. Genet.15 , 2210–2215 (2006).
  • Weitzel JM , BuhrmesterH, StratlingWH: Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2.Mol. Cell. Biol.17 , 5656–5666 (1997).
  • Stratling WH , YuF: Origin and roles of nuclear matrix proteins. Specific functions of the MAR-binding protein MeCP2/ARBP.Crit. Rev. Eukaryot. Gene Expr.9 , 311–318 (1999).
  • Nomura T , KimuraM, HoriiT et al.: MeCP2-dependent repression of an imprinted miR-184 released by depolarization.Hum. Mol. Genet.17 , 1192–1199 (2008).
  • Fuks F , HurdPJ, WolfD, NanX, BirdAP, KouzaridesT: The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation.J. Biol. Chem.278 , 4035–4040 (2003).
  • Drewell RA , GoddardCJ, ThomasJO, SuraniMA: Methylation-dependent silencing at the H19 imprinting control region by MeCP2.Nucleic Acids Res.30 , 1139–1144 (2002).
  • Nan X , HouJ, MacleanA et al.: Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation.Proc. Natl Acad. Sci. USA104 , 2709–2714 (2007).
  • Gibbons RJ , McDowellTL, RamanS et al.: Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation.Nat. Genet.24 , 368–371 (2000).
  • Picketts DJ , HiggsDR, BachooS, BlakeDJ, QuarrellOW, GibbonsRJ: ATRX encodes a novel member of the SNF2 family of proteins: mutations point to a common mechanism underlying the ATR-X syndrome.Hum. Mol. Genet.5 , 1899–1907 (1996).
  • Seah C , LevyMA, JiangY et al.: Neuronal death resulting from targeted disruption of the Snf2 protein ATRX is mediated by p53.J. Neurosci.28 , 12570–12580 (2008).
  • Abidi FE , CardosoC, LossiAM et al.: Mutation in the 5´ alternatively spliced region of the XNP/ATR-X gene causes Chudley–Lowry syndrome.Eur J. Hum. Genet.13 , 176–183 (2005).
  • Ritchie K , SeahC, MoulinJ, IsaacC, DickF, BerubeNG: Loss of ATRX leads to chromosome cohesion and congression defects.J. Cell. Biol.180 , 315–324 (2008).
  • De La Fuente R , ViveirosMM, WigglesworthK, EppigJJ: ATRX, a member of the SNF2 family of helicase/ATPases, is required for chromosome alignment and meiotic spindle organization in metaphase II stage mouse oocytes.Dev. Biol.272 , 1–14 (2004).
  • McDowell TL , GibbonsRJ, SutherlandH et al.: Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes.Proc. Natl Acad. Sci. USA96 , 13983–13988 (1999).
  • Berube NG , SmeenkCA, PickettsDJ: Cell cycle-dependent phosphorylation of the ATRX protein correlates with changes in nuclear matrix and chromatin association.Hum. Mol. Genet.9 , 539–547 (2000).
  • Garrick D , SharpeJA, ArkellR et al.: Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues.PLoS Genet.2 , E58 (2006).
  • Berube NG , MangelsdorfM, JaglaM et al.: The chromatin-remodeling protein ATRX is critical for neuronal survival during corticogenesis.J. Clin. Invest.115 , 258–267 (2005).
  • Levy MA , FernandesAD, TremblayDC, SeahC, BerubeNG: The SWI/SNF protein ATRX co-regulates pseudoautosomal genes that have translocated to autosomes in the mouse genome.BMC Genomics9 , 468 (2008).
  • Mill J , RichardsS, KnightJ, CurranS, TaylorE, AshersonP: Haplotype analysis of SNAP-25 suggests a role in the aetiology of ADHD.Mol. Psychiatry9 , 801–810 (2004).
  • Kustanovich V , MerrimanB, McGoughJ, McCrackenJT, SmalleySL, NelsonSF: Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder.Mol. Psychiatry8 , 309–315 (2003).
  • Kent L , GreenE, HawiZ et al.: Association of the paternally transmitted copy of common Valine allele of the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene with susceptibility to ADHD.Mol. Psychiatry10 , 939–943 (2005).
  • Sheehan K , LoweN, KirleyA et al.: Tryptophan hydroxylase 2 (TPH2) gene variants associated with ADHD.Mol. Psychiatry10 , 944–949 (2005).
  • Quist JF , BarrCL, SchacharR et al.: The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder.Mol. Psychiatry8 , 98–102 (2003).
  • Veenstra-VanderWeele J , KimSJ, LordC et al.: Transmission disequilibrium studies of the serotonin 5-HT2A receptor gene (HTR2A) in autism.Am. J. Med. Genet.114 , 277–283 (2002).
  • Jamain S , BncurC, QuachH et al.: Linkage and association of the glutamate receptor 6 gene with autism.Mol. Psychiatry7 , 302–310 (2002).
  • Borglum AD , KirovG, CraddockN et al.: Possible parent-of-origin effect of Dopa decarboxylase in susceptibility to bipolar affective disorder.Am. J. Med. Genet. B Neuropsychiatr Genet117B , 18–22 (2003).
  • Muglia P , PetronisA, MundoE, LanderS, CateT, KennedyJL: Dopamine D4 receptor and tyrosine hydroxylase genes in bipolar disorder: evidence for a role of DRD4.Mol. Psychiatry7 , 860–866 (2002).
  • Ni X , TrakaloJM, MundoE, LeeL, ParikhS, KennedyJL: Family-based association study of the serotonin-2A receptor gene (5-HT2A) and bipolar disorder.Neuromolecular Med.2 , 251–259 (2002).
  • Bickeboller H , KistlerM, ScholzM: Investigation of the candidate genes ACTHR and golf for bipolar illness by the transmission/disequilibrium test.Genet Epidemiol14 , 575–580 (1997).
  • Bah J , QuachH, EbsteinRP et al.: Maternal transmission disequilibrium of the glutamate receptor GRIK2 in schizophrenia.Neuroreport15 , 1987–1991 (2004).
  • Golimbet VE , AksenovaMG, NosikovVV, OrlovaVA, KaledaVG: Analysis of the linkage of the Taq1A and Taq1B loci of the dopamine D2 receptor gene with schizophrenia in patients and their siblings.Neurosci. Behav. Physiol.33 , 223–225 (2003).
  • Yang J , CaiJ, ZhangY et al.: Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader–Willi syndrome.J. Biol. Chem. doi: 10.1074/jbc.M110.183392 (2010) (Epub ahead of print).
  • Chamberlain SJ , ChenPF, NgKY et al.: Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader–Willi syndromes.Proc. Natl Acad. Sci. USA107 , 17668–17673 (2010).
  • Bressler J , TsaiTF, WuMY et al.: The SNRPN promoter is not required for genomic imprinting of the Prader-Willi/Angelman domain in mice.Nat. Genet.28 , 232–240 (2001).
  • Jiang Y , TsaiTF, BresslerJ, BeaudetAL: Imprinting in Angelman and Prader-Willi syndromes.Curr. Opin. Genet. Dev.8 , 334–342 (1998).
  • Muscatelli F , AbrousDN, MassacrierA et al.: Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome.Hum. Mol. Genet.9 , 3101–3110 (2000).
  • Bischof JM , StewartCL, WevrickR: Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader–Willi syndrome.Hum. Mol. Genet.16 , 2713–2719 (2007).
  • Kozlov SV , BogenpohlJW, HowellMP et al.: The imprinted gene Magel2 regulates normal circadian output.Nat. Genet.39 , 1266–1272 (2007).
  • Mercer RE , WevrickR: Loss of magel2, a candidate gene for features of Prader-Willi syndrome, impairs reproductive function in mice.PLoS ONE4 , e4291 (2009).
  • Ding F , LiHH, ZhangS et al.: SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice.PLoS ONE3 , e1709 (2008).
  • Lane PW , DavissonMT: Patchy fur (Paf), a semidominant X-linked gene associated with a high level of X-Y nondisjunction in male mice.J. Hered.81 , 43–50 (1990).
  • Lyon MF , HawkerSG: Reproductive lifespan in irradiated and unirradiated chromosomally XO mice.Genet. Res.21 , 185–194 (1973).
  • Hultcrantz M , SylvenL, BorgE: Ear and hearing problems in 44 middle-aged women with Turner‘s syndrome.Hear. Res.76 , 127–132 (1994).
  • Deckers JFM , KroonPHW, DouglasLT: Some characteristics of the XO mouse (Mus musculus L.) II. Reproduction: fertility and gametic segregation.Genetica57(1) , 3–11 (1981).
  • Thornhill AR , BurgoynePS: A paternally imprinted X chromosome retards the development of the early mouse embryo.Development118 , 171–174 (1993).
  • Burgoyne PS , BakerTG: Perinatal oocyte loss in XO mice and its implications for the aetiology of gonadal dysgenesis in XO women.J. Reprod. Fertil.75 , 633–645 (1985).
  • Collins AL , LevensonJM, VilaythongAP et al.: Mild overexpression of MeCP2 causes a progressive neurological disorder in mice.Hum. Mol. Genet.13 , 2679–2689 (2004).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.